organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 3-(2,4-di­chloro­benzyl­­idene)carbazate

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and bMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: liyufeng8111@163.com

(Received 13 October 2009; accepted 26 October 2009; online 31 October 2009)

The title compound, C10H10Cl2N2O2, was prepared by the reaction of ethyl carbazate and 2,4-dichloro­benzaldehyde. In the crystal structure, mol­ecules are linked by inter­molecular N—H⋯O hydrogen bonds, forming extended chains along [001].

Related literature

For applications of Schiff base compounds, see: Cimerman et al. (1997[Cimerman, Z., Galic, N. & Bosner, B. (1997). Anal. Chim. Acta, 343, 145-153.]). For the C=N double-bond length in a related structure, see: Girgis (2006[Girgis, A. S. (2006). J. Chem. Res. 2, 81-83.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10Cl2N2O2

  • Mr = 261.10

  • Tetragonal, I 41 /a

  • a = 18.021 (3) Å

  • c = 14.983 (3) Å

  • V = 4865.8 (14) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.492, Tmax = 0.729

  • 21376 measured reflections

  • 2789 independent reflections

  • 2409 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.121

  • S = 1.09

  • 2789 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.12 2.927 (2) 156
Symmetry code: (i) [-y+{\script{3\over 4}}, x+{\script{1\over 4}}, z+{\script{1\over 4}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have received considerable attention in the literature and have potential analytical applications (Cimerman et al., 1997). As part of our search for new schiff base compounds we synthesized the title compound (I), and its crystal structure is determined herein.

The molcular structure of (I) is shown in Fig. 1. The C8—N1 bond length of 1.271 (2)Å is comparable with C—N double bond [1.281 (2) Å] reported in a related structure (Girgis, 2006). In the crystal structure, molecules are linked by intermolecular N-H···O hydrogen bonds to form extended chains along [001].

Related literature top

For applications of Schiff base compounds, see: Cimerman et al. (1997). For the CN double-bond length in a related structure, see: Girgis (2006).

Experimental top

A mixture of the 2,4-dichlorobenzaldehyde (0.1 mol), and Ethyl carbazate (0.1 mol) was stirred in refluxing ethanol (20 mL) for 4 h to afford the title compound (0.080 mol, yield 80%). Single crystals suitable for X-ray measurements were obtained by recrystallization of a solution of (I) in ethanol at room temperature.

Refinement top

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances = 0.93-0.97 Å; N-H = 0.86Å and with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(Cmethyl).

Structure description top

Schiff bases have received considerable attention in the literature and have potential analytical applications (Cimerman et al., 1997). As part of our search for new schiff base compounds we synthesized the title compound (I), and its crystal structure is determined herein.

The molcular structure of (I) is shown in Fig. 1. The C8—N1 bond length of 1.271 (2)Å is comparable with C—N double bond [1.281 (2) Å] reported in a related structure (Girgis, 2006). In the crystal structure, molecules are linked by intermolecular N-H···O hydrogen bonds to form extended chains along [001].

For applications of Schiff base compounds, see: Cimerman et al. (1997). For the CN double-bond length in a related structure, see: Girgis (2006).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.
Ethyl 3-(2,4-dichlorobenzylidene)carbazate top
Crystal data top
C10H10Cl2N2O2Dx = 1.426 Mg m3
Mr = 261.10Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 1977 reflections
Hall symbol: -I 4adθ = 3.5–27.4°
a = 18.021 (3) ŵ = 0.52 mm1
c = 14.983 (3) ÅT = 293 K
V = 4865.8 (14) Å3Block, colorless
Z = 160.25 × 0.20 × 0.18 mm
F(000) = 2144
Data collection top
Bruker SMART CCD
diffractometer
2789 independent reflections
Radiation source: fine-focus sealed tube2409 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
φ and ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2323
Tmin = 0.492, Tmax = 0.729k = 2323
21376 measured reflectionsl = 1918
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0645P)2 + 2.5907P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
2789 reflectionsΔρmax = 0.37 e Å3
146 parametersΔρmin = 0.50 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0030 (4)
Crystal data top
C10H10Cl2N2O2Z = 16
Mr = 261.10Mo Kα radiation
Tetragonal, I41/aµ = 0.52 mm1
a = 18.021 (3) ÅT = 293 K
c = 14.983 (3) Å0.25 × 0.20 × 0.18 mm
V = 4865.8 (14) Å3
Data collection top
Bruker SMART CCD
diffractometer
2789 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2409 reflections with I > 2σ(I)
Tmin = 0.492, Tmax = 0.729Rint = 0.045
21376 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.09Δρmax = 0.37 e Å3
2789 reflectionsΔρmin = 0.50 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.22311 (4)0.76326 (3)0.01502 (4)0.0730 (2)
Cl20.09897 (3)0.79872 (3)0.30581 (4)0.0661 (2)
N20.28329 (7)0.54137 (8)0.06890 (9)0.0376 (3)
O20.39424 (7)0.41332 (7)0.04214 (8)0.0474 (3)
N10.32058 (8)0.50259 (8)0.00379 (9)0.0416 (3)
H1A0.32280.51890.05010.050*
O10.34815 (8)0.40718 (7)0.09813 (8)0.0500 (3)
C80.35371 (9)0.43809 (9)0.02677 (10)0.0362 (3)
C70.26094 (9)0.60548 (10)0.04588 (11)0.0411 (4)
H7A0.26950.62240.01190.049*
C40.22188 (8)0.65273 (9)0.10968 (10)0.0371 (3)
C20.16741 (10)0.67119 (10)0.25620 (11)0.0440 (4)
H2B0.15680.65340.31300.053*
C50.20078 (10)0.72492 (10)0.08829 (11)0.0441 (4)
C30.20456 (10)0.62758 (9)0.19537 (11)0.0414 (4)
H3A0.21860.57980.21190.050*
C10.14623 (10)0.74200 (10)0.23128 (12)0.0445 (4)
C60.16227 (11)0.76940 (10)0.14764 (13)0.0498 (4)
H6A0.14750.81700.13140.060*
C90.44238 (11)0.35079 (11)0.02348 (14)0.0538 (5)
H9A0.41730.31670.01660.065*
H9B0.45290.32460.07860.065*
C100.51290 (15)0.37543 (18)0.0177 (2)0.0908 (9)
H10A0.54360.33300.02970.136*
H10B0.53830.40830.02250.136*
H10C0.50250.40100.07250.136*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1010 (5)0.0595 (3)0.0586 (3)0.0176 (3)0.0303 (3)0.0252 (2)
Cl20.0726 (4)0.0565 (3)0.0693 (4)0.0135 (2)0.0261 (3)0.0084 (2)
N20.0396 (7)0.0420 (7)0.0312 (6)0.0035 (6)0.0042 (5)0.0013 (5)
O20.0540 (7)0.0566 (7)0.0316 (6)0.0170 (6)0.0047 (5)0.0045 (5)
N10.0505 (8)0.0476 (8)0.0266 (6)0.0112 (6)0.0060 (5)0.0019 (5)
O10.0713 (8)0.0455 (6)0.0332 (6)0.0116 (6)0.0084 (6)0.0044 (5)
C80.0401 (8)0.0411 (8)0.0275 (7)0.0010 (6)0.0002 (6)0.0048 (6)
C70.0445 (8)0.0457 (9)0.0332 (7)0.0056 (7)0.0035 (6)0.0033 (7)
C40.0351 (7)0.0399 (8)0.0361 (8)0.0016 (6)0.0014 (6)0.0019 (6)
C20.0458 (9)0.0494 (9)0.0367 (8)0.0031 (7)0.0066 (7)0.0039 (7)
C50.0477 (9)0.0423 (8)0.0423 (9)0.0029 (7)0.0076 (7)0.0086 (7)
C30.0451 (9)0.0403 (8)0.0388 (8)0.0063 (7)0.0026 (7)0.0048 (7)
C10.0418 (9)0.0437 (9)0.0481 (9)0.0038 (7)0.0090 (7)0.0051 (7)
C60.0548 (10)0.0383 (8)0.0562 (11)0.0077 (7)0.0096 (9)0.0067 (8)
C90.0595 (11)0.0533 (10)0.0484 (10)0.0185 (9)0.0017 (9)0.0126 (8)
C100.0688 (15)0.106 (2)0.098 (2)0.0277 (14)0.0305 (14)0.0353 (17)
Geometric parameters (Å, º) top
Cl1—C51.7421 (17)C2—C31.377 (2)
Cl2—C11.7370 (17)C2—C11.383 (2)
N2—C71.271 (2)C2—H2B0.9300
N2—N11.3755 (18)C5—C61.384 (2)
O2—C81.3412 (19)C3—H3A0.9300
O2—C91.449 (2)C1—C61.378 (3)
N1—C81.351 (2)C6—H6A0.9300
N1—H1A0.8600C9—C101.481 (3)
O1—C81.2097 (19)C9—H9A0.9700
C7—C41.461 (2)C9—H9B0.9700
C7—H7A0.9300C10—H10A0.9600
C4—C51.393 (2)C10—H10B0.9600
C4—C31.397 (2)C10—H10C0.9600
C7—N2—N1115.10 (13)C2—C3—H3A118.9
C8—O2—C9115.87 (14)C4—C3—H3A118.9
C8—N1—N2118.18 (13)C6—C1—C2121.22 (16)
C8—N1—H1A120.9C6—C1—Cl2118.48 (13)
N2—N1—H1A120.9C2—C1—Cl2120.30 (14)
O1—C8—O2124.90 (15)C1—C6—C5118.83 (16)
O1—C8—N1125.78 (15)C1—C6—H6A120.6
O2—C8—N1109.31 (13)C5—C6—H6A120.6
N2—C7—C4120.32 (14)O2—C9—C10111.15 (19)
N2—C7—H7A119.8O2—C9—H9A109.4
C4—C7—H7A119.8C10—C9—H9A109.4
C5—C4—C3116.98 (15)O2—C9—H9B109.4
C5—C4—C7121.69 (14)C10—C9—H9B109.4
C3—C4—C7121.33 (14)H9A—C9—H9B108.0
C3—C2—C1118.81 (16)C9—C10—H10A109.5
C3—C2—H2B120.6C9—C10—H10B109.5
C1—C2—H2B120.6H10A—C10—H10B109.5
C6—C5—C4122.01 (15)C9—C10—H10C109.5
C6—C5—Cl1117.20 (13)H10A—C10—H10C109.5
C4—C5—Cl1120.79 (13)H10B—C10—H10C109.5
C2—C3—C4122.12 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.122.927 (2)156
Symmetry code: (i) y+3/4, x+1/4, z+1/4.

Experimental details

Crystal data
Chemical formulaC10H10Cl2N2O2
Mr261.10
Crystal system, space groupTetragonal, I41/a
Temperature (K)293
a, c (Å)18.021 (3), 14.983 (3)
V3)4865.8 (14)
Z16
Radiation typeMo Kα
µ (mm1)0.52
Crystal size (mm)0.25 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.492, 0.729
No. of measured, independent and
observed [I > 2σ(I)] reflections
21376, 2789, 2409
Rint0.045
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.121, 1.09
No. of reflections2789
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.50

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.122.927 (2)156
Symmetry code: (i) y+3/4, x+1/4, z+1/4.
 

Acknowledgements

The authors would like to thank the Science Foundation of WeiFang University (No. 2009Z24).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCimerman, Z., Galic, N. & Bosner, B. (1997). Anal. Chim. Acta, 343, 145–153.  CrossRef CAS Web of Science Google Scholar
First citationGirgis, A. S. (2006). J. Chem. Res. 2, 81–83.  CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds