organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-3-methyl­pyridinium 2-amino-5-methyl­pyridinium sulfate monohydrate

aDepartment of Medicine, Tibet Nationalities Institute, Xianyang, Shaanxi 712082, People's Republic of China, bKey Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an 710069, People's Republic of China, cCollege of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, and dCollege of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: zgdwhb@sina.com

(Received 29 October 2009; accepted 18 November 2009; online 21 November 2009)

The asymmetric unit of the title compound, 2C6H9N2+·SO42−·H2O, contains two isomeric protonated amino­methyl­pyridine cations, a sulfate anion and a solvent water mol­ecule. The cations are in the iminium tautomeric form. In the crystal structure, inter­molecular O—H⋯O, N—H⋯O and weak C—H⋯O hydrogen bonds link the components into a three-dimensional network. Additional stabilization is provided by weak ππ stacking inter­actions, with centroid–centroid distances of 3.758 (2) and 3.774 (1) Å.

Related literature

For related structures, see: Nahringbauer & Kvick (1977[Nahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902-2905.]); Espenbetov et al. (1985[Espenbetov, A. A., Struchkov, Yu. T., Poplavskaya, I. A. & Kurman'galieva, R. G. (1985). Izv. Akad. Nauk Kaz. SSR Ser. Khim. pp. 56-57.]); Jin et al. (2000[Jin, Z.-M., Pan, Y.-J., Liu, J.-G. & Xu, D.-J. (2000). J. Chem. Crystallogr. 30, 195-198.], 2001[Jin, Z.-M., Pan, Y.-J., Hu, M.-L. & Shen, L. (2001). J. Chem. Crystallogr. 31, 191-195.], 2005[Jin, Z.-M., Shun, N., Lü, Y.-P., Hu, M.-L. & Shen, L. (2005). Acta Cryst. C61, m43-m45.]); Luque et al. (1997[Luque, A., Sertucha, J., Lezama, L., Rojo, T. & Roman, P. (1997). J. Chem. Soc. Dalton Trans. pp. 847-854.]). For studies on the tautomeric forms of 2-amino­pyridine systems, see: Inuzuka & Fujimoto (1986[Inuzuka, K. & Fujimoto, A. (1986). Spectrochim. Acta A, 42, 929-937.], 1990[Inuzuka, K. & Fujimoto, A. (1990). Bull. Chem. Soc. Jpn, 63, 971-975.]); Ishikawa et al. (2002[Ishikawa, H., Iwata, K. & Hamaguchi, H. (2002). J. Phys. Chem. A, 106, 2305-2312.]).

[Scheme 1]

Experimental

Crystal data
  • 2C6H9N2+·SO42−·H2O

  • Mr = 332.39

  • Monoclinic, P 21 /c

  • a = 8.4071 (7) Å

  • b = 20.7654 (17) Å

  • c = 9.3369 (8) Å

  • β = 103.983 (1)°

  • V = 1581.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.30 mm

Data collection
  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.908, Tmax = 0.923

  • 8087 measured reflections

  • 2780 independent reflections

  • 2492 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.129

  • S = 1.06

  • 2780 reflections

  • 207 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 1.82 2.657 (2) 164
N2—H2A⋯O2 0.86 2.14 2.991 (3) 170
N3—H3⋯O3 0.86 1.93 2.781 (3) 173
N4—H4A⋯O1 0.86 2.02 2.826 (3) 156
N4—H4B⋯O5 0.86 2.07 2.857 (3) 152
C5—H5⋯O5 0.93 2.41 3.334 (3) 171
O5—H5B⋯O2i 0.82 (3) 2.03 (3) 2.833 (3) 167 (3)
O5—H5A⋯O3ii 0.80 (2) 2.10 (4) 2.845 (3) 157 (3)
C2—H2⋯O1iii 0.93 2.41 3.334 (3) 176
N2—H2B⋯O4iii 0.86 1.99 2.835 (3) 168
C11—H11⋯O3iv 0.93 2.56 3.317 (3) 138
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+2; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

We are not aware of any articles which report crystal structures containing different two pyridininium cations and a sulfate cation. We present the crystal structure of the title compound, (I), herein.

The asymmetric unit of the title compound (I) is shown in Fig. 1. Protonation of atom N1 of the 2-amino-5-methyl-pyridine and N3 of 2-amino-3-methyl-pyridine cation results in a widening of the C1—N1—C5 and C7—N3—C11 angles. These values can be compared to those of 117.5 (3)° in neutral 2-amino-5-methyl-pyridine (Nahringbauer & Kvick, 1977) and 118.0 (2)° in neutral 2-amino-3-methyl-pyridine (Espenbetov et al., 1985). The C1-C5/N1 ring and C7-C11/N3 pyridinium rings are both essentially planar, with a maximum deviation from the mean plane of the rings of 0.024 (3)Å for atom N2 and 0.007 (3)Å for atom C9. The geometries of the two pyridinium rings are similar to those observed in other 2-aminopyridine structures (Luque et al., 1997; Jin et al., 2000,2001,2005) that are in the iminium tautomeric form (Inuzuka & Fujimoto, 1986,1990; Ishikawa et al., 2002).

In the crystal structure, intermolecular O-H···O, N-H···O and weak C-H···O hydrogen bonds link the components of the structure into a three-dimensional network (Fig. 2). Additional stabilization is provided by weak ππ stacking interactions with centroid to centroid distances of 3.758 (2) and 3.774 (1)Å.

Related literature top

For related structures, see: Nahringbauer & Kvick (1977); Espenbetov et al. (1985); Jin et al. (2000, 2001, 2005); Luque et al. (1997). For studies on the tautomeric forms of 2-aminopyridine systems, see: Inuzuka & Fujimoto (1986, 1990); Ishikawa et al. (2002).

Experimental top

2-Amino-3-methyl-pyridine, 2-amino-5-methyl-pyridine and sulfuric acid were mixed in molar ratio 1:1:1 and dissolved in sufficient water. The solution was stirred and heated until a clear solution resulted. Colourless crystals of (I) were formed by gradual evaporation of excess water over a period of one week at 293 K.

Refinement top

H atoms of the water molecule were located in a differnce Fourier map, and were refined independently with isotropic displacement parameters. Other H atom were placed in calculated positions and allowed to ride on their parent atoms at distances of 0.93 Å for aromatic C atoms, 0.86 Å for amido and 0.96 Å for methyl with isotropic displacement parameters 1.2 times Ueq of the parent atoms or 1.5 times Ueq for methyl C atoms.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) showing 40% probabilty ellipsoids for non-hydrogen atoms. The dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. Part of the crystal structure showing hydrogen bonds as dashed lines.
2-Amino-3-methylpyridinium 2-amino-5-methylpyridinium sulfate monohydrate top
Crystal data top
2C6H9N2+·SO42·H2OZ = 4
Mr = 332.39F(000) = 704.0
Monoclinic, P21/cDx = 1.396 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.4071 (7) Åθ = 2.1–25.1°
b = 20.7654 (17) ŵ = 0.23 mm1
c = 9.3369 (8) ÅT = 293 K
β = 103.983 (1)°Prism, colorless
V = 1581.7 (2) Å30.30 × 0.30 × 0.30 mm
Data collection top
Bruker SMART APEX area-detector
diffractometer
2780 independent reflections
Radiation source: fine-focus sealed tube2492 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scanθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 109
Tmin = 0.908, Tmax = 0.923k = 2423
8087 measured reflectionsl = 1110
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0672P)2 + 1.0523P]
where P = (Fo2 + 2Fc2)/3
2780 reflections(Δ/σ)max = 0.001
207 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
2C6H9N2+·SO42·H2OV = 1581.7 (2) Å3
Mr = 332.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.4071 (7) ŵ = 0.23 mm1
b = 20.7654 (17) ÅT = 293 K
c = 9.3369 (8) Å0.30 × 0.30 × 0.30 mm
β = 103.983 (1)°
Data collection top
Bruker SMART APEX area-detector
diffractometer
2780 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2492 reflections with I > 2σ(I)
Tmin = 0.908, Tmax = 0.923Rint = 0.015
8087 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.37 e Å3
2780 reflectionsΔρmin = 0.38 e Å3
207 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H5B0.897 (4)0.5692 (16)0.975 (4)0.072 (10)*
H5A0.873 (4)0.5243 (17)1.060 (4)0.076 (12)*
S10.13278 (6)0.60692 (2)0.79985 (6)0.03698 (19)
O10.3104 (2)0.60658 (8)0.8712 (2)0.0532 (5)
O20.0451 (2)0.63253 (9)0.9043 (2)0.0589 (5)
O30.08256 (19)0.53962 (8)0.76110 (18)0.0468 (4)
O40.1027 (3)0.64557 (10)0.6672 (2)0.0701 (6)
O50.8248 (2)0.55071 (10)1.0044 (2)0.0524 (5)
N10.4680 (2)0.67850 (8)1.09636 (19)0.0366 (4)
H10.40850.65191.03560.044*
N20.2340 (2)0.73695 (10)1.0919 (2)0.0537 (5)
H2A0.17850.71011.02920.064*
H2B0.18560.76911.12130.064*
N30.3036 (2)0.47027 (10)0.6431 (2)0.0439 (5)
H30.24130.49400.68180.053*
N40.5202 (3)0.50690 (11)0.8229 (2)0.0550 (6)
H4A0.45230.52940.85770.066*
H4B0.62320.50800.86470.066*
C10.3949 (3)0.72881 (11)1.1434 (2)0.0383 (5)
C20.4942 (3)0.77118 (11)1.2445 (3)0.0452 (5)
H20.44800.80641.28070.054*
C30.6580 (3)0.76018 (12)1.2886 (3)0.0489 (6)
H3A0.72290.78841.35520.059*
C40.7325 (3)0.70730 (12)1.2365 (3)0.0443 (5)
C50.6321 (3)0.66757 (11)1.1403 (2)0.0406 (5)
H50.67640.63201.10350.049*
C60.9147 (3)0.69585 (16)1.2847 (4)0.0686 (8)
H6A0.96440.72901.35260.103*
H6B0.96070.69661.20010.103*
H6C0.93500.65461.33220.103*
C70.4663 (3)0.47068 (11)0.7055 (2)0.0409 (5)
C80.5701 (3)0.43135 (11)0.6419 (3)0.0443 (5)
C90.4968 (4)0.39642 (13)0.5209 (3)0.0584 (7)
H90.56180.37080.47640.070*
C100.3270 (4)0.39747 (14)0.4606 (3)0.0668 (8)
H100.28030.37270.37830.080*
C110.2333 (3)0.43492 (13)0.5239 (3)0.0553 (7)
H110.12050.43640.48560.066*
C120.7509 (3)0.42992 (14)0.7089 (3)0.0584 (7)
H12A0.77630.45770.79350.088*
H12B0.80830.44440.63760.088*
H12C0.78400.38670.73850.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0324 (3)0.0332 (3)0.0414 (3)0.0057 (2)0.0014 (2)0.0011 (2)
O10.0341 (9)0.0525 (10)0.0654 (11)0.0031 (7)0.0027 (8)0.0152 (8)
O20.0513 (11)0.0522 (11)0.0765 (12)0.0050 (8)0.0215 (9)0.0146 (9)
O30.0433 (9)0.0382 (9)0.0543 (10)0.0094 (7)0.0030 (7)0.0033 (7)
O40.0798 (14)0.0605 (12)0.0590 (12)0.0227 (10)0.0047 (10)0.0196 (9)
O50.0385 (10)0.0571 (11)0.0607 (12)0.0011 (9)0.0103 (9)0.0047 (9)
N10.0374 (10)0.0344 (9)0.0361 (9)0.0005 (7)0.0052 (7)0.0023 (7)
N20.0389 (11)0.0536 (12)0.0639 (14)0.0080 (9)0.0034 (10)0.0141 (10)
N30.0387 (10)0.0449 (11)0.0465 (11)0.0045 (8)0.0071 (8)0.0032 (9)
N40.0383 (11)0.0714 (15)0.0506 (12)0.0024 (10)0.0018 (9)0.0153 (11)
C10.0404 (12)0.0390 (12)0.0347 (11)0.0041 (9)0.0077 (9)0.0022 (9)
C20.0516 (14)0.0408 (12)0.0415 (12)0.0046 (10)0.0080 (10)0.0081 (10)
C30.0511 (14)0.0475 (14)0.0425 (13)0.0055 (11)0.0003 (11)0.0078 (10)
C40.0385 (12)0.0476 (13)0.0444 (12)0.0003 (10)0.0052 (10)0.0027 (10)
C50.0401 (12)0.0391 (12)0.0429 (12)0.0053 (9)0.0108 (10)0.0018 (9)
C60.0398 (14)0.077 (2)0.083 (2)0.0004 (13)0.0031 (13)0.0047 (17)
C70.0430 (12)0.0402 (12)0.0375 (11)0.0011 (9)0.0060 (9)0.0052 (9)
C80.0453 (13)0.0412 (12)0.0459 (12)0.0055 (10)0.0101 (10)0.0056 (10)
C90.0624 (17)0.0525 (15)0.0592 (16)0.0093 (12)0.0127 (13)0.0087 (12)
C100.0681 (19)0.0652 (18)0.0580 (17)0.0031 (14)0.0028 (14)0.0178 (14)
C110.0488 (14)0.0547 (15)0.0529 (15)0.0019 (12)0.0061 (12)0.0008 (12)
C120.0462 (14)0.0590 (16)0.0687 (17)0.0090 (12)0.0116 (13)0.0029 (13)
Geometric parameters (Å, º) top
S1—O41.4460 (19)C2—H20.9300
S1—O21.4577 (19)C3—C41.408 (3)
S1—O31.4792 (16)C3—H3A0.9300
S1—O11.4808 (17)C4—C51.354 (3)
O5—H5B0.82 (4)C4—C61.508 (3)
O5—H5A0.79 (4)C5—H50.9300
N1—C11.339 (3)C6—H6A0.9600
N1—C51.360 (3)C6—H6B0.9600
N1—H10.8600C6—H6C0.9600
N2—C11.333 (3)C7—C81.426 (3)
N2—H2A0.8600C8—C91.358 (4)
N2—H2B0.8600C8—C121.498 (3)
N3—C111.345 (3)C9—C101.402 (4)
N3—C71.351 (3)C9—H90.9300
N3—H30.8600C10—C111.341 (4)
N4—C71.316 (3)C10—H100.9300
N4—H4A0.8600C11—H110.9300
N4—H4B0.8600C12—H12A0.9600
C1—C21.407 (3)C12—H12B0.9600
C2—C31.358 (3)C12—H12C0.9600
O4—S1—O2111.00 (13)C4—C5—N1121.5 (2)
O4—S1—O3109.53 (11)C4—C5—H5119.2
O2—S1—O3110.35 (10)N1—C5—H5119.2
O4—S1—O1109.70 (12)C4—C6—H6A109.5
O2—S1—O1108.56 (11)C4—C6—H6B109.5
O3—S1—O1107.63 (9)H6A—C6—H6B109.5
H5B—O5—H5A104 (3)C4—C6—H6C109.5
C1—N1—C5122.93 (19)H6A—C6—H6C109.5
C1—N1—H1118.5H6B—C6—H6C109.5
C5—N1—H1118.5N4—C7—N3118.1 (2)
C1—N2—H2A120.0N4—C7—C8123.5 (2)
C1—N2—H2B120.0N3—C7—C8118.3 (2)
H2A—N2—H2B120.0C9—C8—C7116.9 (2)
C11—N3—C7123.8 (2)C9—C8—C12123.2 (2)
C11—N3—H3118.1C7—C8—C12119.9 (2)
C7—N3—H3118.1C8—C9—C10122.6 (3)
C7—N4—H4A120.0C8—C9—H9118.7
C7—N4—H4B120.0C10—C9—H9118.7
H4A—N4—H4B120.0C11—C10—C9118.8 (3)
N2—C1—N1119.1 (2)C11—C10—H10120.6
N2—C1—C2123.3 (2)C9—C10—H10120.6
N1—C1—C2117.6 (2)C10—C11—N3119.6 (2)
C3—C2—C1119.5 (2)C10—C11—H11120.2
C3—C2—H2120.3N3—C11—H11120.2
C1—C2—H2120.3C8—C12—H12A109.5
C2—C3—C4122.0 (2)C8—C12—H12B109.5
C2—C3—H3A119.0H12A—C12—H12B109.5
C4—C3—H3A119.0C8—C12—H12C109.5
C5—C4—C3116.5 (2)H12A—C12—H12C109.5
C5—C4—C6121.9 (2)H12B—C12—H12C109.5
C3—C4—C6121.6 (2)
C5—N1—C1—N2178.2 (2)C11—N3—C7—C80.1 (3)
C5—N1—C1—C20.9 (3)N4—C7—C8—C9179.8 (2)
N2—C1—C2—C3178.4 (2)N3—C7—C8—C90.6 (3)
N1—C1—C2—C30.7 (3)N4—C7—C8—C120.1 (4)
C1—C2—C3—C40.1 (4)N3—C7—C8—C12179.3 (2)
C2—C3—C4—C50.3 (4)C7—C8—C9—C100.9 (4)
C2—C3—C4—C6179.3 (2)C12—C8—C9—C10179.0 (3)
C3—C4—C5—N10.2 (3)C8—C9—C10—C110.7 (5)
C6—C4—C5—N1179.5 (2)C9—C10—C11—N30.1 (4)
C1—N1—C5—C40.4 (3)C7—N3—C11—C100.1 (4)
C11—N3—C7—N4179.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.822.657 (2)164
N2—H2A···O20.862.142.991 (3)170
N3—H3···O30.861.932.781 (3)173
N4—H4A···O10.862.022.826 (3)156
N4—H4B···O50.862.072.857 (3)152
C5—H5···O50.932.413.334 (3)171
O5—H5B···O2i0.82 (3)2.03 (3)2.833 (3)167 (3)
O5—H5A···O3ii0.80 (2)2.10 (4)2.845 (3)157 (3)
C2—H2···O1iii0.932.413.334 (3)176
N2—H2B···O4iii0.861.992.835 (3)168
C11—H11···O3iv0.932.563.317 (3)138
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+2; (iii) x, y+3/2, z+1/2; (iv) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula2C6H9N2+·SO42·H2O
Mr332.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.4071 (7), 20.7654 (17), 9.3369 (8)
β (°) 103.983 (1)
V3)1581.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.30 × 0.30 × 0.30
Data collection
DiffractometerBruker SMART APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.908, 0.923
No. of measured, independent and
observed [I > 2σ(I)] reflections
8087, 2780, 2492
Rint0.015
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.129, 1.06
No. of reflections2780
No. of parameters207
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.38

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.822.657 (2)164.0
N2—H2A···O20.862.142.991 (3)170.3
N3—H3···O30.861.932.781 (3)173.3
N4—H4A···O10.862.022.826 (3)155.7
N4—H4B···O50.862.072.857 (3)151.5
C5—H5···O50.932.413.334 (3)171.2
O5—H5B···O2i0.82 (3)2.03 (3)2.833 (3)167 (3)
O5—H5A···O3ii0.80 (2)2.10 (4)2.845 (3)157 (3)
C2—H2···O1iii0.932.413.334 (3)175.9
N2—H2B···O4iii0.861.992.835 (3)167.8
C11—H11···O3iv0.932.563.317 (3)138.4
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+2; (iii) x, y+3/2, z+1/2; (iv) x, y+1, z+1.
 

Acknowledgements

We are grateful for the financial support of the Natural Science Foundation of Tibet (2009-10-12) and the Natural Science Foundation of the Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education (2009-11-12).

References

First citationBruker (2000). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEspenbetov, A. A., Struchkov, Yu. T., Poplavskaya, I. A. & Kurman'galieva, R. G. (1985). Izv. Akad. Nauk Kaz. SSR Ser. Khim. pp. 56–57.  Google Scholar
First citationInuzuka, K. & Fujimoto, A. (1986). Spectrochim. Acta A, 42, 929–937.  CrossRef Web of Science Google Scholar
First citationInuzuka, K. & Fujimoto, A. (1990). Bull. Chem. Soc. Jpn, 63, 971–975.  CrossRef CAS Web of Science Google Scholar
First citationIshikawa, H., Iwata, K. & Hamaguchi, H. (2002). J. Phys. Chem. A, 106, 2305–2312.  Web of Science CrossRef CAS Google Scholar
First citationJin, Z.-M., Pan, Y.-J., Hu, M.-L. & Shen, L. (2001). J. Chem. Crystallogr. 31, 191–195.  Web of Science CSD CrossRef CAS Google Scholar
First citationJin, Z.-M., Pan, Y.-J., Liu, J.-G. & Xu, D.-J. (2000). J. Chem. Crystallogr. 30, 195–198.  Web of Science CSD CrossRef CAS Google Scholar
First citationJin, Z.-M., Shun, N., Lü, Y.-P., Hu, M.-L. & Shen, L. (2005). Acta Cryst. C61, m43–m45.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLuque, A., Sertucha, J., Lezama, L., Rojo, T. & Roman, P. (1997). J. Chem. Soc. Dalton Trans. pp. 847–854.  CSD CrossRef Web of Science Google Scholar
First citationNahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902–2905.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds