organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 3-[1-(2-hy­droxy­phen­yl)eth­yl­idene]carbazate

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and bMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: liyufeng8111@163.com

(Received 22 October 2009; accepted 27 October 2009; online 31 October 2009)

The title compound, C11H14N2O3, was prepared by the reaction of ethyl carbazate and 1-(2-hydroxy­phen­yl)ethanone. In the crystal structure, mol­ecules are linked by inter­molecular N—H⋯O hydrogen bonds, forming centrosymmetric dimers. An intra­molecular O—H⋯N inter­action also occurs.

Related literature

For the applications of Schiff base compounds, see: Cimerman et al. (1997[Cimerman, Z., Galic, N. & Bosner, B. (1997). Anal. Chim. Acta, 343, 145-153.]); Forthe C=N double-bond length in a related structure, see: Girgis (2006[Girgis, A. S. (2006). J. Chem. Res. pp. 81-85.]).

[Scheme 1]

Experimental

Crystal data
  • C11H14N2O3

  • Mr = 222.24

  • Triclinic, [P \overline 1]

  • a = 5.4830 (11) Å

  • b = 10.191 (2) Å

  • c = 11.410 (2) Å

  • α = 112.53 (3)°

  • β = 95.79 (3)°

  • γ = 99.68 (3)°

  • V = 570.9 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.491, Tmax = 0.728

  • 5650 measured reflections

  • 2597 independent reflections

  • 1839 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.180

  • S = 1.08

  • 2597 reflections

  • 166 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.92 (2) 2.05 (2) 2.9649 (19) 170.4 (16)
O3—H3A⋯N1 0.98 (3) 1.68 (3) 2.5728 (19) 149 (2)
Symmetry code: (i) -x, -y, -z+2.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have received considerable attention in the literature and have potential analytical applications (Cimerman et al., 1997). As part of our search for new schiff base compounds we synthesized the title compound (I), and its crystal structure is determined herein.

The molecular structure of (I) is shown in Fig. 1. The C7—N1 bond length of 1.2836 (18)Å is comparable with C—N double bond [1.281 (2) Å] reported (Girgis, 2006). In the crystal structure, molecules are linked by intermolecular N—H···O hydrogen bonds to form centrosymmetric dimers.

Related literature top

For the applications of Schiff base compounds, see: Cimerman et al. (1997); Forthe CN double-bond length in a related structure, see: Girgis (2006).

Experimental top

A mixture of the 1-(2-hydroxyphenyl)ethanone (0.1 mol), and Ethyl carbazate (0.1 mol) was stirred in refluxing ethanol (20 mL) for 4 h to afford the title compound (0.082 mol, yield 82%). Single crystals suitable for X-ray measurements were obtained by recrystallization of (I) from ethanol at room temperature.

Refinement top

H atoms bonded to the O atom, the N atom and those bonded to C8 were refined independently with isotropic displacement parameters. All other H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances = 0.93–0.97 Å Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Structure description top

Schiff bases have received considerable attention in the literature and have potential analytical applications (Cimerman et al., 1997). As part of our search for new schiff base compounds we synthesized the title compound (I), and its crystal structure is determined herein.

The molecular structure of (I) is shown in Fig. 1. The C7—N1 bond length of 1.2836 (18)Å is comparable with C—N double bond [1.281 (2) Å] reported (Girgis, 2006). In the crystal structure, molecules are linked by intermolecular N—H···O hydrogen bonds to form centrosymmetric dimers.

For the applications of Schiff base compounds, see: Cimerman et al. (1997); Forthe CN double-bond length in a related structure, see: Girgis (2006).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids and the atom-numbering scheme.
Ethyl 3-[1-(2-hydroxyphenyl)ethylidene]carbazate top
Crystal data top
C11H14N2O3Z = 2
Mr = 222.24F(000) = 236
Triclinic, P1Dx = 1.293 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.4830 (11) ÅCell parameters from 1974 reflections
b = 10.191 (2) Åθ = 3.5–27.5°
c = 11.410 (2) ŵ = 0.10 mm1
α = 112.53 (3)°T = 293 K
β = 95.79 (3)°Block, colorless
γ = 99.68 (3)°0.22 × 0.20 × 0.18 mm
V = 570.9 (2) Å3
Data collection top
Bruker SMART CCD
diffractometer
2597 independent reflections
Radiation source: fine-focus sealed tube1839 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
φ and ω scansθmax = 27.5°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 76
Tmin = 0.491, Tmax = 0.728k = 1313
5650 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.180 w = 1/[σ2(Fo2) + (0.1217P)2 + 0.0113P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.003
2597 reflectionsΔρmax = 0.23 e Å3
166 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.043 (14)
Crystal data top
C11H14N2O3γ = 99.68 (3)°
Mr = 222.24V = 570.9 (2) Å3
Triclinic, P1Z = 2
a = 5.4830 (11) ÅMo Kα radiation
b = 10.191 (2) ŵ = 0.10 mm1
c = 11.410 (2) ÅT = 293 K
α = 112.53 (3)°0.22 × 0.20 × 0.18 mm
β = 95.79 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2597 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1839 reflections with I > 2σ(I)
Tmin = 0.491, Tmax = 0.728Rint = 0.016
5650 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.180H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.23 e Å3
2597 reflectionsΔρmin = 0.23 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.4674 (2)0.34070 (13)0.74631 (11)0.0681 (4)
O10.2984 (2)0.09910 (13)1.08787 (10)0.0676 (4)
O20.52301 (18)0.24189 (11)1.00894 (9)0.0549 (3)
N10.1757 (2)0.16596 (12)0.81259 (10)0.0476 (3)
N20.1444 (2)0.10360 (14)0.89965 (11)0.0536 (3)
C10.0453 (2)0.20676 (14)0.63011 (12)0.0453 (3)
C90.3238 (3)0.14591 (16)1.00535 (13)0.0505 (4)
C70.0055 (2)0.13722 (14)0.71973 (12)0.0440 (3)
C30.3121 (3)0.36489 (19)0.55821 (16)0.0682 (5)
H3B0.46530.42730.56900.082*
C20.2752 (3)0.30312 (15)0.64688 (14)0.0512 (4)
C100.7203 (3)0.29608 (19)1.12246 (15)0.0635 (4)
H10A0.79120.21691.12740.076*
H10B0.65260.33961.20020.076*
C80.2561 (3)0.0382 (2)0.69869 (19)0.0638 (5)
C50.0996 (4)0.2415 (2)0.43765 (17)0.0728 (5)
H5A0.22540.22020.36770.087*
C60.1370 (3)0.17999 (19)0.52442 (16)0.0626 (4)
H6A0.29120.11760.51200.075*
C40.1279 (4)0.3354 (2)0.45604 (17)0.0737 (5)
H4A0.15550.37870.39870.088*
C110.9167 (3)0.40714 (19)1.10931 (17)0.0706 (5)
H11A1.05030.44581.18290.106*
H11B0.84410.48461.10430.106*
H11C0.98250.36261.03230.106*
H3A0.407 (5)0.283 (3)0.794 (2)0.107 (8)*
H2A0.001 (4)0.039 (2)0.8940 (17)0.074 (5)*
H8A0.392 (5)0.072 (3)0.670 (2)0.127 (9)*
H8B0.298 (5)0.034 (3)0.767 (3)0.133 (10)*
H8C0.259 (6)0.042 (4)0.637 (3)0.139 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0548 (6)0.0760 (7)0.0715 (7)0.0132 (5)0.0027 (5)0.0428 (6)
O10.0639 (7)0.0847 (8)0.0621 (6)0.0099 (5)0.0004 (5)0.0522 (6)
O20.0530 (6)0.0615 (6)0.0509 (5)0.0086 (4)0.0006 (4)0.0349 (5)
N10.0485 (6)0.0524 (6)0.0464 (6)0.0009 (4)0.0051 (5)0.0302 (5)
N20.0497 (7)0.0614 (7)0.0534 (6)0.0050 (5)0.0018 (5)0.0365 (5)
C10.0476 (7)0.0474 (7)0.0444 (7)0.0075 (5)0.0079 (5)0.0239 (5)
C90.0533 (7)0.0528 (7)0.0499 (7)0.0019 (6)0.0069 (6)0.0306 (6)
C70.0426 (6)0.0461 (7)0.0435 (6)0.0042 (5)0.0072 (5)0.0209 (5)
C30.0708 (10)0.0677 (10)0.0746 (10)0.0033 (7)0.0139 (8)0.0458 (8)
C20.0524 (8)0.0489 (7)0.0534 (7)0.0032 (5)0.0080 (6)0.0257 (6)
C100.0605 (9)0.0695 (10)0.0554 (8)0.0072 (7)0.0040 (7)0.0326 (7)
C80.0498 (8)0.0802 (11)0.0650 (9)0.0084 (7)0.0004 (7)0.0454 (9)
C50.0723 (11)0.0932 (13)0.0665 (9)0.0105 (9)0.0020 (8)0.0531 (9)
C60.0535 (8)0.0794 (10)0.0601 (8)0.0011 (7)0.0020 (7)0.0417 (8)
C40.0878 (12)0.0808 (11)0.0724 (10)0.0118 (9)0.0155 (9)0.0552 (9)
C110.0631 (9)0.0640 (10)0.0740 (10)0.0072 (7)0.0042 (8)0.0274 (8)
Geometric parameters (Å, º) top
O3—C21.3543 (19)C3—H3B0.9300
O3—H3A0.98 (2)C10—C111.489 (2)
O1—C91.2173 (16)C10—H10A0.9700
O2—C91.3237 (17)C10—H10B0.9700
O2—C101.4563 (18)C8—H8A0.95 (3)
N1—C71.2836 (18)C8—H8B0.85 (3)
N1—N21.3790 (15)C8—H8C0.84 (3)
N2—C91.3521 (19)C5—C61.374 (2)
N2—H2A0.92 (2)C5—C41.381 (3)
C1—C61.393 (2)C5—H5A0.9300
C1—C21.408 (2)C6—H6A0.9300
C1—C71.4737 (18)C4—H4A0.9300
C7—C81.4988 (19)C11—H11A0.9600
C3—C41.365 (2)C11—H11B0.9600
C3—C21.395 (2)C11—H11C0.9600
C2—O3—H3A104.2 (15)O2—C10—H10B110.3
C9—O2—C10116.29 (10)C11—C10—H10B110.3
C7—N1—N2119.65 (11)H10A—C10—H10B108.6
C9—N2—N1119.71 (11)C7—C8—H8A112.7 (16)
C9—N2—H2A116.8 (11)C7—C8—H8B114 (2)
N1—N2—H2A123.3 (11)H8A—C8—H8B101 (2)
C6—C1—C2116.97 (12)C7—C8—H8C107 (2)
C6—C1—C7120.60 (12)H8A—C8—H8C105 (3)
C2—C1—C7122.43 (12)H8B—C8—H8C117 (3)
O1—C9—O2124.75 (13)C6—C5—C4118.87 (16)
O1—C9—N2121.90 (13)C6—C5—H5A120.6
O2—C9—N2113.34 (11)C4—C5—H5A120.6
N1—C7—C1116.09 (11)C5—C6—C1123.05 (15)
N1—C7—C8123.84 (12)C5—C6—H6A118.5
C1—C7—C8120.06 (12)C1—C6—H6A118.5
C4—C3—C2121.27 (14)C3—C4—C5120.15 (14)
C4—C3—H3B119.4C3—C4—H4A119.9
C2—C3—H3B119.4C5—C4—H4A119.9
O3—C2—C3117.02 (13)C10—C11—H11A109.5
O3—C2—C1123.31 (12)C10—C11—H11B109.5
C3—C2—C1119.67 (13)H11A—C11—H11B109.5
O2—C10—C11107.04 (13)C10—C11—H11C109.5
O2—C10—H10A110.3H11A—C11—H11C109.5
C11—C10—H10A110.3H11B—C11—H11C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.92 (2)2.05 (2)2.9649 (19)170.4 (16)
O3—H3A···N10.98 (3)1.68 (3)2.5728 (19)149 (2)
Symmetry code: (i) x, y, z+2.

Experimental details

Crystal data
Chemical formulaC11H14N2O3
Mr222.24
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.4830 (11), 10.191 (2), 11.410 (2)
α, β, γ (°)112.53 (3), 95.79 (3), 99.68 (3)
V3)570.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.491, 0.728
No. of measured, independent and
observed [I > 2σ(I)] reflections
5650, 2597, 1839
Rint0.016
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.180, 1.08
No. of reflections2597
No. of parameters166
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.23

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.92 (2)2.05 (2)2.9649 (19)170.4 (16)
O3—H3A···N10.98 (3)1.68 (3)2.5728 (19)149 (2)
Symmetry code: (i) x, y, z+2.
 

Acknowledgements

The authors would like to thank the Science Foundation of WeiFang University (No. 2009Z24).

References

First citationBruker (1997). SMART and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCimerman, Z., Galic, N. & Bosner, B. (1997). Anal. Chim. Acta, 343, 145–153.  CrossRef CAS Web of Science Google Scholar
First citationGirgis, A. S. (2006). J. Chem. Res. pp. 81–85.  CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds