organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o152-o153

7-Chloro-4-[(E)-N′-(4-fluoro­benzyl­­idene)hydrazin­yl]quinoline monohydrate

aInstituto de Tecnologia em Farmacos, Fundação Oswaldo Cruz (FIOCRUZ), FarManguinhos, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, bDepartment of Chemistry, University of Aberdeen, Old Aberdeen AB15 5NY, Scotland, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, dCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and eCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 9 December 2009; accepted 11 December 2009; online 16 December 2009)

The mol­ecule of the title hydrate, C16H11ClFN3·H2O, is slightly twisted, as indicated by the dihedral angle of 9.55 (10)° formed between the quinoline ring system and the benzene ring. The conformation about the C=N double bond is E, and the amine-H atom is oriented towards the quinoline residue. In the crystal structure, the water mol­ecule accepts an N—H⋯O and makes two O—H⋯Nquinoline hydrogen bonds, generating a two-dimensional array in the ab plane, which is further stabilized by C—H⋯O inter­actions. The most significant contacts between layers are of the type C—H⋯F.

Related literature

For background information on the pharmacological activity of quinoline derivatives, see: Elslager et al. (1969[Elslager, E. F., Tendick, F. H. & Werbel, L. M. (1969). J. Med. Chem. 12, 600-607.]); Font et al. (1997[Font, M., Monge, A., Ruiz, I. & Heras, B. (1997). Drug Des. Disc. 14, 259-272.]); Kaminsky & Meltzer (1968[Kaminsky, D. & Meltzer, R. I. (1968). J. Med. Chem. 11, 160-163.]); Musiol et al. (2006[Musiol, R., Jampilek, J., Buchta, V., Silva, L., Halina, H., Podeszwa, B., Palka, A., Majerz-Maniecka, K., Oleksyn, B. & Polanski, J. (2006). Bioorg. Med. Chem. 14, 3592-3598.]); Nakamura et al. (1999[Nakamura, T., Oka, M., Aizawa, K., Soda, H., Fukuda, M., Terashi, K., Ikeda, K., Mizuta, Y., Noguchi, Y., Kimura, Y., Tsuruo, T. & Kohno, S. (1999). Biochem. Biophys. Res. Commun. 255, 618-624.]); Palmer et al. (1993[Palmer, K. J., Holliday, S. M. & Brogden, R. N. (1993). Drugs, 45, 430-475.]); Ridley (2002[Ridley, R. G. (2002). Nature (London), 415, 686-693.]); Sloboda et al. (1991[Sloboda, A. E., Powell, D., Poletto, J. F., Pickett, W. C., Gibbons, J. J., Bell, D. H., Oronsky, A. L. & Kerwar, S. S. (1991). J. Rheumatol. 18, 855-860.]); Tanenbaum & Tuffanelli (1980[Tanenbaum, L. & Tuffanelli, D. L. (1980). Arch. Dermatol. 116, 587-591.]); Warshakoon et al. (2006[Warshakoon, N. C., Sheville, J., Bhatt, R. T., Ji, W., Mendez-Andino, J. L., Meyers, K. M., Kim, N., Wos, J. A., Mitchell, C., Paris, J. L., Pinney, B. B. O., Reizes, O. & Hu, X. E. (2006). Bioorg. Med. Chem. Lett. 16, 5207-5211.]). For recent studies into quinoline-based anti-malarials, see: Andrade et al. (2007[Andrade, A. A., Varotti, F. D., de Freitas, I. Q., de Souza, M. V. N., Vasconcelos, T. R. A., Boechat, N. & Krettli, A. U. (2007). Eur. J. Pharm. 558, 194-198.]); Cunico et al. (2006[Cunico, W., Cechinel, C. A., Bonacorso, H. G., Martins, G. M. A. P., Zanetta, N., de Souza, M. V. N., Freitas, I. Q., Soares, R. P. P. & Krettli, A. U. (2006). Bioorg. Med. Chem. Lett. 16, 649-653.]); da Silva et al. (2003[Silva, A. D. da, de Almeida, M. V., de Souza, M. V. N. & Couri, M. R. C. (2003). Curr. Med. Chem. 10, 21-39.]); de Souza et al. (2005[Souza, M. V. N. de (2005). Mini-Rev. Med. Chem. 5, 1009-1017.]). For crystallographic studies on mol­ecules related to the title compound, see: Kaiser et al. (2009[Kaiser, C. R., Pais, K. C., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1133-1140.]); de Souza et al. (2009[Souza, M. V. N. de, Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, o3120-o3121.]); de Ferreira et al. (2009[Ferreira, M. L. de, de Souza, M. V. N., Howie, R. A., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, o3239-o3240.]). For the synthesis, see: Pellerano et al. (1976[Pellerano, C., Savini, L. & Fiorini, I. (1976). Atti Accad. Fisiocritic Siena, 8, 43-57.]).

[Scheme 1]

Experimental

Crystal data
  • C16H11ClFN3·H2O

  • Mr = 317.74

  • Monoclinic, P 21 /c

  • a = 3.7795 (2) Å

  • b = 15.4188 (11) Å

  • c = 24.8576 (16) Å

  • β = 90.286 (4)°

  • V = 1448.57 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 120 K

  • 0.90 × 0.04 × 0.04 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.614, Tmax = 0.746

  • 19494 measured reflections

  • 3291 independent reflections

  • 2009 reflections with I > 2σ(I)

  • Rint = 0.098

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.131

  • S = 1.04

  • 3291 reflections

  • 205 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H1w⋯N1i 0.84 (2) 2.28 (2) 2.999 (3) 144 (2)
O1w—H2w⋯N1ii 0.85 (2) 1.93 (2) 2.761 (3) 166 (3)
N2—H2n⋯O1wiii 0.88 2.01 2.865 (3) 165
C5—H5⋯O1wiii 0.95 2.45 3.379 (3) 164
C10—H10⋯O1wiii 0.95 2.50 3.302 (3) 142
C1—H1⋯F1iv 0.95 2.56 3.399 (3) 147
C6—H6⋯F1v 0.95 2.56 3.477 (3) 161
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x+1, y, z; (iv) -x, -y, -z; (v) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

The title compound, crystallized as a hydrate, (I), was prepared as part of continuing studies designed to develop antimalarial compounds based on the quinoline nucleus (Andrade et al., 2007; Cunico et al., 2006; da Silva et al., 2003; de Souza et al., 2005). The systematic examination of quinoline derivatives comes about owing to the fact that the majority of antimalarial agents, including chloroquine (Tanenbaum & Tuffanelli, 1980), mefloquine (Palmer et al., 1993), primaquine (Elslager et al., 1969) and amodiaquine (Ridley, 2002), have a quinoline ring substructure, the mainstay of malaria chemotherapy for much of the past 40 years (Font et al., 1997; Kaminsky & Meltzer, 1968; Musiol et al., 2006; Nakamura et al., 1999; Sloboda et al., 1991; Warshakoon et al., 2006). Allied with these investigations are structural studies aimed at elucidating systematic structural trends in these molecules (Kaiser et al. 2009; de Souza et al. 2009; de Ferreira et al. 2009).

The molecule in (I), Fig. 1, features an effectively planar quinoline residue (maximum deviations of 0.018 (2) Å for atom C4 and -0.025 (2) Å for atom C2) which forms a dihedral angle of 9.55 (10) ° with the C11–C16 benzene ring. Twists in the molecule are evident about the N2–C3 and C10–C11 bonds as seen in the values of the N3–N2–C3–C2 and N3–C10–C11—C12 torsion angles of 6.9 (4) and -6.6 (4) °, respectively. As observed in related systems, the amine-H is orientated over the quinoline residue (Kaiser et al. 2009; de Souza et al. 2009; de Ferreira et al., 2009). The conformation about the N3C10 double bond is E. The molecule crystallizes as a hydrate and the latter species is pivotal in stabilizing the crystal structure. Thus, the water-H atoms form donor O–H···N hydrogen bonds to quinoline-N atoms derived from two molecules. At the same time, the water-O atom accepts a N–H···O hydrogen bond from the amine-N2 of another molecule. Thus, the water molecule provides links between three molecules, leading to the formation of a 2-D array, Fig. 2 and Table 1. The resultant layer in the ab plane is further stabilized by C–H···O interactions, Table 1, and weak π···π contacts [ring centroid(N1,C1—C4,C9)···ring centroid(C4–C9)i = 3.7070 (14) Å, dihedral angle = 1.45 (11) ° for i: -1 + x, y, z]. Layers stack along the c direction with the most significant contacts between layers being of the type C–H···F whereby the fluoride is bifurcated, Table 1 and Fig. 3.

Related literature top

For background information on the pharmacological activity of quinoline derivatives, see: Elslager et al. (1969); Font et al. (1997); Kaminsky & Meltzer (1968); Musiol et al. (2006); Nakamura et al. (1999); Palmer et al. (1993); Ridley (2002); Sloboda et al. (1991); Tanenbaum & Tuffanelli (1980); Warshakoon et al. (2006). For recent studies into quinoline-based anti-malarials, see: Andrade et al. (2007); Cunico et al. (2006); da Silva et al. (2003); de Souza et al. (2005). For crystallographic studies on molecules related to the title compound, see: Kaiser et al. (2009); de Souza et al. (2009); de Ferreira et al. (2009). For the synthesis, see: Pellerano et al. (1976).

Experimental top

A solution of 7-chloro-4-hydrazinoquinoline (0.20 g, 1.0 mmol) and 4-fluorobenzaldehyde (0.15 g, 1.2 mmol) in EtOH (5 ml) was maintained at room temperature overnight and rotary evaporated. The solid residue, was washed with cold Et2O (3 x 10 ml) and recrystallized from EtOH m.pt. 518–519 K, lit. value 518 K (Pellerano et al., 1976), yield 74%. The sample for the X-ray study was slowly grown from moist EtOH and was found to be the monohydrate. 1H NMR (400 MHz, DMSO-d6) δ: 7.28–7.32 (3H, m), 7.54 (1H, d, J = 8.4 Hz), 7.84–7.88 (3H, m), 8.34–8.40 (3H, m), 11.3 (1H, br.s, NH). MS/ESI: [M+. - H]: 298. IR νmax (cm-1; KBr disc): 3232 (N–H), 1585 (CN), 817 (C–F).

Refinement top

The amine- and C-bound H atoms were geometrically placed (N–H = 0.88 Å and C–H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The water-bound H atoms were located from a difference map and refined (O–H = 0.84 (1) Å) with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of both components comprising the asymmetric unit of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the 2-D supramolecular array in (I) showing the O–H···N and N–H···O hydrogen bonds as orange and blue dashed lines, respectively. Colour code: Cl, cyan; F, pink; O, red; N, blue; C, grey; and H, green.
[Figure 3] Fig. 3. A view in projection along the a axis of the unit-cell contents in (I) showing the stacking of layers along the c direction. The O–H···N and N–H···O hydrogen bonds are shown as orange and blue dashed lines, respectively, and the C–H···F contacts are represented by pink dashed lines. One of the 2-D arrays, as shown in Fig. 2, has been highlighted in space-filling mode. Colour code: Cl, cyan; F, pink; O, red; N, blue; C, grey; and H, green.
7-Chloro-4-[(E)-N'-(4-fluorobenzylidene)hydrazinyl]quinoline monohydrate top
Crystal data top
C16H11ClFN3·H2OF(000) = 656
Mr = 317.74Dx = 1.457 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 13530 reflections
a = 3.7795 (2) Åθ = 2.9–27.5°
b = 15.4188 (11) ŵ = 0.28 mm1
c = 24.8576 (16) ÅT = 120 K
β = 90.286 (4)°Needle, colourless
V = 1448.57 (16) Å30.90 × 0.04 × 0.04 mm
Z = 4
Data collection top
Enraf–Nonius KappaCCD area-detector
diffractometer
3291 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode2009 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.098
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.1°
ϕ and ω scansh = 44
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 2019
Tmin = 0.614, Tmax = 0.746l = 3232
19494 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0463P)2 + 0.5902P]
where P = (Fo2 + 2Fc2)/3
3291 reflections(Δ/σ)max < 0.001
205 parametersΔρmax = 0.33 e Å3
3 restraintsΔρmin = 0.37 e Å3
Crystal data top
C16H11ClFN3·H2OV = 1448.57 (16) Å3
Mr = 317.74Z = 4
Monoclinic, P21/cMo Kα radiation
a = 3.7795 (2) ŵ = 0.28 mm1
b = 15.4188 (11) ÅT = 120 K
c = 24.8576 (16) Å0.90 × 0.04 × 0.04 mm
β = 90.286 (4)°
Data collection top
Enraf–Nonius KappaCCD area-detector
diffractometer
3291 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2009 reflections with I > 2σ(I)
Tmin = 0.614, Tmax = 0.746Rint = 0.098
19494 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0593 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.33 e Å3
3291 reflectionsΔρmin = 0.37 e Å3
205 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.85154 (18)0.01273 (5)0.43677 (3)0.0319 (2)
F10.1997 (4)0.22958 (11)0.11624 (6)0.0367 (5)
N10.3942 (5)0.13713 (14)0.26095 (9)0.0214 (5)
N20.6585 (5)0.08516 (14)0.17189 (8)0.0221 (5)
H2N0.78470.12680.18670.027*
N30.5476 (5)0.09163 (15)0.11914 (8)0.0212 (5)
C10.3270 (7)0.12969 (18)0.20855 (11)0.0225 (6)
H10.21760.17760.19110.027*
C20.4043 (6)0.05737 (18)0.17733 (10)0.0210 (6)
H20.34360.05660.14020.025*
C30.5701 (6)0.01357 (17)0.20052 (10)0.0178 (6)
C40.6457 (6)0.01003 (16)0.25750 (10)0.0176 (6)
C50.8024 (6)0.07868 (18)0.28696 (11)0.0210 (6)
H50.86800.13030.26870.025*
C60.8613 (6)0.07213 (18)0.34118 (10)0.0220 (6)
H60.96550.11890.36050.026*
C70.7663 (7)0.00432 (18)0.36790 (11)0.0218 (6)
C80.6151 (6)0.07217 (18)0.34132 (10)0.0214 (6)
H80.55310.12330.36040.026*
C90.5501 (6)0.06654 (16)0.28533 (10)0.0179 (6)
C100.6205 (7)0.16293 (18)0.09495 (11)0.0219 (6)
H100.75070.20640.11360.026*
C110.5085 (7)0.17884 (18)0.03962 (11)0.0216 (6)
C120.3483 (7)0.11448 (18)0.00825 (11)0.0231 (6)
H120.30870.05860.02320.028*
C130.2471 (7)0.13101 (18)0.04411 (11)0.0237 (6)
H130.14090.08710.06560.028*
C140.3041 (7)0.21294 (19)0.06453 (11)0.0256 (7)
C150.4572 (7)0.27824 (19)0.03525 (11)0.0269 (7)
H150.49110.33420.05040.032*
C160.5614 (7)0.26028 (18)0.01715 (11)0.0232 (6)
H160.67080.30440.03800.028*
O1W0.0566 (5)0.23633 (12)0.20098 (8)0.0287 (5)
H1W0.262 (3)0.2503 (17)0.2111 (12)0.043*
H2W0.086 (5)0.2775 (13)0.2069 (12)0.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0381 (4)0.0386 (5)0.0191 (4)0.0007 (3)0.0065 (3)0.0001 (3)
F10.0475 (10)0.0422 (11)0.0205 (9)0.0086 (8)0.0082 (8)0.0037 (8)
N10.0218 (12)0.0225 (13)0.0200 (13)0.0000 (10)0.0006 (9)0.0006 (10)
N20.0269 (12)0.0218 (13)0.0177 (12)0.0046 (10)0.0046 (9)0.0001 (10)
N30.0219 (12)0.0265 (14)0.0153 (12)0.0018 (10)0.0022 (9)0.0005 (10)
C10.0185 (14)0.0204 (16)0.0286 (17)0.0005 (11)0.0024 (12)0.0026 (13)
C20.0204 (14)0.0270 (16)0.0156 (14)0.0007 (12)0.0052 (11)0.0005 (12)
C30.0150 (13)0.0189 (15)0.0195 (14)0.0014 (11)0.0008 (10)0.0011 (12)
C40.0151 (13)0.0168 (14)0.0209 (14)0.0033 (11)0.0002 (10)0.0018 (12)
C50.0204 (14)0.0189 (15)0.0237 (15)0.0012 (11)0.0001 (11)0.0018 (12)
C60.0242 (15)0.0210 (16)0.0208 (15)0.0003 (12)0.0035 (11)0.0059 (12)
C70.0204 (14)0.0276 (17)0.0175 (14)0.0030 (12)0.0016 (11)0.0034 (12)
C80.0198 (14)0.0223 (16)0.0220 (15)0.0050 (12)0.0007 (11)0.0046 (12)
C90.0154 (13)0.0149 (14)0.0233 (15)0.0003 (11)0.0026 (10)0.0030 (12)
C100.0222 (15)0.0215 (16)0.0221 (16)0.0019 (12)0.0000 (11)0.0046 (13)
C110.0185 (14)0.0253 (16)0.0209 (15)0.0030 (12)0.0004 (11)0.0010 (12)
C120.0261 (15)0.0194 (15)0.0238 (16)0.0004 (12)0.0010 (12)0.0001 (12)
C130.0240 (15)0.0241 (16)0.0229 (16)0.0009 (12)0.0018 (12)0.0045 (13)
C140.0273 (15)0.0350 (18)0.0145 (14)0.0051 (13)0.0025 (11)0.0012 (13)
C150.0265 (15)0.0256 (17)0.0287 (17)0.0025 (13)0.0004 (12)0.0043 (13)
C160.0244 (15)0.0240 (16)0.0213 (15)0.0016 (12)0.0012 (11)0.0037 (13)
O1W0.0255 (11)0.0227 (11)0.0377 (13)0.0003 (9)0.0020 (9)0.0045 (9)
Geometric parameters (Å, º) top
Cl1—C71.745 (3)C6—H60.9500
F1—C141.367 (3)C7—C81.362 (4)
N1—C11.331 (3)C8—C91.414 (3)
N1—C91.377 (3)C8—H80.9500
N2—C31.356 (3)C10—C111.458 (4)
N2—N31.378 (3)C10—H100.9500
N2—H2N0.8800C11—C161.389 (4)
N3—C101.284 (3)C11—C121.398 (4)
C1—C21.390 (4)C12—C131.379 (4)
C1—H10.9500C12—H120.9500
C2—C31.385 (4)C13—C141.379 (4)
C2—H20.9500C13—H130.9500
C3—C41.445 (3)C14—C151.369 (4)
C4—C51.415 (4)C15—C161.387 (4)
C4—C91.416 (4)C15—H150.9500
C5—C61.369 (3)C16—H160.9500
C5—H50.9500O1W—H1W0.841 (10)
C6—C71.401 (4)O1W—H2W0.845 (10)
C1—N1—C9116.2 (2)C7—C8—H8120.0
C3—N2—N3118.9 (2)C9—C8—H8120.0
C3—N2—H2N120.5N1—C9—C8117.2 (2)
N3—N2—H2N120.5N1—C9—C4123.6 (2)
C10—N3—N2116.3 (2)C8—C9—C4119.2 (2)
N1—C1—C2125.2 (3)N3—C10—C11121.6 (2)
N1—C1—H1117.4N3—C10—H10119.2
C2—C1—H1117.4C11—C10—H10119.2
C3—C2—C1119.8 (2)C16—C11—C12118.7 (2)
C3—C2—H2120.1C16—C11—C10119.3 (2)
C1—C2—H2120.1C12—C11—C10122.0 (3)
N2—C3—C2122.4 (2)C13—C12—C11120.8 (3)
N2—C3—C4119.8 (2)C13—C12—H12119.6
C2—C3—C4117.7 (2)C11—C12—H12119.6
C5—C4—C9118.5 (2)C12—C13—C14118.3 (3)
C5—C4—C3124.0 (2)C12—C13—H13120.9
C9—C4—C3117.4 (2)C14—C13—H13120.9
C6—C5—C4121.3 (3)F1—C14—C15118.8 (3)
C6—C5—H5119.3F1—C14—C13118.3 (2)
C4—C5—H5119.3C15—C14—C13123.0 (3)
C5—C6—C7119.2 (2)C14—C15—C16118.0 (3)
C5—C6—H6120.4C14—C15—H15121.0
C7—C6—H6120.4C16—C15—H15121.0
C8—C7—C6121.6 (2)C15—C16—C11121.2 (3)
C8—C7—Cl1119.6 (2)C15—C16—H16119.4
C6—C7—Cl1118.8 (2)C11—C16—H16119.4
C7—C8—C9120.0 (2)H1W—O1W—H2W110.0 (16)
C3—N2—N3—C10176.0 (2)C7—C8—C9—N1179.5 (2)
C9—N1—C1—C20.5 (4)C7—C8—C9—C40.3 (4)
N1—C1—C2—C31.3 (4)C5—C4—C9—N1179.6 (2)
N3—N2—C3—C26.9 (4)C3—C4—C9—N10.7 (4)
N3—N2—C3—C4172.4 (2)C5—C4—C9—C80.2 (3)
C1—C2—C3—N2178.6 (2)C3—C4—C9—C8179.1 (2)
C1—C2—C3—C42.0 (4)N2—N3—C10—C11178.2 (2)
N2—C3—C4—C51.6 (4)N3—C10—C11—C16173.3 (2)
C2—C3—C4—C5177.7 (2)N3—C10—C11—C126.6 (4)
N2—C3—C4—C9179.5 (2)C16—C11—C12—C130.5 (4)
C2—C3—C4—C91.1 (3)C10—C11—C12—C13179.5 (2)
C9—C4—C5—C60.1 (4)C11—C12—C13—C140.8 (4)
C3—C4—C5—C6178.7 (2)C12—C13—C14—F1179.2 (2)
C4—C5—C6—C70.4 (4)C12—C13—C14—C150.2 (4)
C5—C6—C7—C80.3 (4)F1—C14—C15—C16180.0 (2)
C5—C6—C7—Cl1178.65 (19)C13—C14—C15—C160.5 (4)
C6—C7—C8—C90.0 (4)C14—C15—C16—C110.8 (4)
Cl1—C7—C8—C9178.98 (18)C12—C11—C16—C150.2 (4)
C1—N1—C9—C8178.3 (2)C10—C11—C16—C15179.7 (2)
C1—N1—C9—C41.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w···N1i0.84 (2)2.28 (2)2.999 (3)144 (2)
O1w—H2w···N1ii0.85 (2)1.93 (2)2.761 (3)166 (3)
N2—H2n···O1wiii0.882.012.865 (3)165
C5—H5···O1wiii0.952.453.379 (3)164
C10—H10···O1wiii0.952.503.302 (3)142
C1—H1···F1iv0.952.563.399 (3)147
C6—H6···F1v0.952.563.477 (3)161
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x, y, z; (v) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H11ClFN3·H2O
Mr317.74
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)3.7795 (2), 15.4188 (11), 24.8576 (16)
β (°) 90.286 (4)
V3)1448.57 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.90 × 0.04 × 0.04
Data collection
DiffractometerEnraf–Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.614, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
19494, 3291, 2009
Rint0.098
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.131, 1.04
No. of reflections3291
No. of parameters205
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.37

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w···N1i0.843 (16)2.28 (2)2.999 (3)144 (2)
O1w—H2w···N1ii0.85 (2)1.93 (2)2.761 (3)166 (3)
N2—H2n···O1wiii0.882.012.865 (3)165
C5—H5···O1wiii0.952.453.379 (3)164
C10—H10···O1wiii0.952.503.302 (3)142
C1—H1···F1iv0.952.563.399 (3)147
C6—H6···F1v0.952.563.477 (3)161
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x, y, z; (v) x+1, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

References

First citationAndrade, A. A., Varotti, F. D., de Freitas, I. Q., de Souza, M. V. N., Vasconcelos, T. R. A., Boechat, N. & Krettli, A. U. (2007). Eur. J. Pharm. 558, 194–198.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCunico, W., Cechinel, C. A., Bonacorso, H. G., Martins, G. M. A. P., Zanetta, N., de Souza, M. V. N., Freitas, I. Q., Soares, R. P. P. & Krettli, A. U. (2006). Bioorg. Med. Chem. Lett. 16, 649–653.  Web of Science CrossRef PubMed CAS Google Scholar
First citationElslager, E. F., Tendick, F. H. & Werbel, L. M. (1969). J. Med. Chem. 12, 600–607.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFerreira, M. L. de, de Souza, M. V. N., Howie, R. A., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, o3239–o3240.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFont, M., Monge, A., Ruiz, I. & Heras, B. (1997). Drug Des. Disc. 14, 259–272.  CAS Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKaiser, C. R., Pais, K. C., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1133–1140.  Web of Science CSD CrossRef CAS Google Scholar
First citationKaminsky, D. & Meltzer, R. I. (1968). J. Med. Chem. 11, 160–163.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMusiol, R., Jampilek, J., Buchta, V., Silva, L., Halina, H., Podeszwa, B., Palka, A., Majerz-Maniecka, K., Oleksyn, B. & Polanski, J. (2006). Bioorg. Med. Chem. 14, 3592–3598.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNakamura, T., Oka, M., Aizawa, K., Soda, H., Fukuda, M., Terashi, K., Ikeda, K., Mizuta, Y., Noguchi, Y., Kimura, Y., Tsuruo, T. & Kohno, S. (1999). Biochem. Biophys. Res. Commun. 255, 618–624.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPalmer, K. J., Holliday, S. M. & Brogden, R. N. (1993). Drugs, 45, 430–475.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPellerano, C., Savini, L. & Fiorini, I. (1976). Atti Accad. Fisiocritic Siena, 8, 43–57.  CAS Google Scholar
First citationRidley, R. G. (2002). Nature (London), 415, 686–693.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, A. D. da, de Almeida, M. V., de Souza, M. V. N. & Couri, M. R. C. (2003). Curr. Med. Chem. 10, 21–39.  Web of Science PubMed Google Scholar
First citationSloboda, A. E., Powell, D., Poletto, J. F., Pickett, W. C., Gibbons, J. J., Bell, D. H., Oronsky, A. L. & Kerwar, S. S. (1991). J. Rheumatol. 18, 855–860.  PubMed CAS Web of Science Google Scholar
First citationSouza, M. V. N. de (2005). Mini-Rev. Med. Chem. 5, 1009–1017.  Google Scholar
First citationSouza, M. V. N. de, Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, o3120–o3121.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTanenbaum, L. & Tuffanelli, D. L. (1980). Arch. Dermatol. 116, 587–591.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWarshakoon, N. C., Sheville, J., Bhatt, R. T., Ji, W., Mendez-Andino, J. L., Meyers, K. M., Kim, N., Wos, J. A., Mitchell, C., Paris, J. L., Pinney, B. B. O., Reizes, O. & Hu, X. E. (2006). Bioorg. Med. Chem. Lett. 16, 5207–5211.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o152-o153
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds