organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1,3-Benzo­thia­zol-2-ylimino­meth­yl)-2-naphthol

aChemistry Department, Faculty of Science, King Abdul Aziz University, Jeddah, Saudi Arabia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 5 March 2009; accepted 9 March 2009; online 14 March 2009)

In the title mol­ecule, C18H12N2OS, the dihedral angle between the two fused-ring systems is 7.2 (1)°. The hydr­oxy group forms an intra­molecular hydrogen bond with the imino group.

Related literature

For the crystal structures of other Schiff bases derived by condensing benzthia­zolyl-2-amine with aldehydes/ketones, see: Büyükgüngör et al. (2004[Büyükgüngör, O., Çalışkan, N., Davran, C. & Batı, H. (2004). Acta Cryst. E60, o1414-o1416.]); Cannon et al. (2001[Cannon, D., Quesada, A., Quiroga, J., Insuasty, B., Abonia, R., Hernández, P., Cobo, J., Nogueras, M., Sánchez, A. & Low, J. N. (2001). Acta Cryst. E57, o180-o181.]); Guo et al. (2002[Guo, Y.-S., Yu, Z.-H. & Jin, X.-L. (2002). Acta Chim. Sin. 60, 228-233.]); Saraçoğlu et al. (2004[Saraçoğlu, H., Çalışkan, N., Davran, C., Soylu, S., Batı, H. & Büyükgüngör, O. (2004). Acta Cryst. E60, o2090-o2092.]).

[Scheme 1]

Experimental

Crystal data
  • C18H12N2OS

  • Mr = 304.36

  • Monoclinic, P 21 /n

  • a = 9.6398 (2) Å

  • b = 14.9687 (4) Å

  • c = 9.6646 (2) Å

  • β = 101.323 (2)°

  • V = 1367.41 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 123 K

  • 0.25 × 0.20 × 0.05 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.943, Tmax = 0.988

  • 12442 measured reflections

  • 3139 independent reflections

  • 2396 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.122

  • S = 1.02

  • 3139 reflections

  • 203 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.84 (1) 1.82 (2) 2.573 (2) 148 (3)

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

The molecular structure of the title compound is shown in Fig. 1.

Related literature top

For the crystal structures of other Schiff bases derived by condensing benzthiazolyl-2-amine with aldehydes/ketones, see: Büyükgüngör et al. (2004); Cannon et al. (2001); Guo et al. (2002); Saraçoğlu et al. (2004).

Experimental top

2-Aminobenzothiazole (4.0 g, 26.6 mmol) dissolved in ethanol (25 ml) was added to 2-hydroxybenzaldehyde (4.58 g, 26.6 mmol) dissolved in ethanol (25 ml). The mixture was heated for another hour. The solid that separated from the reaction mixture was isolated and recrystallized from ethanol.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) fixed at 1.2U(C).

The hydroxy H-atom was located in a difference Fouier map, and was refined with a distance restraint of O–H 0.84±0.01 Å; its isotropic displacement parameter was refined.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellisoid plot (Barbour, 2001) of C18H12N2OS; probability levels are set at 70% and H-atoms are drawn as spheres of arbitrary radius. The dashed line denotes the hydrogen bond.
2-(1,3-Benzothiazol-2-yliminomethyl)-2-naphthol top
Crystal data top
C18H12N2OSF(000) = 632
Mr = 304.36Dx = 1.481 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2677 reflections
a = 9.6398 (2) Åθ = 2.5–28.1°
b = 14.9687 (4) ŵ = 0.24 mm1
c = 9.6646 (2) ÅT = 123 K
β = 101.323 (2)°Irregular block, orange
V = 1367.41 (5) Å30.25 × 0.20 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
3139 independent reflections
Radiation source: fine-focus sealed tube2396 reflections with I > 2˘I)
Graphite monochromatorRint = 0.051
ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.943, Tmax = 0.988k = 1919
12442 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0612P)2 + 0.543P]
where P = (Fo2 + 2Fc2)/3
3139 reflections(Δ/σ)max = 0.001
203 parametersΔρmax = 0.53 e Å3
1 restraintΔρmin = 0.23 e Å3
Crystal data top
C18H12N2OSV = 1367.41 (5) Å3
Mr = 304.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.6398 (2) ŵ = 0.24 mm1
b = 14.9687 (4) ÅT = 123 K
c = 9.6646 (2) Å0.25 × 0.20 × 0.05 mm
β = 101.323 (2)°
Data collection top
Bruker SMART APEX
diffractometer
3139 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2396 reflections with I > 2˘I)
Tmin = 0.943, Tmax = 0.988Rint = 0.051
12442 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.53 e Å3
3139 reflectionsΔρmin = 0.23 e Å3
203 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.62414 (5)0.57067 (3)0.89471 (5)0.02326 (15)
O10.28598 (15)0.35583 (9)0.77536 (15)0.0261 (3)
H10.348 (2)0.3964 (14)0.782 (3)0.057 (9)*
N10.41330 (16)0.49518 (10)0.70645 (17)0.0214 (4)
N20.53279 (16)0.62326 (11)0.63631 (17)0.0218 (3)
C10.19789 (19)0.36352 (12)0.6498 (2)0.0207 (4)
C20.0903 (2)0.29840 (13)0.6173 (2)0.0236 (4)
H20.08310.25240.68330.028*
C30.0028 (2)0.30118 (13)0.4924 (2)0.0227 (4)
H30.07330.25620.47150.027*
C40.00270 (19)0.37013 (12)0.3918 (2)0.0205 (4)
C50.0966 (2)0.37268 (13)0.2635 (2)0.0242 (4)
H50.16670.32740.24340.029*
C60.0935 (2)0.43936 (14)0.1678 (2)0.0257 (4)
H60.16130.44070.08190.031*
C70.0109 (2)0.50600 (13)0.1975 (2)0.0246 (4)
H70.01310.55260.13120.030*
C80.1093 (2)0.50481 (13)0.3206 (2)0.0219 (4)
H80.17900.55040.33800.026*
C90.10912 (19)0.43680 (12)0.42252 (19)0.0189 (4)
C100.20982 (19)0.43225 (12)0.5546 (2)0.0190 (4)
C110.3197 (2)0.49736 (13)0.5896 (2)0.0210 (4)
H110.32450.54430.52450.025*
C120.51359 (19)0.56351 (12)0.7280 (2)0.0205 (4)
C130.64047 (19)0.68133 (12)0.6951 (2)0.0199 (4)
C140.6849 (2)0.75430 (13)0.6250 (2)0.0230 (4)
H140.64140.76750.53030.028*
C150.7934 (2)0.80674 (13)0.6964 (2)0.0251 (4)
H150.82520.85620.64950.030*
C160.8576 (2)0.78866 (13)0.8360 (2)0.0256 (4)
H160.93200.82600.88260.031*
C170.8139 (2)0.71684 (13)0.9077 (2)0.0245 (4)
H170.85700.70461.00290.029*
C180.7052 (2)0.66319 (13)0.8359 (2)0.0214 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0230 (3)0.0244 (3)0.0214 (3)0.00141 (19)0.00199 (18)0.00103 (19)
O10.0272 (7)0.0245 (8)0.0252 (7)0.0027 (6)0.0017 (6)0.0047 (6)
N10.0198 (8)0.0208 (8)0.0237 (8)0.0009 (6)0.0049 (6)0.0016 (7)
N20.0210 (8)0.0221 (8)0.0220 (8)0.0008 (6)0.0034 (6)0.0001 (7)
C10.0204 (9)0.0202 (9)0.0224 (10)0.0019 (7)0.0065 (7)0.0006 (7)
C20.0261 (10)0.0194 (9)0.0276 (10)0.0001 (8)0.0112 (8)0.0027 (8)
C30.0211 (9)0.0188 (9)0.0301 (11)0.0030 (7)0.0098 (8)0.0036 (8)
C40.0197 (9)0.0193 (9)0.0241 (10)0.0010 (7)0.0081 (7)0.0031 (8)
C50.0198 (9)0.0231 (10)0.0295 (11)0.0015 (8)0.0045 (8)0.0066 (8)
C60.0240 (10)0.0278 (11)0.0235 (10)0.0055 (8)0.0006 (8)0.0047 (8)
C70.0280 (10)0.0238 (10)0.0230 (10)0.0048 (8)0.0074 (8)0.0007 (8)
C80.0227 (9)0.0194 (9)0.0249 (10)0.0009 (7)0.0078 (8)0.0013 (8)
C90.0185 (9)0.0178 (9)0.0216 (9)0.0025 (7)0.0067 (7)0.0019 (7)
C100.0183 (9)0.0176 (9)0.0223 (9)0.0018 (7)0.0072 (7)0.0015 (7)
C110.0218 (9)0.0192 (9)0.0236 (10)0.0007 (7)0.0082 (7)0.0005 (8)
C120.0191 (9)0.0213 (9)0.0210 (9)0.0024 (7)0.0035 (7)0.0024 (7)
C130.0181 (9)0.0186 (9)0.0236 (10)0.0031 (7)0.0053 (7)0.0030 (7)
C140.0229 (9)0.0213 (10)0.0247 (10)0.0020 (8)0.0050 (8)0.0003 (8)
C150.0256 (10)0.0201 (10)0.0311 (11)0.0003 (8)0.0093 (8)0.0006 (8)
C160.0214 (9)0.0235 (10)0.0319 (11)0.0011 (8)0.0057 (8)0.0065 (8)
C170.0223 (10)0.0280 (11)0.0229 (10)0.0028 (8)0.0037 (8)0.0041 (8)
C180.0204 (9)0.0220 (9)0.0227 (10)0.0028 (8)0.0067 (7)0.0026 (8)
Geometric parameters (Å, º) top
S1—C181.740 (2)C6—H60.9500
S1—C121.7519 (19)C7—C81.368 (3)
O1—C11.343 (2)C7—H70.9500
O1—H10.843 (10)C8—C91.417 (3)
N1—C111.300 (2)C8—H80.9500
N1—C121.395 (2)C9—C101.445 (3)
N2—C121.298 (2)C10—C111.430 (3)
N2—C131.387 (2)C11—H110.9500
C1—C101.400 (3)C13—C141.396 (3)
C1—C21.413 (3)C13—C181.408 (3)
C2—C31.356 (3)C14—C151.380 (3)
C2—H20.9500C14—H140.9500
C3—C41.426 (3)C15—C161.397 (3)
C3—H30.9500C15—H150.9500
C4—C51.410 (3)C16—C171.388 (3)
C4—C91.420 (3)C16—H160.9500
C5—C61.365 (3)C17—C181.392 (3)
C5—H50.9500C17—H170.9500
C6—C71.406 (3)
C18—S1—C1288.83 (9)C8—C9—C10123.76 (17)
C1—O1—H1109 (2)C4—C9—C10118.92 (17)
C11—N1—C12116.99 (16)C1—C10—C11119.86 (17)
C12—N2—C13110.36 (16)C1—C10—C9119.17 (17)
O1—C1—C10122.56 (17)C11—C10—C9120.96 (17)
O1—C1—C2116.63 (17)N1—C11—C10122.94 (18)
C10—C1—C2120.82 (18)N1—C11—H11118.5
C3—C2—C1120.34 (18)C10—C11—H11118.5
C3—C2—H2119.8N2—C12—N1126.25 (17)
C1—C2—H2119.8N2—C12—S1116.32 (14)
C2—C3—C4121.51 (18)N1—C12—S1117.44 (14)
C2—C3—H3119.2N2—C13—C14124.58 (17)
C4—C3—H3119.2N2—C13—C18115.42 (17)
C5—C4—C9120.17 (18)C14—C13—C18120.00 (17)
C5—C4—C3120.62 (17)C15—C14—C13118.50 (18)
C9—C4—C3119.21 (18)C15—C14—H14120.8
C6—C5—C4120.93 (18)C13—C14—H14120.7
C6—C5—H5119.5C14—C15—C16121.43 (19)
C4—C5—H5119.5C14—C15—H15119.3
C5—C6—C7119.37 (19)C16—C15—H15119.3
C5—C6—H6120.3C17—C16—C15120.81 (19)
C7—C6—H6120.3C17—C16—H16119.6
C8—C7—C6120.97 (19)C15—C16—H16119.6
C8—C7—H7119.5C16—C17—C18118.07 (19)
C6—C7—H7119.5C16—C17—H17121.0
C7—C8—C9121.24 (18)C18—C17—H17121.0
C7—C8—H8119.4C17—C18—C13121.18 (18)
C9—C8—H8119.4C17—C18—S1129.72 (16)
C8—C9—C4117.32 (17)C13—C18—S1109.07 (14)
O1—C1—C2—C3179.77 (17)C12—N1—C11—C10179.24 (16)
C10—C1—C2—C30.5 (3)C1—C10—C11—N11.6 (3)
C1—C2—C3—C41.3 (3)C9—C10—C11—N1179.23 (17)
C2—C3—C4—C5178.90 (18)C13—N2—C12—N1179.17 (17)
C2—C3—C4—C90.7 (3)C13—N2—C12—S10.3 (2)
C9—C4—C5—C60.8 (3)C11—N1—C12—N28.4 (3)
C3—C4—C5—C6178.85 (18)C11—N1—C12—S1171.09 (14)
C4—C5—C6—C70.4 (3)C18—S1—C12—N20.17 (15)
C5—C6—C7—C80.2 (3)C18—S1—C12—N1179.72 (15)
C6—C7—C8—C90.3 (3)C12—N2—C13—C14178.50 (17)
C7—C8—C9—C40.1 (3)C12—N2—C13—C180.8 (2)
C7—C8—C9—C10179.70 (17)N2—C13—C14—C15179.92 (17)
C5—C4—C9—C80.6 (3)C18—C13—C14—C150.6 (3)
C3—C4—C9—C8179.03 (16)C13—C14—C15—C160.6 (3)
C5—C4—C9—C10179.76 (16)C14—C15—C16—C170.1 (3)
C3—C4—C9—C100.6 (3)C15—C16—C17—C180.4 (3)
O1—C1—C10—C110.4 (3)C16—C17—C18—C130.4 (3)
C2—C1—C10—C11179.91 (17)C16—C17—C18—S1178.59 (15)
O1—C1—C10—C9178.88 (16)N2—C13—C18—C17179.46 (17)
C2—C1—C10—C90.9 (3)C14—C13—C18—C170.1 (3)
C8—C9—C10—C1178.24 (17)N2—C13—C18—S10.9 (2)
C4—C9—C10—C11.4 (3)C14—C13—C18—S1178.42 (14)
C8—C9—C10—C111.0 (3)C12—S1—C18—C17178.94 (19)
C4—C9—C10—C11179.39 (17)C12—S1—C18—C130.60 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.84 (1)1.82 (2)2.573 (2)148 (3)

Experimental details

Crystal data
Chemical formulaC18H12N2OS
Mr304.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)123
a, b, c (Å)9.6398 (2), 14.9687 (4), 9.6646 (2)
β (°) 101.323 (2)
V3)1367.41 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.25 × 0.20 × 0.05
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.943, 0.988
No. of measured, independent and
observed [I > 2˘I)] reflections
12442, 3139, 2396
Rint0.051
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.122, 1.02
No. of reflections3139
No. of parameters203
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.23

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.84 (1)1.82 (2)2.573 (2)148 (3)
 

Acknowledgements

We thank King Abdul Aziz University (grant No. 171/428) and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBüyükgüngör, O., Çalışkan, N., Davran, C. & Batı, H. (2004). Acta Cryst. E60, o1414–o1416.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCannon, D., Quesada, A., Quiroga, J., Insuasty, B., Abonia, R., Hernández, P., Cobo, J., Nogueras, M., Sánchez, A. & Low, J. N. (2001). Acta Cryst. E57, o180–o181.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGuo, Y.-S., Yu, Z.-H. & Jin, X.-L. (2002). Acta Chim. Sin. 60, 228–233.  CAS Google Scholar
First citationSaraçoğlu, H., Çalışkan, N., Davran, C., Soylu, S., Batı, H. & Büyükgüngör, O. (2004). Acta Cryst. E60, o2090–o2092.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds