organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-[6-(4-Meth­­oxy­phen­yl)-2-methyl­pyrimidin-4-yl]-2-(4-methyl­piperazin-1-yl)quinoline

aSchool of Physics, Shri Mata Vaishno Devi University, Katra 182 320, J&K, India, bDepartment of Physics , University of Jammu, Jammu Tawi 180 006, India, cDepartment of Chemistry, University College of Science, Tumkur University Tumkur, 572 103, India, and dDepartment of Studies and Research in Chemistry, Tumkur University, Tumkur 572 103. Karnataka, India
*Correspondence e-mail: rkant.ju@gmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 11 December 2017; accepted 5 January 2018; online 12 January 2018)

In the title compound, C26H27N5O, the piperazine ring adopts a chair conformation. The pyrimidine ring makes a dihedral angle of 1.5 (1)° with the meth­oxy­phenyl ring and 33.1 (1)° with the quinoline ring system. In the crystal, mol­ecules are consolidated in the crystal packing by weak C—H⋯π inter­actions and ππ stacking inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Quinoline derivatives are important owing to their wide occurrence in natural products and in biologically active compounds (Markees et al., 1970[Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324-326.]; Campbell et al., 1988[Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031-1035.]; Kalluraya & Sreenivasa, 1998[Kalluraya, B. & Sreenivasa, S. (1998). Farmaco, 53, 399-404.]). The pyrimidine nucleus also plays an important role in the medicinal chemistry and is reported to possess a broad spectrum of biological activities such as anti­microbial, anti-inflammatory, anthelmintic, anti HIV, anti­tubercular properties (Prasad et al., 2008[Prasad, R. Y., Kumar, P., Kumar, R. P. & Rao, P. V. (2008). Int. J. Chem. Sci. 6, 333-341.]; Vaidya & Ma­thias 2005[Vaidya, V. P. & Mathias, P. (2005). Ind. J. Heterocycl. Chem, 14, 189-192.]; Virsodia et al., 2008[Virsodia, V., Pissurlenkar, R. R. S., Manvar, D., Dholakia, C., Adlakha, P., Shah, A. & Coutinho, E. C. (2008). Eur. J. Med. Chem. 43, 2103-2115.]). In a continuation of structural studies of these derivatives (Sharma et al., 2017[Sharma, D. K., Desai, N. R., Sreenivasa, S., Anthal, S. & Kant, R. (2017). IUCrData, 2, x171600.]; Kaiser et al., 2009[Kaiser, C. R., Pais, K. C., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1133-1140.]; Prasath et al., 2010[Prasath, R., Sarveswari, S., Vijayakumar, V., Narasimhamurthy, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1110.]) the title compound was investigated.

In the title mol­ecule (Fig. 1[link]), bond lengths are comparable with those in related structures (Prasath et al., 2010[Prasath, R., Sarveswari, S., Vijayakumar, V., Narasimhamurthy, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1110.], 2011[Prasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o796-o797.]; Sharma et al., 2017[Sharma, D. K., Desai, N. R., Sreenivasa, S., Anthal, S. & Kant, R. (2017). IUCrData, 2, x171600.]). The piperazine ring adopts a chair conformation with best mirror plane passing through atoms N4 and N5 [asymmetry parameter Cs(N4) = 1.03] and the best twofold rotational axis bis­ecting the N4—C25 and N5—C23 bonds [asymmetry parameter C2(N5—C25) = 1.27; Duax & Norton, 1975[Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.]]. The quinoline ring system is essentially planar with a maximum deviation of 0.0583 (1) Å for atom C21. The meth­oxy­phenyl ring makes a dihedral angle of 1.5 (1)° with the pyrimidine ring while the dihedral angle between the pyrimidine ring and quinoline ring system is 33.1 (1)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.

In the crystal, ππ stacking inter­actions are observed between the pyrimidine ring and meth­oxy­phenyl ring [centroid–centroid separation = 3.628 (1) Å, inter­planar spacing = 3.588 Å and centroid shift = 0.54 Å; symmetry code: 1 − x, −y, −z]. Weak C—H⋯π inter­actions are also observed (Table 1[link]). The above inter­action combine to assemble the mol­ecules into a three-dimensional network (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C15–C20, C8–C10/N2/C11/N2 and C2–C7 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1ACg1i 0.96 3.10 3.867 (2) 138
C25—H25ACg2ii 0.97 2.96 3.706 (2) 134
C17—H17⋯Cg3iii 0.93 3.08 3.759 (2) 131
Symmetry codes: (i) x-1, y, z-1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x+1, y, z+1.
[Figure 2]
Figure 2
Part of the crystal structure. Only H atoms involved in the C—H⋯π inter­actions are shown.

Synthesis and crystallization

(2E)-3-[2-(4-Methyl­piperazin-1-yl)quinolin-3-yl]-1-(4-meth­oxy­phen­yl)prop-2-en-1-one (1 g, 0.0026 mmol), acetamidine hydro­chloride (243 mg, 0.0026 mmol) and NaOH (309 mg, 0.0077 mmol) were refluxed for 12 h in ethanol. The progress of reaction was monitored by thin layer chromatography. After the completion of reaction, the reaction mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with water, dried and concentrated under vacuum using a rotary evaporator. The compound was purified by column chromatography by using 60–120 mesh silica gel and it was recrystallized from an ethyl acetate–petroleum ether mixture (7:3 v:V).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C26H27N5O
Mr 425.52
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 11.9896 (9), 18.4215 (13), 10.9903 (10)
β (°) 110.153 (9)
V3) 2278.8 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.30 × 0.20 × 0.20
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Sapphire3
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.776, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 9015, 4461, 2193
Rint 0.045
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.165, 1.00
No. of reflections 4461
No. of parameters 293
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.17
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek,2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: PLATON (Spek,2009); software used to prepare material for publication: PLATON (Spek,2009).

3-[6-(4-Methoxyphenyl)-2-methylpyrimidin-4-yl]-2-(4-methylpiperazin-1-yl)quinoline top
Crystal data top
C26H27N5OF(000) = 904
Mr = 425.52Dx = 1.240 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.9896 (9) ÅCell parameters from 1944 reflections
b = 18.4215 (13) Åθ = 3.9–27.5°
c = 10.9903 (10) ŵ = 0.08 mm1
β = 110.153 (9)°T = 293 K
V = 2278.8 (3) Å3Block, white
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
4461 independent reflections
Radiation source: fine-focus sealed tube2193 reflections with I > 2σ(I)
Detector resolution: 6.1049 pixels mm-1Rint = 0.045
ω scansθmax = 26.0°, θmin = 3.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
h = 1410
Tmin = 0.776, Tmax = 1.000k = 2221
9015 measured reflectionsl = 1311
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.064 w = 1/[σ2(Fo2) + (0.0527P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.165(Δ/σ)max = 0.002
S = 1.00Δρmax = 0.18 e Å3
4461 reflectionsΔρmin = 0.17 e Å3
293 parametersExtinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0065 (11)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.97 Å; and with Uiso(H) = 1.2Ueq(C), except for the methyl groups where Uiso(H) = 1.5Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N30.1267 (2)0.72304 (11)0.7034 (2)0.0458 (6)
N20.16616 (19)0.92591 (10)0.9859 (2)0.0472 (6)
N40.29090 (19)0.72812 (11)0.8926 (2)0.0441 (6)
N10.3478 (2)0.97474 (11)1.1300 (2)0.0499 (6)
C150.0198 (2)0.81946 (14)0.6399 (3)0.0459 (7)
C130.1555 (2)0.83286 (13)0.8309 (3)0.0425 (7)
C50.5412 (3)0.93685 (14)1.1382 (3)0.0484 (7)
C110.2301 (2)0.97043 (13)1.0800 (3)0.0477 (7)
C100.2289 (2)0.88089 (13)0.9372 (3)0.0429 (7)
C80.4107 (2)0.93117 (13)1.0799 (3)0.0446 (7)
C210.1884 (2)0.76059 (13)0.8064 (3)0.0404 (6)
C140.0510 (3)0.85949 (14)0.7484 (3)0.0498 (7)
H140.0256550.9051670.7638860.060*
C200.0242 (2)0.75182 (14)0.6186 (3)0.0438 (7)
O10.9073 (2)0.95927 (12)1.3186 (3)0.0891 (8)
C90.3520 (3)0.88340 (13)0.9812 (3)0.0476 (7)
H90.3946180.8534030.9450430.057*
C40.5930 (3)0.98535 (14)1.2376 (3)0.0596 (9)
H40.5441801.0145621.2668800.072*
C220.2925 (2)0.71665 (14)1.0246 (3)0.0502 (8)
H22A0.2409690.6763011.0259780.060*
H22B0.2629640.7596591.0544190.060*
C190.0409 (3)0.71172 (16)0.5084 (3)0.0582 (8)
H190.0112180.6678580.4908420.070*
N50.4637 (2)0.63727 (13)1.0676 (3)0.0655 (7)
C250.3320 (3)0.66256 (14)0.8466 (3)0.0590 (8)
H25A0.3297120.6694350.7582580.071*
H25B0.2809340.6219520.8479320.071*
C20.7879 (3)0.94946 (17)1.2531 (3)0.0628 (9)
C160.1296 (3)0.84345 (16)0.5544 (3)0.0603 (8)
H160.1596570.8878780.5689820.072*
C180.1473 (3)0.73667 (17)0.4274 (3)0.0667 (9)
H180.1901510.7091600.3554910.080*
C30.7132 (3)0.99188 (15)1.2944 (3)0.0655 (9)
H30.7448531.0250741.3612030.079*
C70.7395 (3)0.90055 (17)1.1532 (3)0.0651 (9)
H70.7887560.8715731.1242000.078*
C170.1932 (3)0.80266 (17)0.4500 (3)0.0657 (9)
H170.2665490.8187940.3944810.079*
C60.6171 (3)0.89510 (15)1.0968 (3)0.0608 (8)
H60.5850500.8624131.0292740.073*
C240.4585 (3)0.64721 (17)0.9351 (3)0.0660 (9)
H24A0.4875080.6038010.9058190.079*
H24B0.5094390.6873660.9310180.079*
C230.4171 (3)0.70077 (16)1.1133 (3)0.0633 (9)
H23A0.4675160.7423531.1159650.076*
H23B0.4172570.6920391.2003580.076*
C120.1623 (3)1.02123 (15)1.1351 (3)0.0710 (10)
H12A0.1789561.0101451.2249800.106*
H12B0.0787161.0158091.0887260.106*
H12C0.1856681.0703101.1268570.106*
C260.5859 (3)0.6232 (2)1.1512 (4)0.0978 (13)
H26A0.6143510.5800521.1224640.147*
H26B0.5887140.6167141.2388470.147*
H26C0.6351500.6635931.1471650.147*
C10.9855 (3)0.9098 (2)1.2957 (4)0.1088 (15)
H1A0.9637900.8614851.3114320.163*
H1B1.0648900.9199911.3524910.163*
H1C0.9817390.9138631.2072680.163*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N30.0408 (15)0.0517 (13)0.0405 (14)0.0014 (11)0.0086 (12)0.0049 (12)
N20.0432 (15)0.0419 (12)0.0480 (15)0.0009 (11)0.0049 (13)0.0035 (11)
N40.0398 (15)0.0507 (13)0.0366 (13)0.0098 (10)0.0067 (12)0.0003 (11)
N10.0438 (15)0.0470 (13)0.0503 (15)0.0057 (11)0.0053 (13)0.0045 (12)
C150.0377 (17)0.0517 (16)0.0431 (17)0.0011 (13)0.0071 (15)0.0009 (14)
C130.0352 (16)0.0453 (15)0.0420 (17)0.0023 (12)0.0069 (14)0.0034 (13)
C50.0416 (18)0.0468 (16)0.0515 (19)0.0065 (13)0.0091 (16)0.0027 (15)
C110.0429 (18)0.0408 (15)0.0520 (19)0.0039 (13)0.0070 (16)0.0004 (14)
C100.0395 (18)0.0440 (15)0.0401 (17)0.0028 (13)0.0072 (15)0.0010 (13)
C80.0463 (19)0.0405 (15)0.0411 (16)0.0022 (13)0.0074 (15)0.0050 (13)
C210.0367 (16)0.0480 (15)0.0363 (16)0.0003 (12)0.0123 (14)0.0005 (13)
C140.0494 (19)0.0477 (15)0.0474 (18)0.0026 (14)0.0103 (16)0.0046 (15)
C200.0369 (17)0.0514 (16)0.0412 (17)0.0012 (13)0.0111 (14)0.0017 (13)
O10.0451 (15)0.0878 (16)0.120 (2)0.0029 (12)0.0106 (16)0.0083 (16)
C90.0446 (19)0.0483 (16)0.0474 (18)0.0039 (13)0.0128 (16)0.0034 (14)
C40.052 (2)0.0491 (17)0.068 (2)0.0036 (15)0.0075 (18)0.0041 (16)
C220.049 (2)0.0590 (17)0.0398 (17)0.0035 (14)0.0116 (16)0.0015 (14)
C190.054 (2)0.0626 (18)0.048 (2)0.0024 (15)0.0058 (17)0.0125 (16)
N50.0454 (17)0.0750 (16)0.0623 (18)0.0086 (13)0.0009 (15)0.0191 (15)
C250.055 (2)0.0588 (17)0.058 (2)0.0109 (15)0.0121 (18)0.0059 (16)
C20.042 (2)0.064 (2)0.072 (2)0.0084 (16)0.0058 (19)0.0144 (18)
C160.048 (2)0.0679 (19)0.055 (2)0.0085 (16)0.0059 (18)0.0003 (16)
C180.055 (2)0.081 (2)0.048 (2)0.0054 (18)0.0043 (18)0.0075 (18)
C30.048 (2)0.0594 (19)0.070 (2)0.0101 (16)0.0034 (19)0.0057 (17)
C70.047 (2)0.078 (2)0.069 (2)0.0017 (17)0.018 (2)0.0049 (19)
C170.049 (2)0.078 (2)0.053 (2)0.0070 (17)0.0042 (17)0.0073 (18)
C60.047 (2)0.073 (2)0.056 (2)0.0067 (16)0.0108 (18)0.0074 (17)
C240.054 (2)0.074 (2)0.066 (2)0.0158 (16)0.0149 (19)0.0020 (18)
C230.058 (2)0.076 (2)0.0449 (19)0.0001 (17)0.0038 (17)0.0116 (16)
C120.053 (2)0.0680 (19)0.078 (3)0.0034 (16)0.0060 (19)0.0248 (18)
C260.063 (3)0.125 (3)0.085 (3)0.019 (2)0.001 (2)0.032 (2)
C10.052 (3)0.127 (3)0.146 (4)0.009 (2)0.031 (3)0.011 (3)
Geometric parameters (Å, º) top
N3—C211.315 (3)C19—H190.9300
N3—C201.368 (3)N5—C241.448 (4)
N2—C111.336 (3)N5—C231.458 (4)
N2—C101.348 (3)N5—C261.460 (4)
N4—C211.402 (3)C25—C241.520 (4)
N4—C221.459 (3)C25—H25A0.9700
N4—C251.459 (3)C25—H25B0.9700
N1—C111.328 (3)C2—C31.378 (4)
N1—C81.343 (3)C2—C71.383 (4)
C15—C161.400 (4)C16—C171.363 (4)
C15—C201.404 (3)C16—H160.9300
C15—C141.410 (4)C18—C171.392 (4)
C13—C141.360 (3)C18—H180.9300
C13—C211.440 (3)C3—H30.9300
C13—C101.488 (3)C7—C61.387 (4)
C5—C61.382 (4)C7—H70.9300
C5—C41.382 (4)C17—H170.9300
C5—C81.477 (4)C6—H60.9300
C11—C121.498 (4)C24—H24A0.9700
C10—C91.386 (3)C24—H24B0.9700
C8—C91.385 (3)C23—H23A0.9700
C14—H140.9300C23—H23B0.9700
C20—C191.404 (4)C12—H12A0.9600
O1—C21.376 (3)C12—H12B0.9600
O1—C11.391 (4)C12—H12C0.9600
C9—H90.9300C26—H26A0.9600
C4—C31.364 (4)C26—H26B0.9600
C4—H40.9300C26—H26C0.9600
C22—C231.504 (4)C1—H1A0.9600
C22—H22A0.9700C1—H1B0.9600
C22—H22B0.9700C1—H1C0.9600
C19—C181.360 (4)
C21—N3—C20119.3 (2)N4—C25—H25B110.0
C11—N2—C10115.8 (2)C24—C25—H25B110.0
C21—N4—C22116.2 (2)H25A—C25—H25B108.4
C21—N4—C25116.2 (2)O1—C2—C3115.5 (3)
C22—N4—C25109.5 (2)O1—C2—C7125.2 (3)
C11—N1—C8117.5 (2)C3—C2—C7119.3 (3)
C16—C15—C20119.3 (3)C17—C16—C15121.0 (3)
C16—C15—C14123.8 (3)C17—C16—H16119.5
C20—C15—C14117.0 (3)C15—C16—H16119.5
C14—C13—C21117.2 (2)C19—C18—C17121.1 (3)
C14—C13—C10118.0 (2)C19—C18—H18119.4
C21—C13—C10124.8 (2)C17—C18—H18119.4
C6—C5—C4116.9 (3)C4—C3—C2120.2 (3)
C6—C5—C8122.5 (3)C4—C3—H3119.9
C4—C5—C8120.6 (3)C2—C3—H3119.9
N1—C11—N2127.0 (3)C2—C7—C6119.4 (3)
N1—C11—C12116.3 (2)C2—C7—H7120.3
N2—C11—C12116.7 (3)C6—C7—H7120.3
N2—C10—C9120.9 (2)C16—C17—C18119.4 (3)
N2—C10—C13114.7 (2)C16—C17—H17120.3
C9—C10—C13124.4 (2)C18—C17—H17120.3
N1—C8—C9119.7 (3)C5—C6—C7121.9 (3)
N1—C8—C5116.1 (2)C5—C6—H6119.1
C9—C8—C5124.2 (3)C7—C6—H6119.1
N3—C21—N4117.4 (2)N5—C24—C25110.8 (2)
N3—C21—C13122.6 (3)N5—C24—H24A109.5
N4—C21—C13120.1 (2)C25—C24—H24A109.5
C13—C14—C15121.5 (3)N5—C24—H24B109.5
C13—C14—H14119.2C25—C24—H24B109.5
C15—C14—H14119.2H24A—C24—H24B108.1
N3—C20—C19119.1 (2)N5—C23—C22110.2 (2)
N3—C20—C15122.1 (3)N5—C23—H23A109.6
C19—C20—C15118.8 (3)C22—C23—H23A109.6
C2—O1—C1117.6 (3)N5—C23—H23B109.6
C8—C9—C10119.1 (3)C22—C23—H23B109.6
C8—C9—H9120.4H23A—C23—H23B108.1
C10—C9—H9120.4C11—C12—H12A109.5
C3—C4—C5122.3 (3)C11—C12—H12B109.5
C3—C4—H4118.8H12A—C12—H12B109.5
C5—C4—H4118.8C11—C12—H12C109.5
N4—C22—C23110.0 (2)H12A—C12—H12C109.5
N4—C22—H22A109.7H12B—C12—H12C109.5
C23—C22—H22A109.7N5—C26—H26A109.5
N4—C22—H22B109.7N5—C26—H26B109.5
C23—C22—H22B109.7H26A—C26—H26B109.5
H22A—C22—H22B108.2N5—C26—H26C109.5
C18—C19—C20120.3 (3)H26A—C26—H26C109.5
C18—C19—H19119.8H26B—C26—H26C109.5
C20—C19—H19119.8O1—C1—H1A109.5
C24—N5—C23110.9 (2)O1—C1—H1B109.5
C24—N5—C26109.9 (3)H1A—C1—H1B109.5
C23—N5—C26110.3 (3)O1—C1—H1C109.5
N4—C25—C24108.3 (2)H1A—C1—H1C109.5
N4—C25—H25A110.0H1B—C1—H1C109.5
C24—C25—H25A110.0
C8—N1—C11—N21.6 (4)C14—C15—C20—C19177.2 (2)
C8—N1—C11—C12178.2 (2)N1—C8—C9—C100.8 (4)
C10—N2—C11—N10.1 (4)C5—C8—C9—C10177.6 (2)
C10—N2—C11—C12179.7 (2)N2—C10—C9—C82.3 (4)
C11—N2—C10—C91.8 (4)C13—C10—C9—C8179.1 (2)
C11—N2—C10—C13178.9 (2)C6—C5—C4—C30.7 (4)
C14—C13—C10—N234.1 (3)C8—C5—C4—C3179.7 (3)
C21—C13—C10—N2147.7 (2)C21—N4—C22—C23164.8 (2)
C14—C13—C10—C9142.9 (3)C25—N4—C22—C2361.0 (3)
C21—C13—C10—C935.3 (4)N3—C20—C19—C18175.4 (3)
C11—N1—C8—C91.0 (4)C15—C20—C19—C182.9 (4)
C11—N1—C8—C5179.5 (2)C21—N4—C25—C24165.0 (2)
C6—C5—C8—N1179.7 (2)C22—N4—C25—C2460.8 (3)
C4—C5—C8—N10.7 (4)C1—O1—C2—C3169.6 (3)
C6—C5—C8—C91.2 (4)C1—O1—C2—C79.3 (5)
C4—C5—C8—C9179.1 (3)C20—C15—C16—C171.0 (4)
C20—N3—C21—N4178.1 (2)C14—C15—C16—C17179.0 (3)
C20—N3—C21—C133.1 (4)C20—C19—C18—C171.0 (5)
C22—N4—C21—N3119.1 (3)C5—C4—C3—C20.1 (5)
C25—N4—C21—N312.0 (3)O1—C2—C3—C4178.7 (3)
C22—N4—C21—C1362.1 (3)C7—C2—C3—C40.3 (5)
C25—N4—C21—C13166.7 (2)O1—C2—C7—C6178.8 (3)
C14—C13—C21—N35.6 (4)C3—C2—C7—C60.1 (5)
C10—C13—C21—N3172.6 (2)C15—C16—C17—C180.9 (5)
C14—C13—C21—N4175.7 (2)C19—C18—C17—C160.9 (5)
C10—C13—C21—N46.1 (4)C4—C5—C6—C70.9 (4)
C21—C13—C14—C152.8 (4)C8—C5—C6—C7179.5 (3)
C10—C13—C14—C15175.5 (2)C2—C7—C6—C50.5 (5)
C16—C15—C14—C13178.0 (3)C23—N5—C24—C2557.3 (3)
C20—C15—C14—C132.0 (4)C26—N5—C24—C25179.5 (2)
C21—N3—C20—C19179.7 (2)N4—C25—C24—N559.3 (3)
C21—N3—C20—C152.1 (4)C24—N5—C23—C2256.2 (3)
C16—C15—C20—N3175.4 (2)C26—N5—C23—C22178.2 (2)
C14—C15—C20—N34.6 (4)N4—C22—C23—N557.9 (3)
C16—C15—C20—C192.9 (4)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C15–C20, C8–C10/N2/C11/N2 and C2–C7 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1A···Cg1i0.963.103.867 (2)138
C25—H25A···Cg2ii0.972.963.706 (2)134
C17—H17···Cg3iii0.933.083.759 (2)131
Symmetry codes: (i) x1, y, z1; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z+1.
 

Acknowledgements

RK acknowledges the Department of Science & Technology for a single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003.

Funding information

Funding for this research was provided by: Indian Council of Medical Research (grant No. BIC/12(14)/2012 to Rajni Kant); Department of Science and Technology, Ministry of Science and Technology (grant No. EMR/2014/000467 to Rajni Kant).

References

First citationCampbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031–1035.  CrossRef CAS PubMed Web of Science Google Scholar
First citationDuax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.  Google Scholar
First citationKaiser, C. R., Pais, K. C., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1133–1140.  Web of Science CSD CrossRef CAS Google Scholar
First citationKalluraya, B. & Sreenivasa, S. (1998). Farmaco, 53, 399–404.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMarkees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324–326.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPrasad, R. Y., Kumar, P., Kumar, R. P. & Rao, P. V. (2008). Int. J. Chem. Sci. 6, 333–341.  CAS Google Scholar
First citationPrasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o796–o797.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPrasath, R., Sarveswari, S., Vijayakumar, V., Narasimhamurthy, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1110.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSharma, D. K., Desai, N. R., Sreenivasa, S., Anthal, S. & Kant, R. (2017). IUCrData, 2, x171600.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVaidya, V. P. & Mathias, P. (2005). Ind. J. Heterocycl. Chem, 14, 189–192.  Google Scholar
First citationVirsodia, V., Pissurlenkar, R. R. S., Manvar, D., Dholakia, C., Adlakha, P., Shah, A. & Coutinho, E. C. (2008). Eur. J. Med. Chem. 43, 2103–2115.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]