organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Crystal structure of 3-[({[bis­­(2-cyano­eth­yl)carbamo­thio­yl]disulfan­yl}methane­thio­yl)(2-cyano­eth­yl) amino]­propane­nitrile

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Annamalai University, Annamalainagar, Chidambaram 608 002, India, and bPG & Research Department of Physics, Government Arts College, Melur 625 106, India
*Correspondence e-mail: rbaskaran54@gmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 11 February 2017; accepted 3 March 2017; online 7 March 2017)

In the title compound, C14H16N6S4, the mol­ecule resides on a twofold rotation axis, which runs through the central S—S bond. In the crystal, mol­ecules are linked via weak C—H⋯N hydrogen bonds, forming C(5) chains propagating in a helical arrangement along [010].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In a continuation of the work in our laboratory on the crystal structure analysis of cyano derivatives, we have undertaken the single-crystal X-ray diffraction study of the title compound, and the results are presented herein.

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The mol­ecule resides on a crystallographic twofold rotation axis, which runs through the central S—S bond. The mol­ecular structure maybe influenced by a series of very weak intra­molecular C—H⋯S hydrogen bonds (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯S1 0.97 2.46 2.857 (2) 105
C3—H3A⋯S1 0.97 2.84 3.332 (2) 112
C5—H5B⋯S2 0.97 2.69 3.028 (2) 101
C2—H2B⋯N2i 0.97 2.55 3.202 (2) 125
Symmetry code: (i) x, y+1, z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

In the crystal, weak C—H⋯N hydrogen bonds link the mol­ecules, forming C(5) chains propagating in a helical arrangement along [010]; see Fig. 2[link]. The structure also forms a cavity consisting of 24 atoms between two mol­ecules in an R22(24) graph-set motif.

[Figure 2]
Figure 2
The crystal packing of the title compound. The weak C—H⋯N hydrogen bonds are shown as dashed lines (see Table 1[link]). For clarity, H atoms not involved in these hydrogen bonds have been omitted.

Synthesis and crystallization

All chemicals were commercially available and analytical grade materials were used directly without further purification. A stoichiometric amount (0.1732 g, 2 mmol) of carbon di­sulfide, CS2, was added dropwise to a methanol solution containing (0.2463 g, 2 mmol) 3,3′-aza­nediyldi­propane­nitrile and 0.24 g potassium hydroxide. The mixture was stirred for about 25 minutes until a white precipitate appeared. The clear filtrate was then left at temperature of 278 K for crystallization. After few days, crystals suitable for X-ray analysis were collected (yield = 83%, m.p. 431 K). The presence of the C≡N groups was confirmed by FT–IR analysis.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C14H16N6S4
Mr 396.57
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 15.4313 (7), 5.6117 (2), 22.8702 (12)
β (°) 108.713 (2)
V3) 1875.77 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.52
Crystal size (mm) 0.30 × 0.20 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.81, 0.89
No. of measured, independent and observed [I > 2σ(I)] reflections 19984, 3347, 2569
Rint 0.024
(sin θ/λ)max−1) 0.766
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.109, 1.11
No. of reflections 3347
No. of parameters 109
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.27
Computer programs: APEX2, SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

3-[({[bis(2-Cyanoethyl)carbamothioyl]disulfanyl}methanethioyl)(2-cyanoethyl)amino]propanenitrile top
Crystal data top
C14H16N6S4F(000) = 824
Mr = 396.57Dx = 1.404 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 15.4313 (7) ÅCell parameters from 8307 reflections
b = 5.6117 (2) Åθ = 2.3–31.7°
c = 22.8702 (12) ŵ = 0.52 mm1
β = 108.713 (2)°T = 293 K
V = 1875.77 (15) Å3Block, brown
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2569 reflections with I > 2σ(I)
Radiation source: Sealed tubeRint = 0.024
ω and φ scanθmax = 33.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 2319
Tmin = 0.81, Tmax = 0.89k = 88
19984 measured reflectionsl = 3434
3347 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0427P)2 + 1.4682P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
3347 reflectionsΔρmax = 0.34 e Å3
109 parametersΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.00264 (3)0.57876 (7)0.20581 (2)0.03874 (11)
S20.13996 (3)0.20336 (9)0.26542 (2)0.05086 (14)
N10.06850 (8)0.2800 (2)0.14508 (5)0.0328 (2)
N20.09703 (13)0.1278 (3)0.02598 (9)0.0644 (5)
N30.21226 (12)0.6016 (3)0.08156 (8)0.0610 (4)
C10.07351 (10)0.3344 (3)0.20300 (6)0.0325 (3)
C20.00524 (10)0.3986 (3)0.09077 (6)0.0351 (3)
H2A0.02890.38380.05650.042*
H2B0.00270.56690.09970.042*
C30.09148 (10)0.2961 (3)0.07169 (7)0.0388 (3)
H3A0.11250.29220.10740.047*
H3B0.13220.39970.04110.047*
C40.09592 (11)0.0566 (3)0.04630 (8)0.0429 (3)
C50.12945 (11)0.0991 (3)0.13344 (8)0.0389 (3)
H5A0.10260.03670.09200.047*
H5B0.13560.03180.16220.047*
C60.22415 (11)0.2006 (3)0.14036 (9)0.0487 (4)
H6A0.25670.22790.18380.058*
H6B0.25860.08510.12520.058*
C70.21877 (11)0.4242 (4)0.10651 (8)0.0455 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0506 (2)0.03350 (19)0.03374 (19)0.00673 (15)0.01572 (16)0.00523 (14)
S20.0572 (3)0.0543 (3)0.0332 (2)0.0171 (2)0.00349 (17)0.00587 (17)
N10.0318 (5)0.0356 (6)0.0300 (5)0.0003 (5)0.0086 (4)0.0007 (5)
N20.0730 (12)0.0457 (9)0.0650 (11)0.0021 (8)0.0088 (9)0.0066 (8)
N30.0552 (9)0.0645 (11)0.0605 (10)0.0191 (8)0.0146 (8)0.0024 (9)
C10.0335 (6)0.0312 (6)0.0306 (6)0.0009 (5)0.0071 (5)0.0013 (5)
C20.0367 (7)0.0390 (7)0.0283 (6)0.0023 (6)0.0084 (5)0.0035 (5)
C30.0332 (7)0.0430 (8)0.0360 (7)0.0003 (6)0.0054 (5)0.0027 (6)
C40.0407 (8)0.0437 (8)0.0386 (8)0.0027 (7)0.0047 (6)0.0008 (7)
C50.0408 (7)0.0349 (7)0.0422 (8)0.0006 (6)0.0150 (6)0.0045 (6)
C60.0360 (7)0.0490 (9)0.0610 (11)0.0050 (7)0.0155 (7)0.0001 (8)
C70.0346 (7)0.0570 (10)0.0456 (9)0.0093 (7)0.0140 (6)0.0090 (8)
Geometric parameters (Å, º) top
S1—C11.8201 (15)C2—H2B0.9700
S1—S1i1.9968 (7)C3—C41.457 (2)
S2—C11.6405 (14)C3—H3A0.9700
N1—C11.3375 (18)C3—H3B0.9700
N1—C51.4651 (19)C5—C61.529 (2)
N1—C21.4699 (18)C5—H5A0.9700
N2—C41.132 (2)C5—H5B0.9700
N3—C71.136 (3)C6—C71.462 (3)
C2—C31.527 (2)C6—H6A0.9700
C2—H2A0.9700C6—H6B0.9700
C1—S1—S1i102.62 (5)C2—C3—H3B109.2
C1—N1—C5120.13 (12)H3A—C3—H3B107.9
C1—N1—C2123.03 (12)N2—C4—C3177.8 (2)
C5—N1—C2116.82 (12)N1—C5—C6111.78 (13)
N1—C1—S2125.50 (11)N1—C5—H5A109.3
N1—C1—S1111.98 (10)C6—C5—H5A109.3
S2—C1—S1122.52 (8)N1—C5—H5B109.3
N1—C2—C3113.23 (12)C6—C5—H5B109.3
N1—C2—H2A108.9H5A—C5—H5B107.9
C3—C2—H2A108.9C7—C6—C5112.02 (14)
N1—C2—H2B108.9C7—C6—H6A109.2
C3—C2—H2B108.9C5—C6—H6A109.2
H2A—C2—H2B107.7C7—C6—H6B109.2
C4—C3—C2112.20 (14)C5—C6—H6B109.2
C4—C3—H3A109.2H6A—C6—H6B107.9
C2—C3—H3A109.2N3—C7—C6177.1 (2)
C4—C3—H3B109.2
C5—N1—C1—S23.8 (2)C1—N1—C2—C382.14 (17)
C2—N1—C1—S2177.86 (11)C5—N1—C2—C399.48 (15)
C5—N1—C1—S1175.66 (10)N1—C2—C3—C469.60 (17)
C2—N1—C1—S12.67 (17)C1—N1—C5—C681.15 (18)
S1i—S1—C1—N1170.16 (9)C2—N1—C5—C697.28 (16)
S1i—S1—C1—S210.36 (10)N1—C5—C6—C748.7 (2)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···S10.972.462.857 (2)105
C3—H3A···S10.972.843.332 (2)112
C5—H5B···S20.972.693.028 (2)101
C2—H2B···N2ii0.972.553.202 (2)125
Symmetry code: (ii) x, y+1, z.
 

References

First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds