organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl 2-butyl-2-(3,5-di-tert-butyl-4-hy­droxy­benz­yl)malonate

aChemistry & Biology College, Yantai University, Yantai 264005, People's Republic of China
*Correspondence e-mail: zengtaotj@126.com

(Received 26 August 2009; accepted 3 September 2009; online 12 September 2009)

The title compound, C25H38O5, was formed by the reaction of dimethyl 2-butyl­malonate and 2,6-di-tert-butyl-4-[(dimethyl­amino)meth­yl]phenol. In the crystal structure, mol­ecules are linked by inter­molecular O—H⋯O hydrogen bonds into chains along [010].

Related literature

For background to hindered phenols and hindered amines, see: Denisov (1991[Denisov, E. T. (1991). Polym. Degrad. Stab. 34, 325-332.]); Klemchuk & Gande (1998[Klemchuk, P. P. & Gande, M. E. (1998). Polym. Degrad. Stab. 22, 241-274.]); Yamazaki & Seguchi (1997[Yamazaki, T. & Seguchi, T. (1997). J. Polym. Sci. A, 35, 2431-2439.]); Rasberger (1980[Rasberger, M. (1980). US Patent No. 4 198 334.]); Eggensperger et al. (1974[Eggensperger, H., Franzen, V. & Kloss, W. (1974). US Patent No. 3 950 382.], 1976[Eggensperger, H., Franzen, V. & Kloss, W. (1976). US Patent No. 3 856 846.]). For a related structure, see: Zeng & Chen (2006[Zeng, T. & Chen, L.-G. (2006). Acta Cryst. E62, o2914-o2915.]).

[Scheme 1]

Experimental

Crystal data
  • C24H38O5

  • Mr = 406.54

  • Monoclinic, P 21 /n

  • a = 10.854 (2) Å

  • b = 10.341 (2) Å

  • c = 22.899 (5) Å

  • β = 98.838 (4)°

  • V = 2539.7 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 294 K

  • 0.24 × 0.20 × 0.16 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.983, Tmax = 0.988

  • 12778 measured reflections

  • 4475 independent reflections

  • 2448 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.142

  • S = 1.01

  • 4475 reflections

  • 272 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 2.23 2.832 (2) 130
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Hindered phenols are widely used as antioxidants while hindered amines are used as light stabilizers in polymers and lubricants because of their special structures (Denisov, 1991; Klemchuk & Gande, 1998; Yamazaki & Seguchi, 1997). In a former paper (Zeng & Chen, 2006), we reported the crystal structure of bis(1,2,2,6,6-pentamethylpiperidin-4-yl)butylmalonate, a key intermediate in the peparation of 'Tinuvin 144' which is a light stabilizer of the hindered amine class that also contains an oxidant unit of the sterically hindered phenol type (Rasberger, 1980; Eggensperger et al., 1974;1976). The title compound was prepared as an intermediate when we attempted to synthesize 'Tinuvin 144' by a different route.

The molecular structure of the title compound (I) is shown in Fig. 1. The phenolic hydroxyl group is sterically hindered by the adjacent bulky tert-butyl groups as is indicated by a shorter than normal H···H contact [H1···H9B = 1.87Å]. In the crystal structure, molecules are linked by intermolecular O-H···O hydrogen bonds into one-dimensional chains along [010] (see Fig. 2).

Related literature top

For background tohindered phenols and hindered amines, see: Rasberger (1980); Yamazaki & Seguchi (1997); Eggensperger et al. (1974, 1976); Denisov (1991); Klemchuk & Gande (1998). For a related structure, see: Zeng & Chen (2006).

Experimental top

A mixture of bis(1,2,2,6,6-pentamethylpiperidin-4-yl) 2-butylmalonate (11.67 g,0.025 mol) and 2,6-di-tert-butyl-4-((dimethylamino)methyl)phenol (6.59 g, 0.025 mol)was dissloved in toluene (100 ml), stirred and heated to reflux. Then 0.2 g lithium amide was added and stirred for a further 4 h, followed by extraction with ether (30 ml) and drying with anhydrous magnesium sulfate. The solvent was removed by vacuum evaporation at 318 K, and the product was filtered and washed with methanol (10 ml). The title compound (I) (15.05 g) was obtained in 87.9% yield. Suitable crystals (m.p. 420–422 K) were obtained by slow evaporation of a solution of (I) in a mixture of THF and methanol.

Refinement top

The H atom of the O—H group was initially located in a difference Fourier map but subsequently included in a calculated position O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O). All other H atoms were positioned geometrically with C-H distances in the range 0.93–0.97 Å, and they were refined using a riding-model approximation with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of (I) with dashed lines indicating O—H···O hydrogen bonds. Only H atoms involved in hydrogen bonds are shown.
Dimethyl 2-butyl-2-(3,5-di-tert-butyl-4-hydroxybenzyl)malonate top
Crystal data top
C24H38O5F(000) = 888
Mr = 406.54Dx = 1.063 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2194 reflections
a = 10.854 (2) Åθ = 2.2–21.1°
b = 10.341 (2) ŵ = 0.07 mm1
c = 22.899 (5) ÅT = 294 K
β = 98.838 (4)°Block, colourless
V = 2539.7 (9) Å30.24 × 0.20 × 0.16 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
4475 independent reflections
Radiation source: fine-focus sealed tube2448 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1112
Tmin = 0.983, Tmax = 0.988k = 1211
12778 measured reflectionsl = 2721
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0654P)2 + 0.1568P]
where P = (Fo2 + 2Fc2)/3
4475 reflections(Δ/σ)max < 0.001
272 parametersΔρmax = 0.16 e Å3
12 restraintsΔρmin = 0.18 e Å3
Crystal data top
C24H38O5V = 2539.7 (9) Å3
Mr = 406.54Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.854 (2) ŵ = 0.07 mm1
b = 10.341 (2) ÅT = 294 K
c = 22.899 (5) Å0.24 × 0.20 × 0.16 mm
β = 98.838 (4)°
Data collection top
Bruker SMART CCD
diffractometer
4475 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2448 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.988Rint = 0.048
12778 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04812 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.01Δρmax = 0.16 e Å3
4475 reflectionsΔρmin = 0.18 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.41570 (13)1.09610 (18)0.27640 (6)0.0596 (5)
H10.36221.11190.29710.089*
O20.11836 (16)0.68114 (18)0.10961 (7)0.0672 (5)
O30.01613 (15)0.81627 (17)0.05786 (7)0.0607 (5)
O40.11420 (16)0.87050 (17)0.07043 (7)0.0645 (5)
O50.07880 (19)0.67112 (18)0.04056 (7)0.0780 (6)
C10.35939 (19)1.0593 (2)0.22102 (8)0.0374 (5)
C20.44117 (18)1.0357 (2)0.18030 (9)0.0364 (5)
C30.3872 (2)1.0021 (2)0.12350 (9)0.0400 (5)
H30.43930.98630.09560.048*
C40.25997 (19)0.9908 (2)0.10623 (8)0.0366 (5)
C50.18367 (19)1.01343 (19)0.14827 (8)0.0362 (5)
H50.09781.00680.13710.043*
C60.22977 (18)1.04564 (19)0.20643 (9)0.0344 (5)
C70.14008 (18)1.0678 (2)0.25207 (9)0.0397 (5)
C80.1437 (2)1.2092 (2)0.27215 (10)0.0550 (7)
H8A0.11701.26390.23880.082*
H8B0.22731.23170.28930.082*
H8C0.08921.22050.30100.082*
C90.1722 (2)0.9759 (2)0.30526 (10)0.0564 (7)
H9A0.11360.98820.33220.085*
H9B0.25480.99410.32510.085*
H9C0.16810.88800.29160.085*
C100.0049 (2)1.0388 (3)0.22531 (10)0.0609 (7)
H10A0.04811.05140.25480.091*
H10B0.00160.95090.21180.091*
H10C0.02051.09590.19260.091*
C110.58343 (19)1.0484 (2)0.19695 (10)0.0456 (6)
C120.6333 (2)0.9627 (3)0.24987 (11)0.0730 (8)
H12A0.72170.97460.25990.109*
H12B0.61580.87370.23990.109*
H12C0.59360.98610.28300.109*
C130.6192 (2)1.1891 (3)0.21131 (13)0.0798 (9)
H13A0.58851.24270.17800.120*
H13B0.70831.19640.21990.120*
H13C0.58311.21660.24500.120*
C140.6513 (2)1.0060 (3)0.14653 (11)0.0823 (10)
H14A0.62551.05940.11260.123*
H14B0.63140.91740.13680.123*
H14C0.73961.01450.15860.123*
C150.2057 (2)0.9562 (2)0.04293 (8)0.0418 (6)
H15A0.26160.98780.01690.050*
H15B0.12681.00080.03260.050*
C160.1842 (2)0.8100 (2)0.03162 (8)0.0404 (6)
C170.0948 (2)0.7595 (2)0.07120 (10)0.0454 (6)
C180.1102 (3)0.7799 (3)0.09247 (13)0.0861 (10)
H18A0.14290.69650.08000.129*
H18B0.17620.84260.08710.129*
H18C0.07430.77650.13350.129*
C190.1224 (2)0.7911 (2)0.03234 (10)0.0485 (6)
C200.0126 (4)0.6420 (3)0.09909 (12)0.1183 (14)
H20A0.05920.69700.10750.177*
H20B0.01360.55320.10060.177*
H20C0.06670.65650.12790.177*
C210.3054 (2)0.7306 (2)0.04303 (10)0.0499 (6)
H21A0.34740.75030.08250.060*
H21B0.28350.63960.04230.060*
C220.3966 (2)0.7522 (3)0.00000 (11)0.0655 (7)
H22A0.35940.72130.03870.079*
H22B0.41090.84440.00320.079*
C230.5202 (3)0.6857 (3)0.01765 (13)0.0813 (9)
H23A0.50480.59610.02690.098*
H23B0.56260.72590.05340.098*
C240.6056 (3)0.6890 (3)0.02852 (16)0.1106 (12)
H24A0.56470.64940.06420.166*
H24B0.68080.64250.01430.166*
H24C0.62570.77710.03640.166*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0364 (9)0.1016 (14)0.0393 (9)0.0034 (9)0.0012 (7)0.0246 (9)
O20.0723 (13)0.0773 (13)0.0512 (11)0.0060 (10)0.0072 (9)0.0247 (10)
O30.0506 (11)0.0706 (12)0.0615 (11)0.0020 (9)0.0102 (9)0.0068 (9)
O40.0879 (14)0.0687 (13)0.0331 (9)0.0081 (10)0.0027 (9)0.0055 (9)
O50.1241 (17)0.0569 (13)0.0447 (10)0.0224 (11)0.0135 (10)0.0085 (8)
C10.0365 (13)0.0437 (14)0.0309 (12)0.0030 (10)0.0018 (10)0.0057 (10)
C20.0344 (12)0.0369 (13)0.0373 (13)0.0036 (10)0.0040 (10)0.0016 (10)
C30.0431 (14)0.0418 (14)0.0366 (13)0.0012 (10)0.0107 (11)0.0020 (10)
C40.0412 (13)0.0359 (13)0.0326 (12)0.0011 (10)0.0050 (10)0.0016 (10)
C50.0345 (12)0.0369 (13)0.0357 (12)0.0021 (10)0.0011 (10)0.0015 (10)
C60.0342 (13)0.0347 (13)0.0346 (12)0.0002 (9)0.0057 (10)0.0029 (9)
C70.0329 (12)0.0488 (15)0.0377 (12)0.0001 (10)0.0065 (10)0.0055 (11)
C80.0520 (16)0.0604 (18)0.0524 (15)0.0115 (12)0.0077 (12)0.0132 (12)
C90.0606 (16)0.0639 (18)0.0474 (14)0.0046 (13)0.0171 (12)0.0003 (12)
C100.0394 (14)0.089 (2)0.0565 (16)0.0098 (13)0.0135 (12)0.0126 (14)
C110.0326 (13)0.0545 (16)0.0501 (14)0.0056 (11)0.0082 (11)0.0040 (11)
C120.0417 (16)0.089 (2)0.0850 (19)0.0067 (14)0.0009 (14)0.0169 (16)
C130.0532 (18)0.070 (2)0.115 (2)0.0186 (14)0.0079 (17)0.0108 (17)
C140.0392 (16)0.136 (3)0.0758 (19)0.0085 (16)0.0207 (14)0.0216 (19)
C150.0512 (14)0.0433 (14)0.0294 (12)0.0009 (11)0.0022 (10)0.0007 (10)
C160.0520 (15)0.0435 (14)0.0245 (11)0.0007 (11)0.0024 (10)0.0021 (10)
C170.0540 (16)0.0446 (15)0.0348 (13)0.0055 (12)0.0015 (12)0.0046 (11)
C180.0618 (19)0.108 (3)0.095 (2)0.0141 (17)0.0302 (17)0.0006 (19)
C190.0607 (17)0.0496 (17)0.0345 (14)0.0012 (13)0.0048 (12)0.0024 (12)
C200.180 (4)0.099 (3)0.0592 (19)0.035 (2)0.034 (2)0.0227 (18)
C210.0611 (16)0.0472 (15)0.0400 (13)0.0031 (12)0.0034 (12)0.0008 (11)
C220.0691 (19)0.0700 (19)0.0591 (17)0.0084 (15)0.0154 (15)0.0021 (14)
C230.075 (2)0.074 (2)0.099 (2)0.0108 (16)0.0258 (18)0.0095 (17)
C240.093 (3)0.108 (3)0.142 (3)0.013 (2)0.052 (2)0.002 (2)
Geometric parameters (Å, º) top
O1—C11.374 (2)C12—H12A0.9600
O1—H10.8200C12—H12B0.9600
O2—C171.195 (3)C12—H12C0.9600
O3—C171.332 (3)C13—H13A0.9600
O3—C181.435 (3)C13—H13B0.9600
O4—C191.191 (3)C13—H13C0.9600
O5—C191.331 (3)C14—H14A0.9600
O5—C201.452 (3)C14—H14B0.9600
C1—C61.402 (3)C14—H14C0.9600
C1—C21.404 (3)C15—C161.546 (3)
C2—C31.386 (3)C15—H15A0.9700
C2—C111.538 (3)C15—H15B0.9700
C3—C41.382 (3)C16—C171.518 (3)
C3—H30.9300C16—C191.527 (3)
C4—C51.383 (3)C16—C211.539 (3)
C4—C151.521 (3)C18—H18A0.9600
C5—C61.389 (3)C18—H18B0.9600
C5—H50.9300C18—H18C0.9600
C6—C71.551 (3)C20—H20A0.9600
C7—C81.531 (3)C20—H20B0.9600
C7—C101.531 (3)C20—H20C0.9600
C7—C91.543 (3)C21—C221.517 (3)
C8—H8A0.9600C21—H21A0.9700
C8—H8B0.9600C21—H21B0.9700
C8—H8C0.9600C22—C231.507 (3)
C9—H9A0.9600C22—H22A0.9700
C9—H9B0.9600C22—H22B0.9700
C9—H9C0.9600C23—C241.510 (3)
C10—H10A0.9600C23—H23A0.9700
C10—H10B0.9600C23—H23B0.9700
C10—H10C0.9600C24—H24A0.9600
C11—C141.526 (3)C24—H24B0.9600
C11—C131.528 (3)C24—H24C0.9600
C11—C121.532 (3)
C1—O1—H1109.5H13B—C13—H13C109.5
C17—O3—C18116.9 (2)C11—C14—H14A109.5
C19—O5—C20116.0 (2)C11—C14—H14B109.5
O1—C1—C6122.37 (18)H14A—C14—H14B109.5
O1—C1—C2115.09 (18)C11—C14—H14C109.5
C6—C1—C2122.54 (18)H14A—C14—H14C109.5
C3—C2—C1116.58 (19)H14B—C14—H14C109.5
C3—C2—C11121.17 (19)C4—C15—C16114.60 (16)
C1—C2—C11122.24 (18)C4—C15—H15A108.6
C4—C3—C2123.3 (2)C16—C15—H15A108.6
C4—C3—H3118.3C4—C15—H15B108.6
C2—C3—H3118.3C16—C15—H15B108.6
C3—C4—C5117.74 (18)H15A—C15—H15B107.6
C3—C4—C15121.09 (18)C17—C16—C19107.60 (18)
C5—C4—C15121.17 (19)C17—C16—C21108.89 (18)
C4—C5—C6122.81 (19)C19—C16—C21109.42 (18)
C4—C5—H5118.6C17—C16—C15109.27 (18)
C6—C5—H5118.6C19—C16—C15108.57 (17)
C5—C6—C1116.93 (18)C21—C16—C15112.95 (18)
C5—C6—C7120.70 (18)O2—C17—O3123.5 (2)
C1—C6—C7122.36 (17)O2—C17—C16126.0 (2)
C8—C7—C10106.65 (18)O3—C17—C16110.5 (2)
C8—C7—C9111.05 (18)O3—C18—H18A109.5
C10—C7—C9106.34 (18)O3—C18—H18B109.5
C8—C7—C6110.73 (17)H18A—C18—H18B109.5
C10—C7—C6111.32 (16)O3—C18—H18C109.5
C9—C7—C6110.59 (17)H18A—C18—H18C109.5
C7—C8—H8A109.5H18B—C18—H18C109.5
C7—C8—H8B109.5O4—C19—O5123.6 (2)
H8A—C8—H8B109.5O4—C19—C16125.9 (2)
C7—C8—H8C109.5O5—C19—C16110.4 (2)
H8A—C8—H8C109.5O5—C20—H20A109.5
H8B—C8—H8C109.5O5—C20—H20B109.5
C7—C9—H9A109.5H20A—C20—H20B109.5
C7—C9—H9B109.5O5—C20—H20C109.5
H9A—C9—H9B109.5H20A—C20—H20C109.5
C7—C9—H9C109.5H20B—C20—H20C109.5
H9A—C9—H9C109.5C22—C21—C16115.95 (19)
H9B—C9—H9C109.5C22—C21—H21A108.3
C7—C10—H10A109.5C16—C21—H21A108.3
C7—C10—H10B109.5C22—C21—H21B108.3
H10A—C10—H10B109.5C16—C21—H21B108.3
C7—C10—H10C109.5H21A—C21—H21B107.4
H10A—C10—H10C109.5C23—C22—C21113.7 (2)
H10B—C10—H10C109.5C23—C22—H22A108.8
C14—C11—C13107.5 (2)C21—C22—H22A108.8
C14—C11—C12106.2 (2)C23—C22—H22B108.8
C13—C11—C12109.5 (2)C21—C22—H22B108.8
C14—C11—C2111.75 (18)H22A—C22—H22B107.7
C13—C11—C2110.30 (19)C22—C23—C24114.8 (3)
C12—C11—C2111.46 (18)C22—C23—H23A108.6
C11—C12—H12A109.5C24—C23—H23A108.6
C11—C12—H12B109.5C22—C23—H23B108.6
H12A—C12—H12B109.5C24—C23—H23B108.6
C11—C12—H12C109.5H23A—C23—H23B107.5
H12A—C12—H12C109.5C23—C24—H24A109.5
H12B—C12—H12C109.5C23—C24—H24B109.5
C11—C13—H13A109.5H24A—C24—H24B109.5
C11—C13—H13B109.5C23—C24—H24C109.5
H13A—C13—H13B109.5H24A—C24—H24C109.5
C11—C13—H13C109.5H24B—C24—H24C109.5
H13A—C13—H13C109.5
O1—C1—C2—C3178.16 (19)C1—C2—C11—C1256.3 (3)
C6—C1—C2—C32.2 (3)C3—C4—C15—C1692.5 (2)
O1—C1—C2—C110.8 (3)C5—C4—C15—C1688.2 (2)
C6—C1—C2—C11178.84 (19)C4—C15—C16—C1759.5 (2)
C1—C2—C3—C40.3 (3)C4—C15—C16—C19176.56 (18)
C11—C2—C3—C4179.3 (2)C4—C15—C16—C2161.9 (2)
C2—C3—C4—C50.6 (3)C18—O3—C17—O20.4 (3)
C2—C3—C4—C15178.8 (2)C18—O3—C17—C16178.90 (19)
C3—C4—C5—C60.5 (3)C19—C16—C17—O2126.1 (2)
C15—C4—C5—C6179.80 (19)C21—C16—C17—O27.6 (3)
C4—C5—C6—C12.2 (3)C15—C16—C17—O2116.2 (3)
C4—C5—C6—C7179.01 (19)C19—C16—C17—O354.6 (2)
O1—C1—C6—C5177.25 (19)C21—C16—C17—O3173.07 (18)
C2—C1—C6—C53.1 (3)C15—C16—C17—O363.1 (2)
O1—C1—C6—C71.5 (3)C20—O5—C19—O43.3 (4)
C2—C1—C6—C7178.14 (19)C20—O5—C19—C16177.3 (2)
C5—C6—C7—C8113.8 (2)C17—C16—C19—O4131.7 (3)
C1—C6—C7—C864.8 (2)C21—C16—C19—O4110.1 (3)
C5—C6—C7—C104.6 (3)C15—C16—C19—O413.6 (3)
C1—C6—C7—C10176.7 (2)C17—C16—C19—O548.9 (3)
C5—C6—C7—C9122.6 (2)C21—C16—C19—O569.3 (2)
C1—C6—C7—C958.7 (3)C15—C16—C19—O5167.05 (19)
C3—C2—C11—C146.2 (3)C17—C16—C21—C22169.91 (19)
C1—C2—C11—C14174.9 (2)C19—C16—C21—C2252.6 (3)
C3—C2—C11—C13113.3 (2)C15—C16—C21—C2268.5 (2)
C1—C2—C11—C1365.6 (3)C16—C21—C22—C23172.5 (2)
C3—C2—C11—C12124.8 (2)C21—C22—C23—C24171.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.822.232.832 (2)130
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC24H38O5
Mr406.54
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)10.854 (2), 10.341 (2), 22.899 (5)
β (°) 98.838 (4)
V3)2539.7 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.24 × 0.20 × 0.16
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.983, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
12778, 4475, 2448
Rint0.048
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.142, 1.01
No. of reflections4475
No. of parameters272
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.18

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.822.232.832 (2)130.1
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors greatefully acknowledge financial support from the Start Foundation (HY07B14) and the Youth Foundation (HY08Z13) by Yantai University and Yantai Science Development Project (2008302).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDenisov, E. T. (1991). Polym. Degrad. Stab. 34, 325-332.  CrossRef CAS Web of Science Google Scholar
First citationEggensperger, H., Franzen, V. & Kloss, W. (1974). US Patent No. 3 950 382.  Google Scholar
First citationEggensperger, H., Franzen, V. & Kloss, W. (1976). US Patent No. 3 856 846.  Google Scholar
First citationKlemchuk, P. P. & Gande, M. E. (1998). Polym. Degrad. Stab. 22, 241–274.  CrossRef Web of Science Google Scholar
First citationRasberger, M. (1980). US Patent No. 4 198 334.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamazaki, T. & Seguchi, T. (1997). J. Polym. Sci. A, 35, 2431–2439.  CrossRef CAS Google Scholar
First citationZeng, T. & Chen, L.-G. (2006). Acta Cryst. E62, o2914–o2915.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds