metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di-μ-chlorido-bis­­[chlorido­(di­methyl­formamide-κN)(3,5-di­phenyl-1H-pyrazole-κN2)­copper(II)]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Biochemistry, Shippensburg University, 1871 Old Main Dr., Shippensburg, PA 17257, USA, and bDepartment of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
*Correspondence e-mail: cmzaleski@ship.edu

Edited by A. J. Lough, University of Toronto, Canada (Received 12 August 2018; accepted 21 August 2018; online 24 August 2018)

The title compound, [Cu2Cl4(C15H12N2)2(C3H7NO)2], Cu2(μ-Cl)2Cl2(3,5-diphenyl-1H-pyrazole)2(DMF)2, where DMF is N,N-di­methyl­formamide, crystallizes in the monoclinic space group P21/n. The five-coordinate CuII ions have a distorted square-pyramidal geometry and are joined via two μ-Cl anions. The coordination environment of each CuII ion is completed by a terminal chloride anion, a nitro­gen-coordinated 3,5-diphenyl-1H-pyrazole mol­ecule, and a DMF mol­ecule. Two intra­molecular hydrogen bonds exist in the mol­ecule as the H atom of the protonated N atom of the 3,5-diphenyl-1H-pyrazole bonds to a terminal chloride anion of the adjacent CuII cation. In addition, mol­ecules are linked into a two-dimensional sheet via weak C—H⋯Cl inter­molecular hydrogen bonds. Each dimer hydrogen bonds to four neighboring mol­ecules as the H atom of the C atom in the fourth position of the pyrazole ring bonds to a μ-Cl on a neighboring mol­ecule.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyrazole-based ligands are ubiquitous in the literature for their ability to build mono-metal complexes and mol­ecules containing multiple metal centers (Mukherjee, 2000[Mukherjee, R. (2000). Coord. Chem. Rev. 203, 151-218.]; Viciano-Chumillas et al., 2010[Viciano-Chumillas, M., Tanase, S., de Jongh, L. J. & Reedijk, J. (2010). Eur. J. Inorg. Chem. 2010, 3403-3418.]; Doidge et al., 2015[Doidge, E. D., Roebuck, J. W., Healy, M. R. & Tasker, P. A. (2015). Coord. Chem. Rev. 288, 98-117.]; Castro et al., 2016[Castro, I., Barros, W. P., Calatayud, M. L., Lloret, F., Marino, N., De Munno, G., Stumpf, H. O., Ruiz-García, R. & Julve, M. (2016). Coord. Chem. Rev. 315, 135-152.]). In particular, 3,5-di­phenyl­pyrazole and its derivatives have been used to form numerous copper complexes with the metal in either the 1+ or 2+ oxidation states (Raptis & Fackler Jr, 1988[Raptis, R. G. & Fackler, J. P. Jr (1988). Inorg. Chem. 27, 4179-4182.]; Mezei et al., 2007[Mezei, G., Rivera-Carrillo, M. & Raptis, R. G. (2007). Dalton Trans. pp. 37-40.]; Tardito et al., 2011[Tardito, S., Bassanetti, I., Bignardi, C., Elviri, L., Tegoni, M., Mucchino, C., Bussolati, O., Franchi-Gazzola, R. & Marchiò, L. (2011). 133, 6235-6242.]; Ahmed et al., 2016[Ahmed, B. M., Calco, B. & Mezei, G. (2016). Dalton Trans. 45, 8327-8339.]; Zhang et al., 2017[Zhang, H.-J., Shi, C.-Y., Zhong, F. & Yin, L. (2017). J. Am. Chem. Soc. 139, 2196-2199.]). The title compound Cu2(μ-Cl)2Cl2(3,5-diphenyl-1H-pyrazole)2(DMF)2 (1), where DMF is N,N-di­methyl­formamide, reported within relates a dicopper(II) compound with two neutral 3,5-diphenyl-1H-pyrazole ligands, two bridging chloride anions, and two terminal chloride anions. In addition, compound (1) has similar structural features to a number of copper(II)–chloride–pyrazole-based mol­ecules and one copper(II)–chloride–triazole-based mol­ecule: Cu2(μ-Cl2)Cl2(1H-3,5-diethyl-4-methyl­pyrazole)4 (Agre et al., 1977[Agre, V. M., Krol, I. A. & Trunov, V. K. (1977). Proc. Nat. Acad. Sci. USSR, 235, 341.]; Agre et al., 1979[Agre, V. M., Krol, I. A., Trunov, V. K., Dziomko, V. M. & Ivanov, O. V. (1979). Russ. J. Coord. Chem. 5, 1413.]), Cu2(μ-Cl2)Cl2(3,4-dimethyl-5-phenyl­pyrazole)2(4,5-dimethyl-3-phenyl­pyrazole)2 (Keij et al., 1991[Keij, F. S., Haasnoot, J. G., Oosterling, A. J., Reedijk, J., O'Connor, C. J., Zhang, J. H. & Spek, A. L. (1991). Inorg. Chim. Acta, 181, 185-193.]), Cu2(μ-Cl2)Cl2(3,5-di­phenyl­pyrazole)4 (Małecka et al., 1998[Małecka, M., Grabowski, M. J., Olszak, T. A., Kostka, K. & Strawiak, M. (1998). Acta Cryst. C54, 1770-1773.]; Mezei & Raptis, 2004[Mezei, G. & Raptis, R. G. (2004). Inorg. Chim. Acta, 357, 3279-3288.]; Zhu et al., 2011[Zhu, W.-R., Ding, S.-H., Li, J.-G., Chen, Y., Liu, G.-C., Zhu, Y.-L. & Huang, Z.-Y. (2011). Chin. J. Struct. Chem. 30, 1101-1104.]), Cu2(μ-Cl2)Cl2(3,5-dimethyl-1H-pyrazole)4 (Chandrasekhar et al., 2000[Chandrasekhar, V., Kingsley, S., Vij, A., Lam, K. C. & Rheingold, A. L. (2000). Inorg. Chem. 39, 3238-3242.]; Giles et al., 2015[Giles, I. D., DePriest, J. C. & Deschamps, J. R. (2015). J. Coord. Chem. 68, 3611-3635.]), Cu2(μ-Cl2)Cl2(3-methyl-5-phenyl-1H-pyrazole)4 (Soltani et al., 2012[Soltani, B., Sadr, M. H., Engle, J. T., Ziegler, C. J., Joo, S. W. & Hanifehpour, Y. (2012). Transition Met. Chem. 37, 687-694.]), Cu2(μ-Cl2)Cl2(5-methyl-1H-pyrazole)4 (Giles et al., 2015[Giles, I. D., DePriest, J. C. & Deschamps, J. R. (2015). J. Coord. Chem. 68, 3611-3635.]; Feng et al., 2016[Feng, C., Zhang, D., Chu, Z.-J. & Zhao, H. (2016). Polyhedron, 115, 288-296.]), Cu2(μ-Cl2)Cl2(3,4,5-trimethyl-1H-pyra­zole)4 (Vincent et al., 2018[Vincent, C. J., Giles, I. D. & Deschamps, J. R. (2018). Acta Cryst. E74, 357-362.]), and Cu2(μ-Cl)2Cl2(3,5-di­phen­yl-4-amino-1,2,4-triazole)2(H2O)2 (Bushuev et al., 2006[Bushuev, M. B., Virovets, A. V., Naumov, D. Y., Shvedenkov, Y. G., Sheludyakova, L. A., Elokhina, V. N., Boguslavsky, E. G. & Lavrenova, L. G. (2006). Russ. J. Coord. Chem. 32, 309-320.]).

Compound (1) consists of two CuII ions bridged by two μ-Cl anions (Fig. 1[link]). An inversion center exists in the mol­ecule, resulting in identical coordination environments about the copper centers. Thus, only the coordination environment of Cu1 will be discussed. The copper ions are assigned as a 2+ oxidation state based on a bond-valence-sum value of 2.03 (Brese & O'Keeffe, 1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]; Liu & Thorp, 1993[Liu, W. & Thorp, H. H. (1993). Inorg. Chem. 32, 4102-4105.]) and overall mol­ecular charge considerations. The 3,5-diphenyl-1H-pyrazole ligand is not deprotonated (H atoms are well resolved in difference electron density maps); thus, the ligands have a neutral charge. The four chloride ions necessitate that each identical copper ion has a 2+ charge. Each CuII ion is five-coordinate with a distorted square-pyramidal geometry (Fig. 2[link]). This geometry is supported by the calculated τ value of 0.28, where an ideal square-pyramidal geometry is given by τ = 0 and an ideal trigonal–bipyramidal geometry is specified as τ = 1 (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. G. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). The basal atoms of the geometry are comprised of the non-protonated nitro­gen atom (N1) of the 3,5-diphenyl-1H-pyrazole ligand, a terminal chloride anion (Cl1), a μ-chloride anion (Cl2), and an oxygen atom (O1) from a DMF mol­ecule. The average bond distance between Cu1 and the basal atoms is 2.133 Å. The coordination is completed by a second μ-chloride anion (Cl2i) in the apical position [symmetry operator (i): −x + 1, −y + 1, −z]. The bond distance of Cu1 to the apical μ-Cl2i is elongated with a distance of 2.6693 (6) Å. For comparison, the bond distance of Cu1 to the basal μ-Cl2 is 2.2851 (5) Å. In addition, an intra­molecular hydrogen bond exists between the terminal Cl1 anion of Cu1 and the hydrogen atom of N2i of the 3,5-di­phenyl­pyrazole attached to Cu1i (Fig. 3[link] and Table 1[link]). The equivalent intra­molecular hydrogen bond exists between Cl1i and the hydrogen atom of N2. Thus, two intra­molecular hydrogen bonds exist in each mol­ecule. Lastly, weak inter­molecular hydrogen bonds (C8—H8⋯Cl2ii) connect the mol­ecules into a two-dimensional sheet [Fig. 4[link]; symmetry operator (ii) −x + [{3\over 2}], y + [{1\over 2}], −z + [{1\over 2}]]. The hydrogen atom of the carbon atom in the fourth position of the pyrazole ring bonds to a μ-Cl on an adjacent mol­ecule. Since there are two 3,5-diphenyl-1H-pyrazole ligands and two μ-Cl anions per mol­ecule, each individual mol­ecule is hydrogen bonded to four neighboring mol­ecules through this connectivity and a two-dimensional sheet is generated.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯Cl1i 0.88 2.40 3.2766 (19) 175
C8—H8⋯Cl2ii 0.95 2.79 3.722 (2) 169
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of (1) with displacement ellipsoids at the 50% probability level [symmetry code: (i) −x + 1, −y + 1, −z). For clarity, H atoms have been omitted. Color scheme: orange – CuII, green – Cl, red – oxygen, blue – nitro­gen, and gray – carbon. All figures were generated with the program Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).
[Figure 2]
Figure 2
The distorted square-pyramidal geometry about Cu1 [symmetry code: (i) −x + 1, −y + 1, −z]. See Fig. 1[link] for display details.
[Figure 3]
Figure 3
The intra­molecular hydrogen bonds present in each mol­ecule of (1) [symmetry code: (i) −x + 1, −y + 1, −z]. Hydrogen atoms are displayed in white. See Fig. 1[link] for additional display details.
[Figure 4]
Figure 4
The inter­molecular hydrogen bonds present between neighboring mol­ecules of (1) that result in a two-dimensional sheet [symmetry code: (ii) −x + [{3\over 2}], y + [{1\over 2}], −z + [{1\over 2}]]. For clarity only the H atoms (white) involved in the hydrogen bonding are displayed. See Fig. 1[link] for additional display details.

Synthesis and crystallization

Copper(II) chloride dihydrate was purchased from J. T. Baker Chemical Company, 3,5-di­phenyl-1H-pyrazole (>98.0%) was purchased from TCI America, and N,N-di­methyl­formamide (DMF, ACS grade) was purchased Pharmco–Aaper. All reagents were used as received and without further purification.

Copper(II) chloride dihydrate (1 mmol) and 3,5-di­phenyl-1H-pyrazole (1 mmol) were dissolved in 20 ml of DMF resulting in a clear yellow–green solution. The solution was allowed to stir overnight and was then gravity filtered. No precipitate was recovered, and the filtrate had a clear yellow–green color. Slow evaporation of the solvent yielded X-ray quality green plate-like crystals after 30 days. The percent yield of the reaction was 30% based on copper(II) chloride dihydrate.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Cu2Cl4(C3H7NO)2(C15H12N2)2]
Mr 855.60
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 12.004 (1), 9.7942 (4), 17.4116 (8)
β (°) 107.633 (3)
V3) 1950.9 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.40
Crystal size (mm) 0.31 × 0.29 × 0.22
 
Data collection
Diffractometer Nonius Kappa CCD
Absorption correction Multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])
Tmin, Tmax 0.612, 0.748
No. of measured, independent and observed [I > 2σ(I)] reflections 12667, 4445, 3976
Rint 0.080
(sin θ/λ)max−1) 0.655
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.107, 1.04
No. of reflections 4445
No. of parameters 229
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.49, −0.45
Computer programs: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), HKL-3000 (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), shelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: HKL-3000 (Otwinowski & Minor, 1997); data reduction: HKL-3000 (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) and shelXle (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Di-µ-chlorido-bis[chlorido(dimethylformamide-κN)(3,5-diphenyl-1H-pyrazole-κN2)copper(II)] top
Crystal data top
[Cu2Cl4(C3H7NO)2(C15H12N2)2]F(000) = 876
Mr = 855.60Dx = 1.457 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.004 (1) ÅCell parameters from 12667 reflections
b = 9.7942 (4) Åθ = 1.8–27.8°
c = 17.4116 (8) ŵ = 1.40 mm1
β = 107.633 (3)°T = 100 K
V = 1950.9 (2) Å3Plate, green
Z = 20.31 × 0.29 × 0.22 mm
Data collection top
Nonius Kappa CCD
diffractometer
4445 independent reflections
Radiation source: fine focus X-ray tube3976 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
ω and φ scansθmax = 27.8°, θmin = 1.8°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
h = 1315
Tmin = 0.612, Tmax = 0.748k = 1210
12667 measured reflectionsl = 2220
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0444P)2 + 1.0669P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4445 reflectionsΔρmax = 0.49 e Å3
229 parametersΔρmin = 0.45 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0119 (13)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms were placed in calculated positions and refined as riding on their carrier atoms with C—H distances of 0.95 Å for sp2 carbon atoms, 0.98 Å for methyl carbon atoms, and 0.88 Å for the sp2 nitrogen atom. The <ui>Uiso values for hydrogen atoms were set to a multiple of the value of the carrying carbon atom (1.2 times for sp2-hybridized carbon atoms or 1.5 times for methyl carbon atoms).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.63919 (2)0.57447 (2)0.01853 (2)0.01123 (12)
Cl20.58568 (4)0.36146 (5)0.04774 (3)0.01454 (14)
Cl10.68474 (5)0.49827 (5)0.09070 (3)0.01877 (15)
O10.67895 (14)0.76438 (15)0.00269 (9)0.0167 (3)
N10.66061 (15)0.63626 (17)0.13178 (10)0.0128 (3)
N20.57490 (16)0.63696 (18)0.16782 (10)0.0130 (3)
H2N0.50380.60530.14560.016*
N30.6447 (2)0.9468 (2)0.08618 (12)0.0243 (4)
C10.9082 (2)0.6007 (2)0.12880 (12)0.0161 (4)
H10.85900.52510.10720.019*
C21.0193 (2)0.6081 (2)0.12018 (12)0.0179 (4)
H21.04600.53760.09260.021*
C31.0916 (2)0.7185 (3)0.15171 (13)0.0214 (5)
H31.16760.72320.14570.026*
C41.0528 (2)0.8216 (3)0.19191 (14)0.0238 (5)
H41.10220.89710.21340.029*
C50.9413 (2)0.8147 (2)0.20085 (14)0.0205 (5)
H50.91500.88530.22850.025*
C60.86844 (19)0.7044 (2)0.16931 (12)0.0149 (4)
C70.75421 (19)0.6933 (2)0.18394 (12)0.0140 (4)
C80.72765 (19)0.7317 (2)0.25414 (12)0.0158 (4)
H80.77820.77550.30030.019*
C90.61330 (18)0.6929 (2)0.24252 (11)0.0130 (4)
C100.54215 (19)0.7055 (2)0.29796 (12)0.0134 (4)
C110.6005 (2)0.7341 (2)0.37895 (12)0.0177 (4)
H110.68320.74310.39670.021*
C120.5374 (2)0.7494 (2)0.43331 (13)0.0220 (5)
H120.57750.76900.48820.026*
C130.4177 (2)0.7367 (2)0.40908 (13)0.0211 (5)
H130.37540.74680.44690.025*
C140.3592 (2)0.7088 (2)0.32849 (13)0.0208 (5)
H140.27650.70040.31120.025*
C150.42102 (19)0.6930 (2)0.27315 (12)0.0171 (4)
H150.38040.67370.21830.021*
C160.62989 (19)0.8181 (2)0.06975 (12)0.0165 (4)
H160.57950.76320.11070.020*
C170.7246 (3)1.0358 (3)0.02662 (17)0.0460 (8)
H17A0.78931.06350.04650.069*
H17B0.75540.98630.02430.069*
H17C0.68221.11700.01790.069*
C180.5865 (3)1.0043 (3)0.16520 (15)0.0372 (7)
H18A0.64501.04110.18850.056*
H18B0.53381.07770.15990.056*
H18C0.54130.93280.20050.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01127 (17)0.01268 (17)0.00998 (15)0.00203 (9)0.00358 (10)0.00140 (8)
Cl20.0123 (3)0.0129 (3)0.0168 (2)0.00006 (18)0.00204 (18)0.00201 (17)
Cl10.0170 (3)0.0250 (3)0.0169 (2)0.0054 (2)0.0089 (2)0.00756 (19)
O10.0191 (8)0.0159 (7)0.0153 (7)0.0037 (6)0.0054 (6)0.0009 (6)
N10.0108 (9)0.0162 (8)0.0120 (7)0.0017 (7)0.0044 (6)0.0010 (6)
N20.0108 (9)0.0166 (9)0.0125 (7)0.0025 (7)0.0047 (6)0.0021 (7)
N30.0344 (12)0.0161 (9)0.0199 (9)0.0020 (8)0.0047 (9)0.0007 (8)
C10.0149 (11)0.0185 (10)0.0140 (9)0.0001 (8)0.0029 (8)0.0008 (8)
C20.0157 (11)0.0231 (11)0.0156 (9)0.0029 (9)0.0057 (8)0.0007 (8)
C30.0148 (11)0.0307 (13)0.0199 (10)0.0010 (9)0.0073 (9)0.0039 (9)
C40.0170 (12)0.0251 (12)0.0298 (11)0.0084 (9)0.0078 (9)0.0037 (10)
C50.0177 (11)0.0198 (11)0.0252 (10)0.0015 (9)0.0085 (9)0.0047 (9)
C60.0141 (10)0.0177 (10)0.0131 (8)0.0001 (8)0.0043 (8)0.0013 (8)
C70.0152 (10)0.0129 (9)0.0135 (8)0.0010 (8)0.0037 (8)0.0006 (7)
C80.0149 (11)0.0185 (10)0.0132 (9)0.0014 (8)0.0030 (8)0.0032 (8)
C90.0132 (10)0.0123 (9)0.0128 (8)0.0010 (8)0.0028 (7)0.0003 (7)
C100.0155 (11)0.0124 (9)0.0139 (9)0.0011 (8)0.0066 (8)0.0003 (7)
C110.0143 (11)0.0245 (11)0.0144 (9)0.0029 (9)0.0044 (8)0.0000 (8)
C120.0241 (12)0.0304 (12)0.0123 (9)0.0065 (10)0.0065 (9)0.0003 (9)
C130.0221 (12)0.0254 (11)0.0201 (10)0.0019 (9)0.0129 (9)0.0012 (9)
C140.0155 (11)0.0261 (12)0.0226 (10)0.0007 (9)0.0083 (9)0.0017 (9)
C150.0170 (11)0.0193 (11)0.0151 (9)0.0005 (8)0.0048 (8)0.0022 (8)
C160.0149 (11)0.0195 (10)0.0162 (9)0.0038 (8)0.0063 (8)0.0015 (8)
C170.071 (2)0.0207 (13)0.0338 (14)0.0132 (14)0.0030 (14)0.0007 (12)
C180.055 (2)0.0254 (13)0.0255 (12)0.0064 (12)0.0044 (12)0.0106 (10)
Geometric parameters (Å, º) top
Cu1—O11.9826 (15)C5—H50.9500
Cu1—N12.0034 (16)C6—C71.473 (3)
Cu1—Cl12.2590 (5)C7—C81.405 (3)
Cu1—Cl22.2851 (5)C8—C91.379 (3)
Cu1—Cl2i2.6693 (6)C8—H80.9500
Cl2—Cu1i2.6693 (6)C9—C101.475 (3)
O1—C161.253 (3)C10—C151.391 (3)
N1—C71.335 (3)C10—C111.400 (3)
N1—N21.358 (2)C11—C121.388 (3)
N2—C91.357 (3)C11—H110.9500
N2—H2N0.8800C12—C131.375 (4)
N3—C161.317 (3)C12—H120.9500
N3—C181.455 (3)C13—C141.393 (3)
N3—C171.467 (3)C13—H130.9500
C1—C21.388 (3)C14—C151.391 (3)
C1—C61.400 (3)C14—H140.9500
C1—H10.9500C15—H150.9500
C2—C31.391 (3)C16—H160.9500
C2—H20.9500C17—H17A0.9800
C3—C41.387 (3)C17—H17B0.9800
C3—H30.9500C17—H17C0.9800
C4—C51.395 (3)C18—H18A0.9800
C4—H40.9500C18—H18B0.9800
C5—C61.393 (3)C18—H18C0.9800
O1—Cu1—N186.20 (6)C8—C7—C6126.82 (19)
O1—Cu1—Cl191.13 (4)C9—C8—C7106.06 (18)
N1—Cu1—Cl1159.53 (5)C9—C8—H8127.0
O1—Cu1—Cl2176.18 (5)C7—C8—H8127.0
N1—Cu1—Cl291.01 (5)N2—C9—C8106.62 (17)
Cl1—Cu1—Cl292.39 (2)N2—C9—C10124.41 (19)
O1—Cu1—Cl2i88.16 (5)C8—C9—C10128.97 (18)
N1—Cu1—Cl2i99.55 (5)C15—C10—C11119.17 (19)
Cl1—Cu1—Cl2i100.643 (19)C15—C10—C9123.19 (18)
Cl2—Cu1—Cl2i89.727 (18)C11—C10—C9117.63 (19)
Cu1—Cl2—Cu1i90.273 (18)C12—C11—C10119.9 (2)
C16—O1—Cu1119.72 (14)C12—C11—H11120.0
C7—N1—N2106.44 (16)C10—C11—H11120.0
C7—N1—Cu1128.82 (14)C13—C12—C11121.1 (2)
N2—N1—Cu1124.55 (13)C13—C12—H12119.5
C9—N2—N1111.11 (17)C11—C12—H12119.5
C9—N2—H2N124.4C12—C13—C14119.2 (2)
N1—N2—H2N124.4C12—C13—H13120.4
C16—N3—C18121.2 (2)C14—C13—H13120.4
C16—N3—C17121.2 (2)C15—C14—C13120.5 (2)
C18—N3—C17117.6 (2)C15—C14—H14119.7
C2—C1—C6120.1 (2)C13—C14—H14119.7
C2—C1—H1120.0C10—C15—C14120.1 (2)
C6—C1—H1120.0C10—C15—H15119.9
C1—C2—C3120.2 (2)C14—C15—H15119.9
C1—C2—H2119.9O1—C16—N3123.2 (2)
C3—C2—H2119.9O1—C16—H16118.4
C4—C3—C2120.0 (2)N3—C16—H16118.4
C4—C3—H3120.0N3—C17—H17A109.5
C2—C3—H3120.0N3—C17—H17B109.5
C3—C4—C5120.0 (2)H17A—C17—H17B109.5
C3—C4—H4120.0N3—C17—H17C109.5
C5—C4—H4120.0H17A—C17—H17C109.5
C6—C5—C4120.2 (2)H17B—C17—H17C109.5
C6—C5—H5119.9N3—C18—H18A109.5
C4—C5—H5119.9N3—C18—H18B109.5
C5—C6—C1119.5 (2)H18A—C18—H18B109.5
C5—C6—C7119.69 (19)N3—C18—H18C109.5
C1—C6—C7120.70 (19)H18A—C18—H18C109.5
N1—C7—C8109.76 (18)H18B—C18—H18C109.5
N1—C7—C6123.32 (18)
C7—N1—N2—C90.4 (2)N1—N2—C9—C81.0 (2)
Cu1—N1—N2—C9175.77 (13)N1—N2—C9—C10178.41 (18)
C6—C1—C2—C30.0 (3)C7—C8—C9—N21.2 (2)
C1—C2—C3—C40.0 (3)C7—C8—C9—C10178.2 (2)
C2—C3—C4—C50.1 (4)N2—C9—C10—C1516.5 (3)
C3—C4—C5—C60.2 (4)C8—C9—C10—C15164.2 (2)
C4—C5—C6—C10.2 (3)N2—C9—C10—C11164.8 (2)
C4—C5—C6—C7175.8 (2)C8—C9—C10—C1114.5 (3)
C2—C1—C6—C50.1 (3)C15—C10—C11—C120.1 (3)
C2—C1—C6—C7175.67 (19)C9—C10—C11—C12178.8 (2)
N2—N1—C7—C80.3 (2)C10—C11—C12—C130.1 (4)
Cu1—N1—C7—C8174.72 (14)C11—C12—C13—C140.4 (4)
N2—N1—C7—C6176.29 (18)C12—C13—C14—C150.4 (4)
Cu1—N1—C7—C68.6 (3)C11—C10—C15—C140.1 (3)
C5—C6—C7—N1148.5 (2)C9—C10—C15—C14178.7 (2)
C1—C6—C7—N135.9 (3)C13—C14—C15—C100.2 (3)
C5—C6—C7—C835.4 (3)Cu1—O1—C16—N3174.50 (17)
C1—C6—C7—C8140.1 (2)C18—N3—C16—O1179.6 (2)
N1—C7—C8—C91.0 (2)C17—N3—C16—O12.2 (4)
C6—C7—C8—C9175.5 (2)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···Cl1i0.882.403.2766 (19)175
C8—H8···Cl2ii0.952.793.722 (2)169
Symmetry codes: (i) x+1, y+1, z; (ii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

CMZ, MSN, and BTK thank the Chemistry and Biochemistry Department at Shippensburg University for support.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. G. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAgre, V. M., Krol, I. A. & Trunov, V. K. (1977). Proc. Nat. Acad. Sci. USSR, 235, 341.  Google Scholar
First citationAgre, V. M., Krol, I. A., Trunov, V. K., Dziomko, V. M. & Ivanov, O. V. (1979). Russ. J. Coord. Chem. 5, 1413.  Google Scholar
First citationAhmed, B. M., Calco, B. & Mezei, G. (2016). Dalton Trans. 45, 8327–8339.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBushuev, M. B., Virovets, A. V., Naumov, D. Y., Shvedenkov, Y. G., Sheludyakova, L. A., Elokhina, V. N., Boguslavsky, E. G. & Lavrenova, L. G. (2006). Russ. J. Coord. Chem. 32, 309–320.  CrossRef Google Scholar
First citationCastro, I., Barros, W. P., Calatayud, M. L., Lloret, F., Marino, N., De Munno, G., Stumpf, H. O., Ruiz-García, R. & Julve, M. (2016). Coord. Chem. Rev. 315, 135–152.  CrossRef Google Scholar
First citationChandrasekhar, V., Kingsley, S., Vij, A., Lam, K. C. & Rheingold, A. L. (2000). Inorg. Chem. 39, 3238–3242.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDoidge, E. D., Roebuck, J. W., Healy, M. R. & Tasker, P. A. (2015). Coord. Chem. Rev. 288, 98–117.  CrossRef Google Scholar
First citationFeng, C., Zhang, D., Chu, Z.-J. & Zhao, H. (2016). Polyhedron, 115, 288–296.  CrossRef Google Scholar
First citationGiles, I. D., DePriest, J. C. & Deschamps, J. R. (2015). J. Coord. Chem. 68, 3611–3635.  Web of Science CSD CrossRef CAS Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKeij, F. S., Haasnoot, J. G., Oosterling, A. J., Reedijk, J., O'Connor, C. J., Zhang, J. H. & Spek, A. L. (1991). Inorg. Chim. Acta, 181, 185–193.  CSD CrossRef CAS Web of Science Google Scholar
First citationLiu, W. & Thorp, H. H. (1993). Inorg. Chem. 32, 4102–4105.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMałecka, M., Grabowski, M. J., Olszak, T. A., Kostka, K. & Strawiak, M. (1998). Acta Cryst. C54, 1770–1773.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMezei, G. & Raptis, R. G. (2004). Inorg. Chim. Acta, 357, 3279–3288.  Web of Science CSD CrossRef CAS Google Scholar
First citationMezei, G., Rivera-Carrillo, M. & Raptis, R. G. (2007). Dalton Trans. pp. 37–40.  Web of Science CSD CrossRef Google Scholar
First citationMukherjee, R. (2000). Coord. Chem. Rev. 203, 151–218.  Web of Science CrossRef CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRaptis, R. G. & Fackler, J. P. Jr (1988). Inorg. Chem. 27, 4179–4182.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSoltani, B., Sadr, M. H., Engle, J. T., Ziegler, C. J., Joo, S. W. & Hanifehpour, Y. (2012). Transition Met. Chem. 37, 687–694.  CrossRef Google Scholar
First citationTardito, S., Bassanetti, I., Bignardi, C., Elviri, L., Tegoni, M., Mucchino, C., Bussolati, O., Franchi-Gazzola, R. & Marchiò, L. (2011). 133, 6235-6242.  Google Scholar
First citationViciano-Chumillas, M., Tanase, S., de Jongh, L. J. & Reedijk, J. (2010). Eur. J. Inorg. Chem. 2010, 3403–3418.  Google Scholar
First citationVincent, C. J., Giles, I. D. & Deschamps, J. R. (2018). Acta Cryst. E74, 357–362.  CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, H.-J., Shi, C.-Y., Zhong, F. & Yin, L. (2017). J. Am. Chem. Soc. 139, 2196–2199.  CrossRef Google Scholar
First citationZhu, W.-R., Ding, S.-H., Li, J.-G., Chen, Y., Liu, G.-C., Zhu, Y.-L. & Huang, Z.-Y. (2011). Chin. J. Struct. Chem. 30, 1101–1104.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds