organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages o2279-o2280

N-(2-Chloro­phen­yl)-4-hydr­­oxy-2H-1,2-benzo­thia­zine-3-carboxamide 1,1-dioxide

aDepartment of Chemistry, University of Sargodha, Sargodha 40100, Pakistan, bInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, cInstitute of Biochemistry, University of Balochistan, Quetta, Pakistan, and dDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: waseeqsiddiqui@gmail.com

(Received 19 August 2009; accepted 25 August 2009; online 29 August 2009)

In the title compound, C15H11ClN2O4S, there are two independent mol­ecules in the asymmetric unit, in which the heterocyclic thia­zine rings in both mol­ecules adopt half-chair conformations. The conformations about the C—C and C—N bonds in the central C—C—N—C chain in both mol­ecules are all EZ. There are strong intra­molecular O—H⋯O and N—H⋯N hydrogen bonds resulting in graph-set patterns S(6) and S(5) for the oxo and amino rings, in addition to intra­molecular N—H⋯Cl inter­actions. In the crystal structure, mol­ecules are linked by inter­molecular O—H⋯O and N—H⋯O hydrogen bonds into chains along [100].

Related literature

For details of the synthesis, see: Siddiqui et al. (2008[Siddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4-o6.]). For background to benzothia­zine carboxamide derivatives as analgesic and anti-inflammatory agents, see: Myung et al. (2002[Myung, S. P., Eun, S. C., Myung, S. L. & Soon-kyoung, K. (2002). Bull. Korean Chem. Soc. 23, 1836-1838.]); Shin et al. (2000[Shin, H. S., Park, M. S. & Kwon, S. K. (2000). Yakhak Hoechi, 44, 272-278.]); Banerjee & Sarkar (2002[Banerjee, R. & Sarkar, M. (2002). J. Lumin. 99, 255-263.]). For related structures, see: Siddiqui et al. (2006[Siddiqui, W. A., Ahmad, S., Khan, I. U. & Malik, A. (2006). J. Chem. Soc. Pak. 28, 583-589.], 2007[Siddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Weaver, G. W. (2007). Synth. Commun. 37, 767-773.], 2008[Siddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4-o6.]). Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1-19.]). For hydrogen-bond patterns and graph sets, see: Bernstein et al. (1994[Bernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structute Correlation, Vol. 2, edited by H.-B. Bürgi & J. D. Dunitz, pp. 431-507. New York: VCH Publishers.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11ClN2O4S

  • Mr = 350.77

  • Monoclinic, P 21 /c

  • a = 10.077 (2) Å

  • b = 13.818 (3) Å

  • c = 21.426 (4) Å

  • β = 97.070 (13)°

  • V = 2960.8 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 200 K

  • 0.16 × 0.14 × 0.12 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.936, Tmax = 0.951

  • 12965 measured reflections

  • 6732 independent reflections

  • 5711 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.101

  • S = 1.05

  • 6732 reflections

  • 433 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O4 0.83 (3) 1.89 (3) 2.612 (2) 144 (3)
O3—H3O⋯O4i 0.83 (3) 2.33 (3) 2.854 (2) 122 (2)
O7—H7O⋯O8 0.89 (3) 1.81 (3) 2.607 (2) 147 (2)
O7—H7O⋯O8ii 0.89 (3) 2.46 (3) 2.964 (2) 116 (2)
N1—H1N⋯O8ii 0.87 (2) 2.06 (2) 2.911 (2) 164 (2)
N2—H2N⋯N1 0.82 (2) 2.24 (2) 2.700 (2) 116 (2)
N2—H2N⋯Cl1 0.82 (2) 2.47 (2) 2.930 (2) 116 (2)
N3—H3N⋯O4i 0.89 (2) 2.07 (2) 2.912 (2) 157 (2)
N4—H4N⋯N3 0.88 (2) 2.23 (2) 2.692 (2) 113 (2)
N4—H4N⋯Cl2 0.88 (2) 2.41 (2) 2.934 (2) 119 (2)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzothiazine carboxamide derivatives are important due to their role as analgesic and anti-inflammatory agents (Myung et al., 2002). These compounds belong to the oxicam class of non-steroidal anti-inflammatory drugs (NSAIDs) and are free from steroidal side-effects. However, these are ulcerogenic in behavior to varying degrees (Shin et al., 2000). Besides great therapeutic potential, these compounds are very motivating polyfunctional heterocycles by virtue of their dynamic structural features (Banerjee & Sarkar, 2002). The search for more effective anti-inflammatory agents has led us to the synthesis of new agents using readily available starting material following facile routes to yield several products (Siddiqui et al., 2006; Siddiqui et al., 2007). In continuation of this program, we required the title compound, (I), to act as a nucleus for a variety of biologically active 1,2-benzothiazine-1,1-dioxide derivatives. Herein, we report the crystal structure of the title compound.

There are two molecules and in the asymmetric unit of the title compound (Fig. 1); the molecules containing S1 and S2 are referred to as molecules A and B, respectively. The bond lengths and bond angles in both molecules of (I) are within normal ranges (Allen et al., 1987) and agree well with the corresponding bond lengths and bond angles of its N-methyl analogues (Siddiqui et al., 2008).

The heterocyclic thiazine rings in both molecules of (I) adopt half-chair conformations wherein S1 and N1 are displaced by 0.439 (4) and -0.291 (3) Å, respectively, from the plane defined by C5/C6/C7/C8 atoms in molecule A and S2 and N3 displaced by -0.463 (4) and 0.284 (4) Å, respectively, from the plane defined by C20/C21/C22/C23 atoms in the molecule B. The puckering parameters (Cremer & Pople, 1975) in molecules A and B are: Q = 0.477 (2) and 0.489 (2) Å, θ = 118.2 (2) and 117.7 (2)° and ϕ = 203.8 (3) and 202.9 (3)°, respectively. Similar conformations of the thiazine ring have been reported in the structures related to (I) (Siddiqui et al., 2008).

The conformations about the bonds C8–C9 and C9–N2 in molecule A and the bonds C23–C24 and C24–N4 in molecule B are all EZ, as determined by the strong intramolecular hydrogen bonds O3–H3O···O4 and N2–H2N···N1 in molecule A and O7–H7O···O8 and N4—H4N···N3 in molecule B resulting in graph set patterns S(6) and S(5) for the oxo and amino rings, respectively (Bernstein et al., 1994). The intramolecular hydrogen bonds of the types N–H···Cl and C–H···O are also present in both molecules which represent S(5) and S(6) motifs, respectively. The structure is stabilized by intermolecular hydrogen bonds of the types O–H···O and N–H···O (details of H-bonding geometry have been provided in Table 1 and depicted in Fig. 2). The central atoms N2/O4/C8/C9/C10 in molecule A and N4/O8/C23/C24/C25 in molecule B are individually planar with maximum deviations of atoms from the planes being 0.0086 (16) and 0.0127 (14) Å for C9 and N4, respectively.

Related literature top

For details of the synthesis, see: Siddiqui et al. (2008). For background to benzothiazine carboxamide derivatives as analgesic and anti-inflammatory agents, see: Myung et al. (2002); Shin et al. (2000); Banerjee & Sarkar (2002). For related structures, see: Siddiqui et al. (2006, 2007, 2008). Allen et al. (1987). For hydrogen-bond patterns and graph sets, see: Bernstein et al. (1994).

Experimental top

The method of preparation of the title compound has already been reported (Siddiqui et al., 2006; Siddiqui et al., 2007). Crystal of (I) suitable for X-ray crystallographic study were obtained by slow evaporation of its methanol solution at 313 K.

Refinement top

Though all the H atoms could be distinguished in the difference Fourier map the H-atoms were included at geometrically idealized positions and refined in riding-model approximation with the following constraints: C—H distances were set to 0.95 and 0.99 Å and N–H distance = 0.88 Å with Uiso(H) = 1.2Ueq(C/N). The final difference map was free of any chemically significant features.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) drawing of molecules A and B in the asymmetric unit of (I) with displacement ellipsoids plotted at 50% probability level; intramolecular interactions have been drawn with dashed lines.
[Figure 2] Fig. 2. Part of the crystal structure of (I) with hydrogen bonds shown as dashed lines.
N-(2-Chlorophenyl)-4-hydroxy-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide top
Crystal data top
C15H11ClN2O4SF(000) = 1440
Mr = 350.77Dx = 1.574 Mg m3
Monoclinic, P21/cMelting point = 491–492 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.077 (2) ÅCell parameters from 12965 reflections
b = 13.818 (3) Åθ = 2.8–27.5°
c = 21.426 (4) ŵ = 0.42 mm1
β = 97.070 (13)°T = 200 K
V = 2960.8 (10) Å3Block, colorless
Z = 80.16 × 0.14 × 0.12 mm
Data collection top
Nonius KappaCCD
diffractometer
6732 independent reflections
Radiation source: fine-focus sealed tube5711 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω and ϕ scansθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1313
Tmin = 0.936, Tmax = 0.951k = 1717
12965 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.032P)2 + 2.78P]
where P = (Fo2 + 2Fc2)/3
6732 reflections(Δ/σ)max = 0.001
433 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C15H11ClN2O4SV = 2960.8 (10) Å3
Mr = 350.77Z = 8
Monoclinic, P21/cMo Kα radiation
a = 10.077 (2) ŵ = 0.42 mm1
b = 13.818 (3) ÅT = 200 K
c = 21.426 (4) Å0.16 × 0.14 × 0.12 mm
β = 97.070 (13)°
Data collection top
Nonius KappaCCD
diffractometer
6732 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
5711 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.951Rint = 0.031
12965 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.33 e Å3
6732 reflectionsΔρmin = 0.39 e Å3
433 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.53894 (6)0.85003 (4)0.44704 (3)0.03897 (14)
Cl21.01898 (6)0.42658 (4)0.72988 (3)0.03888 (14)
S10.56632 (5)0.56337 (4)0.29991 (2)0.02616 (11)
S20.88023 (5)0.18009 (4)0.55861 (2)0.02725 (12)
O10.42471 (14)0.56870 (11)0.28299 (7)0.0345 (3)
O20.65098 (16)0.63267 (11)0.27504 (7)0.0376 (4)
O30.91579 (14)0.44058 (11)0.40450 (7)0.0306 (3)
H3O0.942 (3)0.475 (2)0.4358 (13)0.046*
O40.90157 (13)0.58281 (10)0.48371 (7)0.0299 (3)
O51.01519 (15)0.14585 (11)0.56604 (8)0.0394 (4)
O60.79336 (16)0.15325 (11)0.60351 (7)0.0361 (3)
O70.55675 (14)0.35003 (11)0.46691 (7)0.0316 (3)
H7O0.552 (3)0.405 (2)0.4885 (13)0.047*
O80.62498 (14)0.48103 (10)0.55245 (6)0.0285 (3)
N10.59401 (16)0.56899 (12)0.37671 (8)0.0246 (3)
H1N0.527 (2)0.5434 (17)0.3934 (11)0.030*
N20.72054 (17)0.68431 (12)0.46688 (8)0.0273 (4)
H2N0.653 (2)0.6924 (17)0.4419 (11)0.033*
N30.88570 (16)0.29841 (12)0.55636 (8)0.0256 (3)
H3N0.956 (2)0.3194 (17)0.5386 (11)0.031*
N40.81507 (17)0.45318 (12)0.62112 (8)0.0259 (3)
H4N0.881 (2)0.4116 (17)0.6302 (11)0.031*
C10.7962 (2)0.32702 (15)0.30815 (10)0.0331 (5)
H10.87370.30340.33330.040*
C20.7414 (2)0.27512 (17)0.25567 (11)0.0384 (5)
H20.78170.21610.24520.046*
C30.6289 (2)0.30844 (17)0.21865 (10)0.0380 (5)
H30.59120.27160.18340.046*
C40.5707 (2)0.39514 (16)0.23257 (10)0.0339 (5)
H40.49370.41850.20690.041*
C50.6264 (2)0.44760 (14)0.28448 (9)0.0255 (4)
C60.73784 (19)0.41364 (14)0.32404 (9)0.0248 (4)
C70.79336 (18)0.46879 (14)0.38005 (8)0.0227 (4)
C80.72638 (18)0.54292 (14)0.40405 (9)0.0235 (4)
C90.78939 (19)0.60425 (14)0.45506 (9)0.0235 (4)
C100.75144 (19)0.75747 (14)0.51204 (9)0.0256 (4)
C110.6697 (2)0.83982 (15)0.50801 (10)0.0298 (4)
C120.6902 (2)0.91379 (16)0.55174 (11)0.0391 (5)
H120.63310.96870.54860.047*
C130.7943 (3)0.90723 (17)0.60010 (11)0.0411 (5)
H130.80910.95750.63040.049*
C140.8764 (2)0.82715 (17)0.60399 (11)0.0391 (5)
H140.94870.82330.63690.047*
C150.8559 (2)0.75196 (16)0.56085 (10)0.0326 (5)
H150.91290.69700.56470.039*
C160.6273 (2)0.19136 (17)0.39968 (10)0.0375 (5)
H160.55810.23270.38110.045*
C170.6553 (3)0.10598 (19)0.36988 (11)0.0454 (6)
H170.60510.08940.33090.054*
C180.7550 (3)0.04472 (18)0.39617 (11)0.0430 (6)
H180.77380.01310.37490.052*
C190.8279 (2)0.06714 (16)0.45352 (11)0.0361 (5)
H190.89570.02470.47220.043*
C200.7998 (2)0.15269 (14)0.48302 (9)0.0266 (4)
C210.7005 (2)0.21657 (14)0.45671 (9)0.0259 (4)
C220.67419 (19)0.30822 (14)0.48818 (9)0.0244 (4)
C230.76116 (18)0.34608 (14)0.53550 (9)0.0233 (4)
C240.72824 (18)0.43260 (14)0.57014 (9)0.0239 (4)
C250.81369 (19)0.52796 (14)0.66608 (9)0.0260 (4)
C260.9062 (2)0.52284 (15)0.72014 (9)0.0300 (4)
C270.9109 (2)0.59287 (18)0.76655 (10)0.0398 (5)
H270.97470.58830.80300.048*
C280.8223 (3)0.66939 (18)0.75945 (11)0.0430 (6)
H280.82410.71740.79130.052*
C290.7307 (2)0.67612 (16)0.70588 (12)0.0403 (5)
H290.67050.72930.70110.048*
C300.7255 (2)0.60632 (15)0.65903 (10)0.0331 (5)
H300.66250.61180.62240.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0360 (3)0.0319 (3)0.0464 (3)0.0097 (2)0.0055 (2)0.0013 (2)
Cl20.0392 (3)0.0409 (3)0.0342 (3)0.0065 (2)0.0048 (2)0.0003 (2)
S10.0264 (2)0.0246 (2)0.0261 (2)0.00015 (19)0.00253 (18)0.00546 (19)
S20.0291 (3)0.0255 (2)0.0263 (2)0.00761 (19)0.00002 (18)0.00181 (19)
O10.0272 (8)0.0375 (8)0.0357 (8)0.0038 (6)0.0079 (6)0.0052 (7)
O20.0430 (9)0.0289 (8)0.0412 (8)0.0027 (7)0.0064 (7)0.0130 (7)
O30.0240 (7)0.0338 (8)0.0318 (7)0.0074 (6)0.0048 (6)0.0051 (6)
O40.0238 (7)0.0311 (8)0.0325 (7)0.0060 (6)0.0054 (6)0.0056 (6)
O50.0329 (8)0.0378 (9)0.0453 (9)0.0164 (7)0.0044 (7)0.0066 (7)
O60.0456 (9)0.0340 (8)0.0293 (7)0.0036 (7)0.0066 (6)0.0025 (6)
O70.0269 (7)0.0305 (8)0.0350 (8)0.0057 (6)0.0059 (6)0.0003 (6)
O80.0247 (7)0.0279 (7)0.0320 (7)0.0065 (6)0.0004 (5)0.0014 (6)
N10.0208 (8)0.0267 (8)0.0255 (8)0.0011 (6)0.0004 (6)0.0007 (7)
N20.0253 (9)0.0258 (8)0.0289 (8)0.0041 (7)0.0037 (7)0.0022 (7)
N30.0201 (8)0.0247 (8)0.0312 (8)0.0039 (6)0.0005 (6)0.0031 (7)
N40.0227 (8)0.0243 (8)0.0299 (8)0.0043 (7)0.0001 (6)0.0042 (7)
C10.0342 (11)0.0307 (11)0.0338 (11)0.0055 (9)0.0019 (8)0.0029 (9)
C20.0466 (14)0.0315 (11)0.0373 (11)0.0017 (10)0.0057 (10)0.0073 (9)
C30.0478 (14)0.0359 (12)0.0296 (10)0.0062 (10)0.0019 (9)0.0079 (9)
C40.0372 (12)0.0353 (11)0.0272 (10)0.0038 (9)0.0034 (8)0.0015 (9)
C50.0280 (10)0.0247 (9)0.0234 (9)0.0016 (8)0.0013 (7)0.0035 (7)
C60.0243 (9)0.0251 (9)0.0248 (9)0.0014 (7)0.0026 (7)0.0013 (7)
C70.0196 (9)0.0245 (9)0.0233 (9)0.0008 (7)0.0004 (7)0.0028 (7)
C80.0190 (9)0.0257 (9)0.0249 (9)0.0006 (7)0.0008 (7)0.0014 (7)
C90.0225 (9)0.0230 (9)0.0244 (9)0.0000 (7)0.0015 (7)0.0015 (7)
C100.0273 (10)0.0226 (9)0.0271 (9)0.0005 (8)0.0042 (7)0.0007 (8)
C110.0305 (11)0.0269 (10)0.0317 (10)0.0022 (8)0.0029 (8)0.0022 (8)
C120.0465 (14)0.0245 (10)0.0466 (13)0.0066 (9)0.0069 (10)0.0024 (9)
C130.0544 (15)0.0286 (11)0.0394 (12)0.0002 (10)0.0021 (10)0.0090 (10)
C140.0455 (13)0.0371 (12)0.0325 (11)0.0003 (10)0.0038 (9)0.0065 (9)
C150.0351 (11)0.0295 (11)0.0321 (10)0.0052 (9)0.0007 (8)0.0028 (9)
C160.0458 (13)0.0359 (12)0.0283 (10)0.0002 (10)0.0051 (9)0.0002 (9)
C170.0616 (16)0.0451 (14)0.0274 (11)0.0086 (12)0.0032 (10)0.0099 (10)
C180.0577 (16)0.0365 (12)0.0356 (12)0.0025 (11)0.0093 (11)0.0143 (10)
C190.0377 (12)0.0326 (11)0.0388 (12)0.0040 (9)0.0077 (9)0.0066 (9)
C200.0283 (10)0.0269 (10)0.0247 (9)0.0014 (8)0.0040 (7)0.0035 (8)
C210.0288 (10)0.0243 (9)0.0244 (9)0.0013 (8)0.0027 (7)0.0003 (8)
C220.0218 (9)0.0255 (9)0.0257 (9)0.0023 (7)0.0018 (7)0.0037 (8)
C230.0208 (9)0.0221 (9)0.0269 (9)0.0040 (7)0.0023 (7)0.0004 (7)
C240.0223 (9)0.0227 (9)0.0268 (9)0.0003 (7)0.0038 (7)0.0001 (7)
C250.0272 (10)0.0229 (9)0.0288 (9)0.0032 (8)0.0075 (7)0.0030 (8)
C260.0314 (11)0.0308 (10)0.0286 (10)0.0021 (9)0.0062 (8)0.0015 (8)
C270.0475 (14)0.0412 (13)0.0306 (11)0.0081 (11)0.0047 (9)0.0087 (10)
C280.0542 (15)0.0364 (12)0.0400 (12)0.0059 (11)0.0127 (11)0.0163 (10)
C290.0442 (14)0.0283 (11)0.0502 (13)0.0024 (10)0.0126 (11)0.0108 (10)
C300.0334 (11)0.0277 (10)0.0379 (11)0.0014 (9)0.0036 (9)0.0035 (9)
Geometric parameters (Å, º) top
Cl1—C111.744 (2)C6—C71.473 (3)
Cl2—C261.745 (2)C7—C81.362 (3)
S1—O21.4284 (15)C8—C91.465 (3)
S1—O11.4304 (15)C10—C151.391 (3)
S1—N11.6368 (17)C10—C111.401 (3)
S1—C51.756 (2)C11—C121.385 (3)
S2—O61.4271 (16)C12—C131.384 (3)
S2—O51.4302 (15)C12—H120.9500
S2—N31.6368 (18)C13—C141.378 (3)
S2—C201.761 (2)C13—H130.9500
O3—C71.338 (2)C14—C151.389 (3)
O3—H3O0.83 (3)C14—H140.9500
O4—C91.254 (2)C15—H150.9500
O7—C221.345 (2)C16—C171.387 (3)
O7—H7O0.89 (3)C16—C211.392 (3)
O8—C241.256 (2)C16—H160.9500
N1—C81.435 (2)C17—C181.380 (4)
N1—H1N0.87 (2)C17—H170.9500
N2—C91.346 (2)C18—C191.387 (3)
N2—C101.408 (3)C18—H180.9500
N2—H2N0.82 (2)C19—C201.386 (3)
N3—C231.439 (2)C19—H190.9500
N3—H3N0.89 (2)C20—C211.400 (3)
N4—C241.343 (2)C21—C221.474 (3)
N4—C251.414 (2)C22—C231.361 (3)
N4—H4N0.88 (2)C23—C241.467 (3)
C1—C21.389 (3)C25—C261.396 (3)
C1—C61.394 (3)C25—C301.397 (3)
C1—H10.9500C26—C271.384 (3)
C2—C31.380 (3)C27—C281.380 (4)
C2—H20.9500C27—H270.9500
C3—C41.382 (3)C28—C291.385 (4)
C3—H30.9500C28—H280.9500
C4—C51.387 (3)C29—C301.388 (3)
C4—H40.9500C29—H290.9500
C5—C61.402 (3)C30—H300.9500
O2—S1—O1119.61 (9)C10—C11—Cl1119.75 (16)
O2—S1—N1107.91 (9)C13—C12—C11119.6 (2)
O1—S1—N1107.08 (9)C13—C12—H12120.2
O2—S1—C5107.76 (10)C11—C12—H12120.2
O1—S1—C5110.81 (9)C14—C13—C12119.5 (2)
N1—S1—C5102.26 (9)C14—C13—H13120.3
O6—S2—O5119.52 (10)C12—C13—H13120.3
O6—S2—N3107.77 (9)C13—C14—C15121.4 (2)
O5—S2—N3107.38 (10)C13—C14—H14119.3
O6—S2—C20108.25 (10)C15—C14—H14119.3
O5—S2—C20110.78 (9)C14—C15—C10119.7 (2)
N3—S2—C20101.59 (9)C14—C15—H15120.1
C7—O3—H3O109.8 (19)C10—C15—H15120.1
C22—O7—H7O107.0 (17)C17—C16—C21120.1 (2)
C8—N1—S1115.68 (13)C17—C16—H16119.9
C8—N1—H1N117.0 (15)C21—C16—H16119.9
S1—N1—H1N110.4 (15)C18—C17—C16120.9 (2)
C9—N2—C10130.09 (17)C18—C17—H17119.6
C9—N2—H2N113.3 (17)C16—C17—H17119.6
C10—N2—H2N116.5 (17)C17—C18—C19120.3 (2)
C23—N3—S2115.79 (13)C17—C18—H18119.9
C23—N3—H3N115.3 (15)C19—C18—H18119.9
S2—N3—H3N111.6 (15)C20—C19—C18118.6 (2)
C24—N4—C25130.44 (17)C20—C19—H19120.7
C24—N4—H4N116.0 (15)C18—C19—H19120.7
C25—N4—H4N113.4 (15)C19—C20—C21122.03 (19)
C2—C1—C6120.2 (2)C19—C20—S2120.40 (16)
C2—C1—H1119.9C21—C20—S2117.38 (15)
C6—C1—H1119.9C16—C21—C20118.09 (19)
C3—C2—C1120.6 (2)C16—C21—C22120.74 (19)
C3—C2—H2119.7C20—C21—C22121.17 (17)
C1—C2—H2119.7O7—C22—C23123.13 (18)
C2—C3—C4120.3 (2)O7—C22—C21114.48 (17)
C2—C3—H3119.8C23—C22—C21122.39 (17)
C4—C3—H3119.8C22—C23—N3120.84 (17)
C3—C4—C5119.1 (2)C22—C23—C24121.70 (17)
C3—C4—H4120.5N3—C23—C24117.32 (16)
C5—C4—H4120.5O8—C24—N4124.42 (18)
C4—C5—C6121.64 (19)O8—C24—C23120.82 (17)
C4—C5—S1120.83 (16)N4—C24—C23114.76 (16)
C6—C5—S1117.38 (15)C26—C25—C30118.66 (19)
C1—C6—C5118.06 (18)C26—C25—N4117.81 (18)
C1—C6—C7120.92 (18)C30—C25—N4123.53 (19)
C5—C6—C7121.01 (17)C27—C26—C25121.4 (2)
O3—C7—C8123.19 (17)C27—C26—Cl2118.85 (17)
O3—C7—C6114.07 (16)C25—C26—Cl2119.75 (16)
C8—C7—C6122.73 (17)C28—C27—C26119.5 (2)
C7—C8—N1120.91 (17)C28—C27—H27120.3
C7—C8—C9121.83 (17)C26—C27—H27120.3
N1—C8—C9117.07 (16)C27—C28—C29119.9 (2)
O4—C9—N2123.81 (18)C27—C28—H28120.0
O4—C9—C8120.71 (17)C29—C28—H28120.0
N2—C9—C8115.45 (17)C28—C29—C30121.0 (2)
C15—C10—C11118.37 (18)C28—C29—H29119.5
C15—C10—N2124.07 (18)C30—C29—H29119.5
C11—C10—N2117.55 (18)C29—C30—C25119.6 (2)
C12—C11—C10121.4 (2)C29—C30—H30120.2
C12—C11—Cl1118.89 (17)C25—C30—H30120.2
O2—S1—N1—C863.66 (16)C13—C14—C15—C100.8 (4)
O1—S1—N1—C8166.37 (14)C11—C10—C15—C140.1 (3)
C5—S1—N1—C849.81 (16)N2—C10—C15—C14178.5 (2)
O6—S2—N3—C2363.06 (16)C21—C16—C17—C180.3 (4)
O5—S2—N3—C23166.96 (14)C16—C17—C18—C190.9 (4)
C20—S2—N3—C2350.61 (16)C17—C18—C19—C201.0 (4)
C6—C1—C2—C30.0 (3)C18—C19—C20—C210.1 (3)
C1—C2—C3—C41.4 (4)C18—C19—C20—S2175.04 (18)
C2—C3—C4—C50.5 (3)O6—S2—C20—C1997.28 (19)
C3—C4—C5—C61.7 (3)O5—S2—C20—C1935.6 (2)
C3—C4—C5—S1173.86 (16)N3—S2—C20—C19149.40 (18)
O2—S1—C5—C496.73 (18)O6—S2—C20—C2177.92 (18)
O1—S1—C5—C435.9 (2)O5—S2—C20—C21149.22 (16)
N1—S1—C5—C4149.69 (17)N3—S2—C20—C2135.39 (18)
O2—S1—C5—C678.99 (17)C17—C16—C21—C201.2 (3)
O1—S1—C5—C6148.42 (15)C17—C16—C21—C22178.5 (2)
N1—S1—C5—C634.59 (17)C19—C20—C21—C161.1 (3)
C2—C1—C6—C52.2 (3)S2—C20—C21—C16174.06 (16)
C2—C1—C6—C7179.0 (2)C19—C20—C21—C22178.64 (19)
C4—C5—C6—C13.0 (3)S2—C20—C21—C226.2 (3)
S1—C5—C6—C1172.66 (15)C16—C21—C22—O716.3 (3)
C4—C5—C6—C7178.18 (18)C20—C21—C22—O7163.96 (18)
S1—C5—C6—C76.1 (2)C16—C21—C22—C23164.7 (2)
C1—C6—C7—O313.8 (3)C20—C21—C22—C2315.0 (3)
C5—C6—C7—O3164.97 (17)O7—C22—C23—N3179.88 (17)
C1—C6—C7—C8167.18 (19)C21—C22—C23—N31.2 (3)
C5—C6—C7—C814.1 (3)O7—C22—C23—C244.5 (3)
O3—C7—C8—N1178.75 (17)C21—C22—C23—C24174.39 (17)
C6—C7—C8—N12.3 (3)S2—N3—C23—C2238.4 (2)
O3—C7—C8—C96.4 (3)S2—N3—C23—C24137.43 (15)
C6—C7—C8—C9172.57 (17)C25—N4—C24—O81.1 (3)
S1—N1—C8—C738.3 (2)C25—N4—C24—C23177.98 (18)
S1—N1—C8—C9136.81 (15)C22—C23—C24—O88.3 (3)
C10—N2—C9—O42.1 (3)N3—C23—C24—O8175.95 (17)
C10—N2—C9—C8179.71 (19)C22—C23—C24—N4170.83 (18)
C7—C8—C9—O49.2 (3)N3—C23—C24—N44.9 (3)
N1—C8—C9—O4175.77 (17)C24—N4—C25—C26169.9 (2)
C7—C8—C9—N2169.08 (18)C24—N4—C25—C3010.4 (3)
N1—C8—C9—N26.0 (3)C30—C25—C26—C270.6 (3)
C9—N2—C10—C1510.1 (3)N4—C25—C26—C27179.67 (19)
C9—N2—C10—C11171.3 (2)C30—C25—C26—Cl2179.24 (16)
C15—C10—C11—C120.9 (3)N4—C25—C26—Cl20.5 (3)
N2—C10—C11—C12177.8 (2)C25—C26—C27—C280.1 (3)
C15—C10—C11—Cl1179.31 (16)Cl2—C26—C27—C28179.99 (18)
N2—C10—C11—Cl12.0 (3)C26—C27—C28—C290.7 (4)
C10—C11—C12—C130.8 (3)C27—C28—C29—C300.5 (4)
Cl1—C11—C12—C13179.42 (19)C28—C29—C30—C250.2 (3)
C11—C12—C13—C140.1 (4)C26—C25—C30—C290.8 (3)
C12—C13—C14—C150.9 (4)N4—C25—C30—C29179.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O40.83 (3)1.89 (3)2.612 (2)144 (3)
O3—H3O···O4i0.83 (3)2.33 (3)2.854 (2)122 (2)
O7—H7O···O80.89 (3)1.81 (3)2.607 (2)147 (2)
O7—H7O···O8ii0.89 (3)2.46 (3)2.964 (2)116 (2)
N1—H1N···O8ii0.87 (2)2.06 (2)2.911 (2)164 (2)
N2—H2N···N10.82 (2)2.24 (2)2.700 (2)116 (2)
N2—H2N···Cl10.82 (2)2.47 (2)2.930 (2)116 (2)
N3—H3N···O4i0.89 (2)2.07 (2)2.912 (2)157 (2)
N4—H4N···N30.88 (2)2.23 (2)2.692 (2)113 (2)
N4—H4N···Cl20.88 (2)2.41 (2)2.934 (2)119 (2)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H11ClN2O4S
Mr350.77
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)10.077 (2), 13.818 (3), 21.426 (4)
β (°) 97.070 (13)
V3)2960.8 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.16 × 0.14 × 0.12
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.936, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
12965, 6732, 5711
Rint0.031
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.101, 1.05
No. of reflections6732
No. of parameters433
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.39

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O40.83 (3)1.89 (3)2.612 (2)144 (3)
O3—H3O···O4i0.83 (3)2.33 (3)2.854 (2)122 (2)
O7—H7O···O80.89 (3)1.81 (3)2.607 (2)147 (2)
O7—H7O···O8ii0.89 (3)2.46 (3)2.964 (2)116 (2)
N1—H1N···O8ii0.87 (2)2.06 (2)2.911 (2)164 (2)
N2—H2N···N10.82 (2)2.24 (2)2.700 (2)116 (2)
N2—H2N···Cl10.82 (2)2.47 (2)2.930 (2)116 (2)
N3—H3N···O4i0.89 (2)2.07 (2)2.912 (2)157 (2)
N4—H4N···N30.88 (2)2.23 (2)2.692 (2)113 (2)
N4—H4N···Cl20.88 (2)2.41 (2)2.934 (2)119 (2)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1–19.  CrossRef Google Scholar
First citationBanerjee, R. & Sarkar, M. (2002). J. Lumin. 99, 255–263.  Web of Science CrossRef CAS Google Scholar
First citationBernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structute Correlation, Vol. 2, edited by H.-B. Bürgi & J. D. Dunitz, pp. 431–507. New York: VCH Publishers.  Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMyung, S. P., Eun, S. C., Myung, S. L. & Soon-kyoung, K. (2002). Bull. Korean Chem. Soc. 23, 1836–1838.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShin, H. S., Park, M. S. & Kwon, S. K. (2000). Yakhak Hoechi, 44, 272–278.  CAS Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Khan, I. U. & Malik, A. (2006). J. Chem. Soc. Pak. 28, 583–589.  Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Weaver, G. W. (2007). Synth. Commun. 37, 767–773.  Web of Science CrossRef CAS Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4–o6.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages o2279-o2280
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds