organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Amino-N-(6-chloro-5-meth­oxy­pyrimidin-4-yl)benzene­sulfonamide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 5 January 2010; accepted 9 January 2010; online 16 January 2010)

In the title compound, C11H11ClN4O3S, the S atom is bonded in a distorted tetra­hedral geometry, by two O atoms, a C atom of the benzene ring and an amino N atom. The essentially planar pyrimidine ring [maximum deviation = 0.020 (1) Å] forms a dihedral angle of 87.57 (5)° with the benzene ring. In the crystal structure, pairs of mol­ecules are linked by inter­molecular N—H⋯O hydrogen bonds to generate centrosymmetric R22(8) ring motifs. In addition, mol­ecules are linked into a three-dimensional extended network by inter­molecular N—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For general background to and applications of the title compound, see: Amir et al. (2007[Amir, M., Javed, S. A. & Kumar, H. (2007). Indian J. Pharm. Sci. 69, 337-343.]); Calabresi et al. (1975[Calabresi, P., Parks, R. E., Goodman, L. S. & Gilman, A. (1975). The Pharmacological Basis of Therapeutics, 5th ed., p. 1254. New York: Macmillan.]); El-Hashash et al. (1993[El-Hashash, M. A., Mahmoud, M. R. & Madboli, S. A. (1993). Indian J. Chem. Sect B, 32, 449-451.]); Nagaraja et al. (2003[Nagaraja, P., Yathirajan, H. S., Raju, C. R., Vasantha, R. A., Nagendra, P. & Hemantha Kumar, M. S. (2003). Il Farmaco, 58, 1295-1300.]); Townsend & Drach (2002[Townsend, L. B. & Drach, J. C. (2002). Chem. Abstr. 136, 134778.]). For a related structure, see: Chohan et al. (2008[Chohan, Z. H., Tahir, M. N., Shad, H. A. & Khan, I. U. (2008). Acta Cryst. E64, o648.]). For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11ClN4O3S

  • Mr = 314.75

  • Monoclinic, P 21 /c

  • a = 12.8792 (6) Å

  • b = 13.3557 (6) Å

  • c = 8.0867 (4) Å

  • β = 102.396 (1)°

  • V = 1358.57 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 100 K

  • 0.44 × 0.33 × 0.12 mm

Data collection
  • Bruker SMART APEX DUO area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.829, Tmax = 0.950

  • 20122 measured reflections

  • 4863 independent reflections

  • 4292 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.089

  • S = 1.04

  • 4863 reflections

  • 225 parameters

  • All H-atom parameters refined

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯N4i 0.875 (19) 2.616 (18) 3.4230 (14) 153.8 (15)
N1—H2N1⋯O1ii 0.882 (18) 2.533 (19) 3.3274 (13) 150.2 (15)
N2—H1N2⋯O2iii 0.880 (18) 2.031 (18) 2.8866 (12) 163.7 (16)
C4—H4A⋯O1ii 0.944 (16) 2.460 (16) 3.2603 (13) 142.5 (13)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{5\over 2}}]; (ii) x, y, z+1; (iii) -x, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The importance of pyrimidines and analogous compounds in pharmaceutical and biological fields is well known (Townsend et al., 2002). Some substituted pyrimidines and their derivaties have been reported to possess anti-microbial and anti-fungal activities (El-Hashash et al., 1993). Pyrimidines have incidental anti-viral activity against herpes and vaccinia infections (Calabresi et al., 1975). A review on pyrimidines as anti-inflammatory agent is described by Amir et al. (2007). Sulfonamides are an important class of anti-bacterial drugs used in medicine and veterinary practice. Sulfa drugs are widely used in the treatment of infections, especially for patients intolerant to antibiotics. The vast commercial success of these medicinal agents has made the chemistry of sulfonamides to become a major area of research and an important branch of commercial importance in pharmaceutical sciences (Nagaraja et al., 2003). In view of the importance of the title compound possessing potential anti-bacterial properties, its crystal structure is reported herein.

In the title sulfonamide compound (Fig. 1), the geometry around the S1 atom is a distorted tetrahedron, comprising of atoms O1 and O2 of the sulfonyl group, C6 atom of benzene ring and the amino atom N2. The O1–S1–O2 and O2–S1–N2 angles are 119.20 (5) and 102.20 (4)°, respectively, and the C6–S1–N2–C7 torsion angle is -68.95 (9)°. The pyrimidine ring is essentially planar, with r.m.s. deviation of -0.020 (1) Å, and is almost perpendicular to the benzene ring (C1-C6), as indicated by the dihedral angle of 87.57 (5)°. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to a related structure (Chohan et al., 2008). In the crystal structure, pairs of intermolecular N2—H1N2···O2iii hydrogen bonds (see Table 1 for symmetry code) generate R22(8) ring motifs (Bernstein et al., 1995). Neighbouring molecules are linked into a three-dimensional extended network by intermolecular N1—H1N1···N4, N1—H2N1···O1 and C4—H4A···O1 hydrogen bonds (Fig. 2).

Related literature top

For general background to and applications of the title compound, see: Amir et al. (2007); Calabresi et al. (1975); El-Hashash et al. (1993); Nagaraja et al. (2003); Townsend et al. (2002). For a related structure, see: Chohan et al. (2008). For details of hydrogen-bond motifs, see : Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was obtained as a gift sample from R. L. Fine Chem, Bangalore, India. The compound was used without further purification. Single crystals of good quality were obtained from slow evaporation of an acetonitrile solution. M.p. 447–450 K.

Refinement top

All the H atoms were located in a difference Fourier map and allowed to refine freely [range of C—H = 0.90 (2) - 0.991 (19) Å].

Structure description top

The importance of pyrimidines and analogous compounds in pharmaceutical and biological fields is well known (Townsend et al., 2002). Some substituted pyrimidines and their derivaties have been reported to possess anti-microbial and anti-fungal activities (El-Hashash et al., 1993). Pyrimidines have incidental anti-viral activity against herpes and vaccinia infections (Calabresi et al., 1975). A review on pyrimidines as anti-inflammatory agent is described by Amir et al. (2007). Sulfonamides are an important class of anti-bacterial drugs used in medicine and veterinary practice. Sulfa drugs are widely used in the treatment of infections, especially for patients intolerant to antibiotics. The vast commercial success of these medicinal agents has made the chemistry of sulfonamides to become a major area of research and an important branch of commercial importance in pharmaceutical sciences (Nagaraja et al., 2003). In view of the importance of the title compound possessing potential anti-bacterial properties, its crystal structure is reported herein.

In the title sulfonamide compound (Fig. 1), the geometry around the S1 atom is a distorted tetrahedron, comprising of atoms O1 and O2 of the sulfonyl group, C6 atom of benzene ring and the amino atom N2. The O1–S1–O2 and O2–S1–N2 angles are 119.20 (5) and 102.20 (4)°, respectively, and the C6–S1–N2–C7 torsion angle is -68.95 (9)°. The pyrimidine ring is essentially planar, with r.m.s. deviation of -0.020 (1) Å, and is almost perpendicular to the benzene ring (C1-C6), as indicated by the dihedral angle of 87.57 (5)°. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to a related structure (Chohan et al., 2008). In the crystal structure, pairs of intermolecular N2—H1N2···O2iii hydrogen bonds (see Table 1 for symmetry code) generate R22(8) ring motifs (Bernstein et al., 1995). Neighbouring molecules are linked into a three-dimensional extended network by intermolecular N1—H1N1···N4, N1—H2N1···O1 and C4—H4A···O1 hydrogen bonds (Fig. 2).

For general background to and applications of the title compound, see: Amir et al. (2007); Calabresi et al. (1975); El-Hashash et al. (1993); Nagaraja et al. (2003); Townsend et al. (2002). For a related structure, see: Chohan et al. (2008). For details of hydrogen-bond motifs, see : Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, viewed along the c axis, showing a three-dimensional extended network. H atoms not involved in intermolecular hydrogen bonds (dashed lines) have been omitted for clarity.
4-Amino-N-(6-chloro-5-methoxypyrimidin-4-yl)benzenesulfonamide top
Crystal data top
C11H11ClN4O3SF(000) = 648
Mr = 314.75Dx = 1.539 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9451 reflections
a = 12.8792 (6) Åθ = 3.1–35.0°
b = 13.3557 (6) ŵ = 0.45 mm1
c = 8.0867 (4) ÅT = 100 K
β = 102.396 (1)°Plate, colourless
V = 1358.57 (11) Å30.44 × 0.33 × 0.12 mm
Z = 4
Data collection top
Bruker SMART APEX DUO area-detector
diffractometer
4863 independent reflections
Radiation source: fine-focus sealed tube4292 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 32.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1918
Tmin = 0.829, Tmax = 0.950k = 2020
20122 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0475P)2 + 0.4528P]
where P = (Fo2 + 2Fc2)/3
4863 reflections(Δ/σ)max < 0.001
225 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C11H11ClN4O3SV = 1358.57 (11) Å3
Mr = 314.75Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.8792 (6) ŵ = 0.45 mm1
b = 13.3557 (6) ÅT = 100 K
c = 8.0867 (4) Å0.44 × 0.33 × 0.12 mm
β = 102.396 (1)°
Data collection top
Bruker SMART APEX DUO area-detector
diffractometer
4863 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4292 reflections with I > 2σ(I)
Tmin = 0.829, Tmax = 0.950Rint = 0.026
20122 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.089All H-atom parameters refined
S = 1.04Δρmax = 0.53 e Å3
4863 reflectionsΔρmin = 0.37 e Å3
225 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.32221 (2)0.130087 (19)0.89383 (4)0.02300 (7)
S10.150384 (18)0.591224 (17)0.98106 (3)0.01312 (6)
O10.19845 (6)0.64388 (6)0.86316 (9)0.01714 (14)
O20.03978 (6)0.60773 (6)0.97922 (10)0.01793 (14)
O30.15020 (6)0.26617 (6)0.97198 (9)0.01711 (14)
N10.40417 (8)0.62924 (7)1.67597 (11)0.02030 (18)
N20.15327 (7)0.46898 (6)0.94120 (11)0.01577 (15)
N30.32756 (7)0.46232 (7)0.89578 (12)0.01792 (16)
N40.40819 (7)0.30443 (7)0.86117 (13)0.01997 (17)
C10.32974 (8)0.63720 (7)1.21150 (12)0.01551 (17)
C20.38928 (8)0.64543 (8)1.37493 (13)0.01691 (17)
C30.34401 (8)0.62413 (7)1.51452 (12)0.01546 (17)
C40.23638 (8)0.59518 (8)1.48550 (13)0.01756 (18)
C50.17708 (8)0.58676 (8)1.32262 (13)0.01685 (18)
C60.22376 (7)0.60750 (7)1.18497 (12)0.01355 (16)
C70.24116 (7)0.41496 (7)0.92115 (12)0.01407 (16)
C80.23504 (7)0.30973 (7)0.92579 (12)0.01413 (16)
C90.32214 (8)0.25928 (7)0.89322 (12)0.01631 (17)
C100.40614 (8)0.40413 (8)0.86664 (15)0.0207 (2)
C110.07329 (9)0.21978 (10)0.83669 (16)0.0253 (2)
H1A0.3591 (13)0.6546 (12)1.120 (2)0.025 (4)*
H2A0.4615 (13)0.6672 (13)1.393 (2)0.027 (4)*
H4A0.2078 (13)0.5806 (12)1.581 (2)0.027 (4)*
H5A0.1038 (13)0.5624 (12)1.303 (2)0.026 (4)*
H10A0.4693 (14)0.4379 (13)0.847 (2)0.030 (4)*
H11A0.0146 (14)0.2042 (14)0.883 (2)0.035 (4)*
H11B0.0532 (14)0.2688 (14)0.743 (2)0.038 (5)*
H11C0.0991 (15)0.1654 (16)0.795 (2)0.043 (5)*
H1N10.4646 (14)0.6617 (14)1.695 (2)0.033 (4)*
H2N10.3696 (15)0.6271 (14)1.759 (2)0.034 (5)*
H1N20.1012 (14)0.4342 (13)0.968 (2)0.030 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02251 (13)0.01320 (11)0.03324 (15)0.00115 (8)0.00591 (10)0.00126 (9)
S10.01184 (10)0.01368 (11)0.01457 (11)0.00149 (7)0.00442 (8)0.00027 (7)
O10.0191 (3)0.0179 (3)0.0156 (3)0.0009 (3)0.0064 (3)0.0026 (2)
O20.0121 (3)0.0195 (3)0.0228 (3)0.0032 (2)0.0050 (3)0.0005 (3)
O30.0161 (3)0.0188 (3)0.0177 (3)0.0056 (3)0.0064 (3)0.0027 (3)
N10.0241 (4)0.0228 (4)0.0140 (4)0.0020 (3)0.0041 (3)0.0002 (3)
N20.0129 (3)0.0139 (3)0.0220 (4)0.0005 (3)0.0071 (3)0.0028 (3)
N30.0143 (4)0.0154 (4)0.0260 (4)0.0000 (3)0.0085 (3)0.0005 (3)
N40.0161 (4)0.0172 (4)0.0285 (4)0.0019 (3)0.0091 (3)0.0003 (3)
C10.0155 (4)0.0164 (4)0.0160 (4)0.0008 (3)0.0063 (3)0.0003 (3)
C20.0159 (4)0.0189 (4)0.0167 (4)0.0015 (3)0.0053 (3)0.0000 (3)
C30.0191 (4)0.0130 (4)0.0148 (4)0.0011 (3)0.0049 (3)0.0002 (3)
C40.0202 (4)0.0185 (4)0.0161 (4)0.0004 (3)0.0087 (3)0.0009 (3)
C50.0157 (4)0.0188 (4)0.0178 (4)0.0007 (3)0.0076 (3)0.0008 (3)
C60.0135 (4)0.0136 (4)0.0145 (4)0.0006 (3)0.0049 (3)0.0000 (3)
C70.0123 (4)0.0149 (4)0.0154 (4)0.0003 (3)0.0041 (3)0.0017 (3)
C80.0137 (4)0.0148 (4)0.0144 (4)0.0013 (3)0.0041 (3)0.0010 (3)
C90.0167 (4)0.0135 (4)0.0189 (4)0.0011 (3)0.0042 (3)0.0011 (3)
C100.0153 (4)0.0180 (4)0.0313 (5)0.0004 (3)0.0103 (4)0.0002 (4)
C110.0196 (5)0.0299 (6)0.0268 (5)0.0086 (4)0.0058 (4)0.0109 (4)
Geometric parameters (Å, º) top
Cl1—C91.7255 (10)C1—C21.3826 (14)
S1—O11.4283 (7)C1—C61.3932 (13)
S1—O21.4383 (7)C1—H1A0.931 (16)
S1—N21.6662 (9)C2—C31.4063 (13)
S1—C61.7292 (10)C2—H2A0.955 (17)
O3—C81.3590 (11)C3—C41.4094 (14)
O3—C111.4480 (13)C4—C51.3781 (15)
N1—C31.3694 (13)C4—H4A0.941 (17)
N1—H1N10.875 (18)C5—C61.4016 (13)
N1—H2N10.879 (19)C5—H5A0.979 (16)
N2—C71.3809 (12)C7—C81.4085 (14)
N2—H1N20.880 (18)C8—C91.3816 (13)
N3—C71.3336 (12)C10—H10A0.973 (17)
N3—C101.3364 (13)C11—H11A0.938 (18)
N4—C101.3328 (14)C11—H11B0.991 (19)
N4—C91.3351 (13)C11—H11C0.90 (2)
O1—S1—O2119.20 (5)C3—C4—H4A117.7 (10)
O1—S1—N2108.81 (4)C4—C5—C6119.92 (9)
O2—S1—N2102.20 (4)C4—C5—H5A119.9 (10)
O1—S1—C6110.38 (5)C6—C5—H5A120.1 (10)
O2—S1—C6109.14 (5)C1—C6—C5120.47 (9)
N2—S1—C6106.10 (5)C1—C6—S1119.96 (7)
C8—O3—C11115.81 (8)C5—C6—S1119.52 (8)
C3—N1—H1N1119.3 (12)N3—C7—N2120.16 (9)
C3—N1—H2N1116.6 (12)N3—C7—C8122.05 (9)
H1N1—N1—H2N1117.5 (17)N2—C7—C8117.78 (8)
C7—N2—S1125.98 (7)O3—C8—C9125.25 (9)
C7—N2—H1N2116.1 (11)O3—C8—C7119.17 (8)
S1—N2—H1N2114.8 (11)C9—C8—C7115.41 (9)
C7—N3—C10116.09 (9)N4—C9—C8123.96 (9)
C10—N4—C9114.94 (9)N4—C9—Cl1116.89 (7)
C2—C1—C6119.60 (9)C8—C9—Cl1119.15 (8)
C2—C1—H1A120.2 (10)N4—C10—N3127.44 (10)
C6—C1—H1A120.1 (10)N4—C10—H10A115.8 (10)
C1—C2—C3120.71 (9)N3—C10—H10A116.8 (10)
C1—C2—H2A119.7 (10)O3—C11—H11A105.7 (11)
C3—C2—H2A119.6 (10)O3—C11—H11B108.5 (11)
N1—C3—C2120.53 (9)H11A—C11—H11B110.6 (15)
N1—C3—C4120.49 (9)O3—C11—H11C112.6 (12)
C2—C3—C4118.96 (9)H11A—C11—H11C111.6 (17)
C5—C4—C3120.34 (9)H11B—C11—H11C107.8 (16)
C5—C4—H4A122.0 (10)
O1—S1—N2—C749.81 (10)C10—N3—C7—N2175.76 (10)
O2—S1—N2—C7176.75 (8)C10—N3—C7—C83.19 (15)
C6—S1—N2—C768.95 (9)S1—N2—C7—N314.89 (14)
C6—C1—C2—C30.01 (15)S1—N2—C7—C8166.11 (7)
C1—C2—C3—N1177.89 (10)C11—O3—C8—C978.05 (13)
C1—C2—C3—C40.66 (15)C11—O3—C8—C7106.84 (11)
N1—C3—C4—C5177.74 (10)N3—C7—C8—O3172.23 (9)
C2—C3—C4—C50.80 (15)N2—C7—C8—O38.80 (13)
C3—C4—C5—C60.30 (15)N3—C7—C8—C93.36 (14)
C2—C1—C6—C50.51 (15)N2—C7—C8—C9175.62 (9)
C2—C1—C6—S1176.93 (8)C10—N4—C9—C81.60 (15)
C4—C5—C6—C10.37 (15)C10—N4—C9—Cl1178.19 (8)
C4—C5—C6—S1177.08 (8)O3—C8—C9—N4174.46 (10)
O1—S1—C6—C120.24 (9)C7—C8—C9—N40.82 (14)
O2—S1—C6—C1153.06 (8)O3—C8—C9—Cl15.32 (14)
N2—S1—C6—C197.49 (8)C7—C8—C9—Cl1179.40 (7)
O1—S1—C6—C5162.29 (8)C9—N4—C10—N31.89 (18)
O2—S1—C6—C529.47 (9)C7—N3—C10—N40.47 (18)
N2—S1—C6—C579.98 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···N4i0.875 (19)2.616 (18)3.4230 (14)153.8 (15)
N1—H2N1···O1ii0.882 (18)2.533 (19)3.3274 (13)150.2 (15)
N2—H1N2···O2iii0.880 (18)2.031 (18)2.8866 (12)163.7 (16)
C4—H4A···O1ii0.944 (16)2.460 (16)3.2603 (13)142.5 (13)
Symmetry codes: (i) x+1, y+1/2, z+5/2; (ii) x, y, z+1; (iii) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC11H11ClN4O3S
Mr314.75
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.8792 (6), 13.3557 (6), 8.0867 (4)
β (°) 102.396 (1)
V3)1358.57 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.44 × 0.33 × 0.12
Data collection
DiffractometerBruker SMART APEX DUO area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.829, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
20122, 4863, 4292
Rint0.026
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.089, 1.04
No. of reflections4863
No. of parameters225
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.53, 0.37

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···N4i0.875 (19)2.616 (18)3.4230 (14)153.8 (15)
N1—H2N1···O1ii0.882 (18)2.533 (19)3.3274 (13)150.2 (15)
N2—H1N2···O2iii0.880 (18)2.031 (18)2.8866 (12)163.7 (16)
C4—H4A···O1ii0.944 (16)2.460 (16)3.2603 (13)142.5 (13)
Symmetry codes: (i) x+1, y+1/2, z+5/2; (ii) x, y, z+1; (iii) x, y+1, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7576-2009.

Acknowledgements

HKF and JHG thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship. CSC thanks the University of Mysore for research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAmir, M., Javed, S. A. & Kumar, H. (2007). Indian J. Pharm. Sci. 69, 337–343.  CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalabresi, P., Parks, R. E., Goodman, L. S. & Gilman, A. (1975). The Pharmacological Basis of Therapeutics, 5th ed., p. 1254. New York: Macmillan.  Google Scholar
First citationChohan, Z. H., Tahir, M. N., Shad, H. A. & Khan, I. U. (2008). Acta Cryst. E64, o648.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEl-Hashash, M. A., Mahmoud, M. R. & Madboli, S. A. (1993). Indian J. Chem. Sect B, 32, 449–451.  Google Scholar
First citationNagaraja, P., Yathirajan, H. S., Raju, C. R., Vasantha, R. A., Nagendra, P. & Hemantha Kumar, M. S. (2003). Il Farmaco, 58, 1295–1300.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTownsend, L. B. & Drach, J. C. (2002). Chem. Abstr. 136, 134778.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds