metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages m1158-m1159

Aqua­{6,6′-dimeth­­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­­idyne)]diphenolato}nickel(II)

aSchool of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: lilianzhi1963@yahoo.com.cn

(Received 2 August 2009; accepted 27 August 2009; online 5 September 2009)

The title complex, [Ni(C18H18N2O4)(H2O)], lies on a mirror plane with the NiII ion coordinated by two N and two O atoms of a tetra­dentate Schiff base ligand and one water O atom in a distorted square-pyramidal enviroment. The –CH2–CH2– group of the ligand is disordered equally over two sites about the mirror plane. The dihedral angle between the mean planes of the two symmetry-related chelate rings is 37.16 (6)°. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link complex mol­ecules into one-dimensional chains along [100] and these chains are linked, in turn, by very weak inter­molecular C—H⋯O hydrogen bonds into a two-dimensional network.

Related literature

For background to Schiff base complexes, see: Akine et al. (2005[Akine, S., Taniguchi, T., Dong, W. K., Masubuchi, S. & Nabeshima, T. (2005). J. Org. Chem. 70, 1704-1711.]); Gamovski et al. (1993[Gamovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]); Garg & Kumar (2003[Garg, B. S. & Kumar, D. N. (2003). Spectrochim. Acta Part A, 59, 229-232.]); Tarafder et al. (2002[Tarafder, M. T. H., Khoo, T.-J., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2691-2698.]); Yang et al. (2000[Yang, Z.-Y., Yang, R.-D., Li, F.-S. & Yu, K.-B. (2000). Polyhedron, 19, 2599-2604.]). For a related crystal structure, see: Wang et al. (2007[Wang, L., Dong, J.-F., Li, L.-Z., Li, L.-W. & Wang, D.-Q. (2007). Acta Cryst. E63, m1059-m1060.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C18H18N2O4)(H2O)]

  • Mr = 403.07

  • Orthorhombic, P n m a

  • a = 9.2712 (11) Å

  • b = 24.763 (3) Å

  • c = 7.5185 (10) Å

  • V = 1726.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.16 mm−1

  • T = 298 K

  • 0.48 × 0.42 × 0.26 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.607, Tmax = 0.753

  • 7520 measured reflections

  • 1550 independent reflections

  • 1368 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.078

  • S = 1.19

  • 1550 reflections

  • 131 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—O1 1.9364 (16)
Ni1—N1 1.956 (2)
Ni1—O3 2.363 (2)
O1—Ni1—O1i 90.74 (10)
O1—Ni1—N1i 167.34 (9)
O1—Ni1—N1 92.11 (8)
N1i—Ni1—N1 82.55 (14)
O1—Ni1—O3 97.90 (7)
N1—Ni1—O3 93.93 (9)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1ii 0.85 2.29 3.007 (3) 142
O3—H3⋯O2ii 0.85 2.18 2.9313 (19) 147
C10—H10B⋯O1iii 0.97 2.53 3.236 (7) 130
C9—H9B⋯O3ii 0.97 2.66 3.322 (7) 126
Symmetry codes: (ii) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base complexes play an important role in the stereochemical models of transition metal coordination chemistry with their easy preparation, diversition and structural variation (Gamovski et al.,1993). They also have been intensively investigated owing to their strong coordination capability and diverse biological activities, such as antibacterial and antitumor activities (Yang et al., 2000; Tarafder et al., 2002). Therefore, synthesis of new shiff base Nickel(II) complexes is still the aim of many recent investigations (Garg & Kumar, 2003; Akine et al., 2005). As part of a series of crystal structure studies (Wang et al., 2007), we report here the synthesis and crystal structure of the title compound.

In the molecular structure (Fig. 1), The NiII ion is five coordinated by two N and two O atoms of a new tetradentate Schiff base ligand and one O atom of water molecule in a distorted square-pyramidal configuration. Two nitrogen atoms and two oxygen atoms of Schiff base occupy the basal plane, and the O atom of the coordinated water molecule is in the apical position. The dihedral angle between the planes of the two symmetry realted Ni/N/C/C/C/O chelate rings is 37.16 (6)°. The molecule lies on a mirror plane and the -CH2-CH2- group of the ligand is disordered equally over two sites about the mirror plane.

In the crystal structure, intermolecular O—H···O hydrogen bonds link complex molecules into one-dimensional chains along [100] and these chains are linked, in turn, by very weak intermolecular C—H···O hydrogen bonds into a two-dimensional network (Fig. 2).

Related literature top

For background to Schiff base complexes, see: Akine et al. (2005); Gamovski et al. (1993); Garg & Kumar (2003); Tarafder et al. (2002); Yang et al. (2000). For a related crystal structure, see: Wang et al. (2007).

Experimental top

1,2-ethylenediamine (1 mmol, 60.10 mg) was dissolved in hot methanol (10 ml) and added dropwise to a methanol solution (3 ml) of 3-methoxysalicylaldehyde (1 mmol, 152.14 mg). The mixture was then stirred at 323 K for 2 h. Subsequently, an aqueous solution (2 ml) of nickel chloride (1 mmol, 237.69 mg) was added dropwise and stirred for another 5 h. The solution was left at room temperature for 15 days, whereupon green block crystals suitable for X-ray diffraction were obtained.

Refinement top

All H atoms were placed in geometrically calculated positions (C—H = 0.93–0.97 Å, O—H = 0.85 Å) and allowed to ride on their respective parent atoms, with Uiso(H) = 1.2Ueq(C), 1.5Ueq(methyl C) or 1.2Ueq(O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. The disorder is not shown [symmetry code: (i) x, -y+3/2, z].
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines. Only H atoms involved in hydrogen bonds are shown.
Aqua{6,6'-dimethoxy-2,2'-[ethane-1,2- diylbis(nitrilomethylidyne)]diphenolato}nickel(II) top
Crystal data top
[Ni(C18H18N2O4)(H2O)]F(000) = 840
Mr = 403.07Dx = 1.551 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 3742 reflections
a = 9.2712 (11) Åθ = 2.5–27.9°
b = 24.763 (3) ŵ = 1.16 mm1
c = 7.5185 (10) ÅT = 298 K
V = 1726.1 (4) Å3Block, green
Z = 40.48 × 0.42 × 0.26 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1550 independent reflections
Radiation source: fine-focus sealed tube1368 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.607, Tmax = 0.753k = 2927
7520 measured reflectionsl = 58
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0321P)2 + 0.8008P]
where P = (Fo2 + 2Fc2)/3
1550 reflections(Δ/σ)max = 0.001
131 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Ni(C18H18N2O4)(H2O)]V = 1726.1 (4) Å3
Mr = 403.07Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 9.2712 (11) ŵ = 1.16 mm1
b = 24.763 (3) ÅT = 298 K
c = 7.5185 (10) Å0.48 × 0.42 × 0.26 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1550 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1368 reflections with I > 2σ(I)
Tmin = 0.607, Tmax = 0.753Rint = 0.029
7520 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.19Δρmax = 0.16 e Å3
1550 reflectionsΔρmin = 0.53 e Å3
131 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.42518 (4)0.75000.52345 (5)0.03327 (16)
N10.5687 (2)0.69791 (9)0.4405 (3)0.0577 (6)
O10.28010 (18)0.69435 (6)0.5505 (2)0.0442 (4)
O20.04869 (19)0.63591 (7)0.5874 (3)0.0602 (5)
O30.5119 (2)0.75000.8191 (3)0.0477 (6)
H30.55680.72240.85690.057*
C10.5493 (3)0.64757 (11)0.4103 (4)0.0545 (7)
H10.62730.62820.36570.065*
C20.4180 (3)0.61846 (10)0.4391 (3)0.0451 (6)
C30.2919 (3)0.64343 (9)0.5057 (3)0.0402 (6)
C40.1686 (3)0.60950 (10)0.5265 (3)0.0460 (6)
C50.1735 (3)0.55512 (11)0.4884 (4)0.0587 (8)
H50.09190.53390.50550.070*
C60.2999 (4)0.53165 (11)0.4244 (4)0.0675 (9)
H60.30250.49500.39840.081*
C70.4188 (3)0.56250 (11)0.4003 (4)0.0592 (7)
H70.50280.54660.35740.071*
C80.0821 (3)0.60639 (13)0.5993 (4)0.0647 (8)
H8A0.10420.59080.48550.097*
H8B0.15870.63020.63440.097*
H8C0.07190.57820.68590.097*
C90.7178 (7)0.7189 (3)0.4502 (9)0.0473 (14)0.50
H9A0.78670.69570.39010.057*0.50
H9B0.74790.72460.57230.057*0.50
C100.6943 (7)0.7720 (3)0.3518 (9)0.0544 (17)0.50
H10A0.78100.79390.35740.065*0.50
H10B0.67260.76500.22780.065*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0290 (2)0.0330 (2)0.0378 (3)0.0000.00299 (18)0.000
N10.0405 (12)0.0549 (14)0.0778 (16)0.0030 (10)0.0128 (12)0.0225 (12)
O10.0373 (9)0.0355 (9)0.0597 (11)0.0010 (7)0.0046 (8)0.0087 (8)
O20.0454 (11)0.0488 (11)0.0864 (14)0.0098 (9)0.0128 (10)0.0104 (10)
O30.0477 (14)0.0425 (13)0.0530 (15)0.0000.0102 (12)0.000
C10.0427 (15)0.0547 (17)0.0660 (18)0.0056 (13)0.0070 (13)0.0214 (14)
C20.0498 (15)0.0426 (14)0.0428 (14)0.0031 (12)0.0001 (12)0.0074 (11)
C30.0437 (14)0.0385 (13)0.0386 (13)0.0008 (11)0.0034 (11)0.0022 (10)
C40.0468 (15)0.0422 (14)0.0492 (15)0.0034 (11)0.0006 (12)0.0051 (11)
C50.0609 (18)0.0424 (15)0.073 (2)0.0111 (13)0.0024 (15)0.0039 (13)
C60.081 (2)0.0335 (14)0.088 (2)0.0001 (15)0.0074 (19)0.0114 (14)
C70.0620 (18)0.0454 (15)0.0703 (19)0.0081 (14)0.0064 (15)0.0127 (14)
C80.0517 (17)0.075 (2)0.0676 (19)0.0234 (15)0.0137 (15)0.0146 (16)
C90.035 (3)0.051 (3)0.056 (4)0.005 (2)0.000 (3)0.012 (3)
C100.036 (3)0.062 (4)0.065 (4)0.001 (3)0.011 (3)0.010 (3)
Geometric parameters (Å, º) top
Ni1—O11.9364 (16)C5—C61.393 (4)
Ni1—O1i1.9364 (16)C5—H50.9300
Ni1—N1i1.956 (2)C6—C71.353 (4)
Ni1—N11.956 (2)C6—H60.9300
Ni1—O32.363 (2)C7—H70.9300
N1—C11.280 (3)C8—H8A0.9600
N1—C91.479 (7)C8—H8B0.9600
N1—C10i1.535 (7)C8—H8C0.9600
O1—C31.310 (3)C9—C10i0.803 (7)
O2—C41.369 (3)C9—C101.525 (7)
O2—C81.419 (3)C9—C9i1.541 (13)
O3—H30.8501C9—H9A0.9700
C1—C21.431 (4)C9—H9B0.9700
C1—H10.9300C10—C9i0.803 (7)
C2—C31.414 (3)C10—C10i1.092 (13)
C2—C71.416 (4)C10—N1i1.535 (7)
C3—C41.428 (3)C10—H10A0.9700
C4—C51.377 (4)C10—H10B0.9700
O1—Ni1—O1i90.74 (10)C6—C7—H7119.3
O1—Ni1—N1i167.34 (9)C2—C7—H7119.3
O1i—Ni1—N1i92.11 (8)O2—C8—H8A109.5
O1—Ni1—N192.11 (8)O2—C8—H8B109.5
O1i—Ni1—N1167.34 (9)H8A—C8—H8B109.5
N1i—Ni1—N182.55 (14)O2—C8—H8C109.5
O1—Ni1—O397.90 (7)H8A—C8—H8C109.5
O1i—Ni1—O397.90 (7)H8B—C8—H8C109.5
N1i—Ni1—O393.93 (9)C10i—C9—N178.4 (8)
N1—Ni1—O393.93 (9)C10i—C9—C1043.4 (8)
C1—N1—C9118.9 (3)N1—C9—C1098.4 (5)
C1—N1—C10i120.1 (3)C10i—C9—C9i73.8 (8)
C9—N1—C10i30.8 (3)N1—C9—C9i110.6 (3)
C1—N1—Ni1127.10 (19)C10—C9—C9i30.4 (3)
C9—N1—Ni1112.9 (3)C10i—C9—H9A85.1
C10i—N1—Ni1109.6 (3)N1—C9—H9A112.6
C3—O1—Ni1126.86 (15)C10—C9—H9A112.2
C4—O2—C8118.0 (2)C9i—C9—H9A126.2
Ni1—O3—H3118.8C10i—C9—H9B155.4
N1—C1—C2125.7 (2)N1—C9—H9B111.5
N1—C1—H1117.2C10—C9—H9B112.0
C2—C1—H1117.2C9i—C9—H9B81.6
C3—C2—C7120.3 (2)H9A—C9—H9B109.8
C3—C2—C1122.4 (2)C9i—C10—C10i106.2 (8)
C7—C2—C1117.2 (2)C9i—C10—C975.9 (9)
O1—C3—C2125.5 (2)C10i—C10—C930.4 (3)
O1—C3—C4118.1 (2)C9i—C10—N1i70.7 (8)
C2—C3—C4116.3 (2)C10i—C10—N1i119.0 (3)
O2—C4—C5124.3 (2)C9—C10—N1i108.4 (5)
O2—C4—C3113.9 (2)C9i—C10—H10A65.1
C5—C4—C3121.7 (3)C10i—C10—H10A124.0
C4—C5—C6120.5 (3)C9—C10—H10A110.1
C4—C5—H5119.8N1i—C10—H10A109.8
C6—C5—H5119.8C9i—C10—H10B172.9
C7—C6—C5119.7 (3)C10i—C10—H10B79.6
C7—C6—H6120.1C9—C10—H10B109.9
C5—C6—H6120.1N1i—C10—H10B110.4
C6—C7—C2121.4 (3)H10A—C10—H10B108.4
O1—Ni1—N1—C14.5 (3)C8—O2—C4—C55.1 (4)
O1i—Ni1—N1—C198.3 (4)C8—O2—C4—C3175.3 (2)
N1i—Ni1—N1—C1163.9 (2)O1—C3—C4—O22.0 (3)
O3—Ni1—N1—C1102.6 (3)C2—C3—C4—O2178.5 (2)
O1—Ni1—N1—C9162.9 (3)O1—C3—C4—C5177.7 (2)
O1i—Ni1—N1—C994.2 (5)C2—C3—C4—C51.8 (4)
N1i—Ni1—N1—C928.6 (4)O2—C4—C5—C6179.1 (3)
O3—Ni1—N1—C964.8 (3)C3—C4—C5—C61.3 (4)
O1—Ni1—N1—C10i164.1 (3)C4—C5—C6—C70.3 (5)
O1i—Ni1—N1—C10i61.3 (5)C5—C6—C7—C20.1 (5)
N1i—Ni1—N1—C10i4.3 (3)C3—C2—C7—C60.5 (5)
O3—Ni1—N1—C10i97.8 (3)C1—C2—C7—C6179.6 (3)
O1i—Ni1—O1—C3162.41 (15)C1—N1—C9—C10i101.3 (8)
N1i—Ni1—O1—C359.4 (4)Ni1—N1—C9—C10i90.2 (8)
N1—Ni1—O1—C35.2 (2)C1—N1—C9—C10140.0 (4)
O3—Ni1—O1—C399.51 (19)C10i—N1—C9—C1038.8 (7)
C9—N1—C1—C2163.8 (4)Ni1—N1—C9—C1051.4 (4)
C10i—N1—C1—C2160.6 (4)C1—N1—C9—C9i168.8 (2)
Ni1—N1—C1—C22.9 (5)C10i—N1—C9—C9i67.6 (8)
N1—C1—C2—C30.2 (5)Ni1—N1—C9—C9i22.6 (3)
N1—C1—C2—C7178.9 (3)C10i—C9—C10—C9i180.000 (4)
Ni1—O1—C3—C24.5 (3)N1—C9—C10—C9i116.8 (6)
Ni1—O1—C3—C4176.08 (17)N1—C9—C10—C10i63.2 (6)
C7—C2—C3—O1178.0 (3)C9i—C9—C10—C10i180.000 (10)
C1—C2—C3—O11.0 (4)C10i—C9—C10—N1i116.3 (6)
C7—C2—C3—C41.4 (4)N1—C9—C10—N1i53.1 (4)
C1—C2—C3—C4179.5 (2)C9i—C9—C10—N1i63.7 (6)
Symmetry code: (i) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1ii0.852.293.007 (3)142
O3—H3···O2ii0.852.182.9313 (19)147
C10—H10B···O1iii0.972.533.236 (7)130
C9—H9B···O3ii0.972.663.322 (7)126
Symmetry codes: (ii) x+1/2, y, z+3/2; (iii) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C18H18N2O4)(H2O)]
Mr403.07
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)298
a, b, c (Å)9.2712 (11), 24.763 (3), 7.5185 (10)
V3)1726.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.16
Crystal size (mm)0.48 × 0.42 × 0.26
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.607, 0.753
No. of measured, independent and
observed [I > 2σ(I)] reflections
7520, 1550, 1368
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.078, 1.19
No. of reflections1550
No. of parameters131
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.53

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ni1—O11.9364 (16)Ni1—N11.956 (2)
Ni1—O1i1.9364 (16)Ni1—O32.363 (2)
Ni1—N1i1.956 (2)
O1—Ni1—O1i90.74 (10)N1i—Ni1—N182.55 (14)
O1—Ni1—N1i167.34 (9)O1—Ni1—O397.90 (7)
O1—Ni1—N192.11 (8)N1—Ni1—O393.93 (9)
Symmetry code: (i) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1ii0.852.293.007 (3)142.0
O3—H3···O2ii0.852.182.9313 (19)146.8
C10—H10B···O1iii0.972.533.236 (7)129.9
C9—H9B···O3ii0.972.663.322 (7)126.2
Symmetry codes: (ii) x+1/2, y, z+3/2; (iii) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

The authors thank the Natural Science Foundation of Shandong Province (No. Y2004B02) for a research grant.

References

First citationAkine, S., Taniguchi, T., Dong, W. K., Masubuchi, S. & Nabeshima, T. (2005). J. Org. Chem. 70, 1704–1711.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGamovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  CrossRef Web of Science Google Scholar
First citationGarg, B. S. & Kumar, D. N. (2003). Spectrochim. Acta Part A, 59, 229–232.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTarafder, M. T. H., Khoo, T.-J., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2691–2698.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, L., Dong, J.-F., Li, L.-Z., Li, L.-W. & Wang, D.-Q. (2007). Acta Cryst. E63, m1059–m1060.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, Z.-Y., Yang, R.-D., Li, F.-S. & Yu, K.-B. (2000). Polyhedron, 19, 2599–2604.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 10| October 2009| Pages m1158-m1159
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds