organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-Methyl-N-(2,3,4-trimeth­­oxy-6-methyl­benzyl­­idene)aniline

aDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: wcywfu@163.com

(Received 1 February 2009; accepted 4 February 2009; online 11 February 2009)

In the title mol­ecule, C18H21NO3, the dihedral angle between the two benzene rings is 42.2 (2)° and it adopts a trans configuration with respect to the central C=N bond.

Related literature

For the structure of the related compound (E)-N-(2,3,4-trimeth­oxy-6-methyl­benzyl­idene)naphthalen-1-amine, see: Wang (2009[Wang, C.-Y. (2009). Acta Cryst. E65, o56.]).

[Scheme 1]

Experimental

Crystal data
  • C18H21NO3

  • Mr = 299.36

  • Monoclinic, P 21 /c

  • a = 7.7239 (9) Å

  • b = 27.287 (2) Å

  • c = 8.4128 (11) Å

  • β = 111.529 (2)°

  • V = 1649.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 (2) K

  • 0.45 × 0.43 × 0.40 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.964, Tmax = 0.968

  • 8258 measured reflections

  • 2899 independent reflections

  • 1475 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.150

  • S = 1.02

  • 2899 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The preparation, properties and applications of Schiff bases are important in the development of coordination chemistry. In this paper, the structure of the title compound, (I), is reported. The molecular structure of (I) is illustrated in Fig. 1. The bond lengths and angles of the title compound agree with those in the related compound (E)-N-(2,3,4-trimethoxy-6-methylbenzylidene)naphthalen-1-amine (Wang, 2009), as representative example. The dihedral angle between between the two phenyl rings is 137.8 (2) °. The molecule adopts a trans configuration about the central C=N functional bond. In the crystal structure, molecules pack in a 'herring-bone' fashion along the b axis direction (see fig. 2).

Related literature top

For the structure of the related compound (E)-N-(2,3,4-trimethoxy-6-methylbenzylidene)naphthalen-1-amine, see: Wang (2009).

Experimental top

A mixture of p-toluidine (0.535 g, 5 mmol) and 2,3,4-trimethoxy-6-methylbenzaldehyde (1.04 g, 5 mmol) in ethyl alcohol (20 ml) was stirred magnetically for 2 h at reflux temperature. After cooling the precipitate was filtered and dried. The crude product of 20 mg was dissolved in a 20 ml of ethylalcohol by heating on a magnetic stirrer. The solution was filtered to remove impurities, and then left to crystallize at room temperature. After a week single crystals suitable for the X-ray crystal structure determination were obtained.

Refinement top

The H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5 Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), drawn with 30% probability ellipsoids.
[Figure 2] Fig. 2. Part of the crystal structure of (I).
(E)-4-Methyl-N-(2,3,4-trimethoxy-6-methylbenzylidene)aniline top
Crystal data top
C18H21NO3F(000) = 640
Mr = 299.36Dx = 1.206 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1422 reflections
a = 7.7239 (9) Åθ = 2.7–20.0°
b = 27.287 (2) ŵ = 0.08 mm1
c = 8.4128 (11) ÅT = 298 K
β = 111.529 (2)°Block, brown
V = 1649.4 (3) Å30.45 × 0.43 × 0.40 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2899 independent reflections
Radiation source: fine-focus sealed tube1475 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ϕ and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.964, Tmax = 0.968k = 3032
8258 measured reflectionsl = 95
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0477P)2 + 0.6503P]
where P = (Fo2 + 2Fc2)/3
2899 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C18H21NO3V = 1649.4 (3) Å3
Mr = 299.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7239 (9) ŵ = 0.08 mm1
b = 27.287 (2) ÅT = 298 K
c = 8.4128 (11) Å0.45 × 0.43 × 0.40 mm
β = 111.529 (2)°
Data collection top
Bruker SMART CCD
diffractometer
2899 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1475 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.968Rint = 0.055
8258 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.02Δρmax = 0.19 e Å3
2899 reflectionsΔρmin = 0.18 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.9325 (3)0.15463 (10)0.3804 (4)0.0607 (7)
O10.9997 (3)0.09590 (7)0.0287 (2)0.0536 (6)
O20.7379 (3)0.04533 (8)0.2839 (3)0.0628 (6)
O30.3972 (3)0.02973 (8)0.2724 (3)0.0640 (6)
C10.9412 (4)0.13395 (11)0.2492 (4)0.0520 (8)
H11.05490.13510.23480.062*
C20.7898 (4)0.10855 (10)0.1187 (4)0.0448 (7)
C30.8252 (4)0.08912 (10)0.0207 (4)0.0451 (7)
C40.6955 (4)0.06230 (10)0.1484 (4)0.0466 (7)
C50.5201 (4)0.05545 (10)0.1404 (4)0.0481 (8)
C60.4808 (4)0.07464 (11)0.0057 (4)0.0506 (8)
H60.36320.06980.00190.061*
C70.6114 (4)0.10096 (10)0.1238 (4)0.0512 (8)
C81.0063 (5)0.13609 (12)0.1356 (5)0.0742 (11)
H8A0.92140.13020.25020.111*
H8B1.13030.13930.13500.111*
H8C0.97170.16570.09330.111*
C90.7579 (5)0.00633 (14)0.2860 (5)0.0790 (11)
H9A0.84930.01690.17930.119*
H9B0.79730.01540.37770.119*
H9C0.64080.02170.30230.119*
C100.2178 (4)0.01986 (14)0.2686 (4)0.0737 (11)
H10A0.23090.00480.16170.111*
H10B0.15150.00180.36070.111*
H10C0.14990.05000.28080.111*
C110.5545 (5)0.11989 (13)0.2664 (5)0.0774 (11)
H11A0.42510.11310.24020.116*
H11B0.57490.15460.27790.116*
H11C0.62750.10400.37150.116*
C121.0977 (4)0.17428 (11)0.5029 (4)0.0501 (8)
C131.2692 (4)0.15170 (11)0.5499 (4)0.0566 (9)
H131.28160.12280.49650.068*
C141.4218 (4)0.17184 (12)0.6755 (4)0.0623 (9)
H141.53630.15620.70450.075*
C151.4108 (4)0.21420 (12)0.7595 (4)0.0596 (9)
C161.2394 (5)0.23596 (12)0.7127 (4)0.0678 (10)
H161.22720.26470.76680.081*
C171.0854 (5)0.21645 (12)0.5881 (4)0.0653 (10)
H170.97080.23190.56070.078*
C181.5798 (5)0.23466 (14)0.8988 (5)0.0950 (13)
H18A1.66650.24650.85010.143*
H18B1.63750.20940.98060.143*
H18C1.54310.26120.95460.143*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0504 (16)0.0693 (19)0.0638 (19)0.0076 (14)0.0229 (15)0.0111 (15)
O10.0471 (12)0.0616 (14)0.0591 (14)0.0011 (10)0.0279 (10)0.0078 (11)
O20.0767 (15)0.0720 (16)0.0501 (14)0.0086 (12)0.0355 (12)0.0009 (11)
O30.0516 (13)0.0881 (17)0.0500 (14)0.0170 (12)0.0159 (11)0.0071 (12)
C10.0486 (19)0.0546 (19)0.061 (2)0.0062 (15)0.0293 (17)0.0001 (17)
C20.0424 (17)0.0433 (17)0.0525 (19)0.0031 (14)0.0220 (15)0.0009 (14)
C30.0414 (17)0.0468 (18)0.0517 (19)0.0009 (14)0.0225 (15)0.0067 (15)
C40.0497 (19)0.0529 (19)0.0403 (18)0.0016 (15)0.0200 (15)0.0060 (15)
C50.0437 (18)0.0512 (19)0.0470 (19)0.0039 (15)0.0140 (15)0.0036 (15)
C60.0449 (18)0.0546 (19)0.056 (2)0.0047 (15)0.0224 (16)0.0009 (16)
C70.0529 (19)0.0495 (19)0.059 (2)0.0036 (15)0.0292 (17)0.0030 (16)
C80.068 (2)0.075 (2)0.095 (3)0.0027 (19)0.048 (2)0.023 (2)
C90.090 (3)0.081 (3)0.082 (3)0.008 (2)0.051 (2)0.016 (2)
C100.053 (2)0.099 (3)0.063 (2)0.0190 (19)0.0128 (18)0.003 (2)
C110.067 (2)0.088 (3)0.095 (3)0.021 (2)0.052 (2)0.033 (2)
C120.0501 (19)0.0525 (19)0.0501 (19)0.0024 (16)0.0212 (16)0.0005 (16)
C130.062 (2)0.0442 (19)0.067 (2)0.0038 (17)0.0269 (19)0.0008 (16)
C140.049 (2)0.059 (2)0.072 (2)0.0071 (17)0.0150 (18)0.0057 (19)
C150.059 (2)0.051 (2)0.061 (2)0.0044 (17)0.0131 (18)0.0014 (17)
C160.068 (2)0.056 (2)0.075 (2)0.0058 (19)0.021 (2)0.0140 (18)
C170.052 (2)0.066 (2)0.076 (3)0.0088 (17)0.0201 (19)0.0124 (19)
C180.077 (3)0.087 (3)0.091 (3)0.009 (2)0.005 (2)0.012 (2)
Geometric parameters (Å, º) top
N1—C11.263 (3)C9—H9B0.9600
N1—C121.419 (4)C9—H9C0.9600
O1—C31.386 (3)C10—H10A0.9600
O1—C81.431 (3)C10—H10B0.9600
O2—C41.377 (3)C10—H10C0.9600
O2—C91.419 (4)C11—H11A0.9600
O3—C51.361 (3)C11—H11B0.9600
O3—C101.423 (3)C11—H11C0.9600
C1—C21.453 (4)C12—C171.377 (4)
C1—H10.9300C12—C131.380 (4)
C2—C31.402 (4)C13—C141.376 (4)
C2—C71.409 (4)C13—H130.9300
C3—C41.380 (4)C14—C151.373 (4)
C4—C51.393 (4)C14—H140.9300
C5—C61.380 (4)C15—C161.370 (4)
C6—C71.384 (4)C15—C181.505 (4)
C6—H60.9300C16—C171.372 (4)
C7—C111.512 (4)C16—H160.9300
C8—H8A0.9600C17—H170.9300
C8—H8B0.9600C18—H18A0.9600
C8—H8C0.9600C18—H18B0.9600
C9—H9A0.9600C18—H18C0.9600
C1—N1—C12118.8 (3)O3—C10—H10A109.5
C3—O1—C8113.1 (2)O3—C10—H10B109.5
C4—O2—C9113.8 (2)H10A—C10—H10B109.5
C5—O3—C10118.2 (2)O3—C10—H10C109.5
N1—C1—C2125.9 (3)H10A—C10—H10C109.5
N1—C1—H1117.0H10B—C10—H10C109.5
C2—C1—H1117.0C7—C11—H11A109.5
C3—C2—C7117.6 (3)C7—C11—H11B109.5
C3—C2—C1117.5 (3)H11A—C11—H11B109.5
C7—C2—C1124.9 (3)C7—C11—H11C109.5
C4—C3—O1118.3 (3)H11A—C11—H11C109.5
C4—C3—C2122.9 (3)H11B—C11—H11C109.5
O1—C3—C2118.8 (3)C17—C12—C13117.8 (3)
O2—C4—C3119.9 (3)C17—C12—N1118.6 (3)
O2—C4—C5121.7 (3)C13—C12—N1123.5 (3)
C3—C4—C5118.3 (3)C14—C13—C12120.2 (3)
O3—C5—C6124.6 (3)C14—C13—H13119.9
O3—C5—C4115.4 (3)C12—C13—H13119.9
C6—C5—C4120.0 (3)C15—C14—C13122.3 (3)
C5—C6—C7121.8 (3)C15—C14—H14118.9
C5—C6—H6119.1C13—C14—H14118.9
C7—C6—H6119.1C16—C15—C14116.9 (3)
C6—C7—C2119.4 (3)C16—C15—C18122.2 (3)
C6—C7—C11117.5 (3)C14—C15—C18120.9 (3)
C2—C7—C11123.1 (3)C15—C16—C17121.8 (3)
O1—C8—H8A109.5C15—C16—H16119.1
O1—C8—H8B109.5C17—C16—H16119.1
H8A—C8—H8B109.5C16—C17—C12121.0 (3)
O1—C8—H8C109.5C16—C17—H17119.5
H8A—C8—H8C109.5C12—C17—H17119.5
H8B—C8—H8C109.5C15—C18—H18A109.5
O2—C9—H9A109.5C15—C18—H18B109.5
O2—C9—H9B109.5H18A—C18—H18B109.5
H9A—C9—H9B109.5C15—C18—H18C109.5
O2—C9—H9C109.5H18A—C18—H18C109.5
H9A—C9—H9C109.5H18B—C18—H18C109.5
H9B—C9—H9C109.5
C12—N1—C1—C2174.7 (3)O3—C5—C6—C7179.3 (3)
N1—C1—C2—C3178.1 (3)C4—C5—C6—C70.1 (4)
N1—C1—C2—C73.5 (5)C5—C6—C7—C20.1 (4)
C8—O1—C3—C483.9 (3)C5—C6—C7—C11179.3 (3)
C8—O1—C3—C297.8 (3)C3—C2—C7—C60.7 (4)
C7—C2—C3—C41.6 (4)C1—C2—C7—C6177.7 (3)
C1—C2—C3—C4176.9 (3)C3—C2—C7—C11180.0 (3)
C7—C2—C3—O1179.8 (2)C1—C2—C7—C111.6 (5)
C1—C2—C3—O11.3 (4)C1—N1—C12—C17145.4 (3)
C9—O2—C4—C3110.9 (3)C1—N1—C12—C1339.0 (4)
C9—O2—C4—C572.6 (3)C17—C12—C13—C141.3 (5)
O1—C3—C4—O23.4 (4)N1—C12—C13—C14177.0 (3)
C2—C3—C4—O2178.4 (3)C12—C13—C14—C150.6 (5)
O1—C3—C4—C5180.0 (2)C13—C14—C15—C160.0 (5)
C2—C3—C4—C51.8 (4)C13—C14—C15—C18178.7 (3)
C10—O3—C5—C62.9 (4)C14—C15—C16—C170.2 (5)
C10—O3—C5—C4177.7 (3)C18—C15—C16—C17178.5 (3)
O2—C4—C5—O31.9 (4)C15—C16—C17—C120.9 (5)
C3—C4—C5—O3178.4 (2)C13—C12—C17—C161.5 (5)
O2—C4—C5—C6177.5 (3)N1—C12—C17—C16177.4 (3)
C3—C4—C5—C61.0 (4)

Experimental details

Crystal data
Chemical formulaC18H21NO3
Mr299.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.7239 (9), 27.287 (2), 8.4128 (11)
β (°) 111.529 (2)
V3)1649.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.45 × 0.43 × 0.40
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.964, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
8258, 2899, 1475
Rint0.055
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.150, 1.02
No. of reflections2899
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.18

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, C.-Y. (2009). Acta Cryst. E65, o56.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds