organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of 2,4,6-tri­cyclo­hexyl-1,3,5-trioxane

aDepartamento de Química, Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, bDepartamento de Química, Facultad de Ciencias, Universidad del Quindio, Armenia, Colombia, cDepartamento de Química, Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, and dDepartmento de Química, Universidade Federal de São Carlos, São Carlos, SP, Brazil
*Correspondence e-mail: rodimo26@yahoo.es

(Received 27 May 2008; accepted 13 June 2008; online 19 June 2008)

The title compound, C21H36O3, was obtained by treatment of cyclo­hexa­necarbaldehyde with catalytic toluene-4-sulfonic acid monohydrate. This redetermination results in a crystal structure with significantly higher precision than the original determination [Diana & Ganis (1963[Diana, G. & Ganis, P. (1963). Atti Accad. Naz. Lincei, 35, 80-88.]). Atti Accad. Naz. Lincei, 35, 80–88]. The asymmetric unit contains one sixth of the mol­ecule, the formula unit being generated by crystallographic 3m symmetry. In the mol­ecule, the trioxane and cyclo­hexane rings are in chair conformations. In the crystal structure, mol­ecules are linked by weak C—H⋯O hydrogen bonds along the [001] direction.

Related literature

For related literature, see: Augé & Gil (2002[Augé, J. & Gil, J. (2002). Tetrahedron Lett. 43, 7919-7920.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]); Ho & Lee (2001[Ho, Y. S. & Lee, C. F. (2001). Tetrahedron, 57, 6181-6187.]); Iulek & Zukerman-Schpector (1997[Iulek, J. & Zukerman-Schpector, J. (1997). Química Nova, 20, 433-434.]); Johnson et al. (1996[Johnson, A. P., Luke, R. W. A., Singh, G. & Boa, A. N. (1996). J. Chem. Soc. Perkin Trans. 1, pp. 907-913.]); Nardelli (1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]); Diana & Ganis (1963[Diana, G. & Ganis, P. (1963). Atti Accad. Naz. Lincei, 35, 80-88.]).

[Scheme 1]

Experimental

Crystal data
  • C21H36O3

  • Mr = 336.50

  • Hexagonal, P 63 c m

  • a = 11.8542 (3) Å

  • c = 7.9908 (3) Å

  • V = 972.44 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 K

  • 0.21 × 0.18 × 0.08 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 1372 measured reflections

  • 439 independent reflections

  • 382 reflections with I > 2σ(I)

  • Rint = 0.026

  • 2 standard reflections frequency: 150 min intensity decay: 0.1%

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.096

  • S = 1.18

  • 439 reflections

  • 43 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 0.98 2.56 3.534 (3) 176
Symmetry code: (i) [y, -x+y+1, z+{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CAD-4 SDP (Frenz, 1978[Frenz, B. A. (1978). The Enraf-Nonius CAD-4 SDP - a Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution. Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld & G. C. Bassi, pp. 64-71. Delft University Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PARST95 (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Trioxanes have many applications in different fields such as insecticides, flavouring materials and stabilizers in colour photography (Augé, & Gil, 2002). Several methods have been reported for the synthesis of 1,3,5-trioxanes from aldehydes (Johnson et al., 1996). The synthesis of a wide variety of 1,3,5-trioxanes using acetonyltriphenylphosphonium bromide as catalyst are reported (Ho & Lee, 2001). In a new efficient method, using trimethylsilyl chloride as a catalyst of aldehydes, 1,3,5 trioxanes were formed (Augé & Gil, 2002). As an alternative way of obtaining trioxane compounds, the use in the reaction of toluene-4-sulfonic acid monohydrate (PTSA) as a catalizator, is proposed in the present work. The title compound, C21H36O3, 2,4,6-trialkyl-1,3,5-trioxane, (I) was obtained by treatment of cyclohexanecarbaldehyde with catalytic PTSA (Fig. 3). The molecular structure of (I), showing the atomic numbering scheme, can be seen in Fig. 1. The crystal structure of (I) is stabilized by weak intermolecular C—H···O hydrogen-bonds (Nardelli, 1995) (Table 1). The atom C1 in the molecule at (x, y, z) acts as a hydrogen-bond donor to atom O1 in the molecule at (y, -x + y+1, 1/2 + z), so forming C(3) chains (Etter, 1990) along [001] direction (Fig. 2). The conformation of trioxane ring is of the pure chair, as indicated by the Cremer & Pople puckering parameters (Iulek & Zukerman-Schpector, 1997), being q2 = 0.00 Å, q3 = -0.565 Å, ϕ2 = 0°, τ = 180°, and a puckering amplitude of QT = 0.565 Å and the conformation of the cyclohexane ring is of the chair and its puckering parameters are: q2 = 0.0359 Å, q3 = -0.5743 Å, ϕ2 = 180°, τ = 176.4°, and a puckering amplitude of QT = 0.575 Å.

Related literature top

For related literature, see: Augé & Gil (2002); Etter (1990); Ho & Lee (2001); Iulek & Zukerman-Schpector (1997); Johnson et al. (1996); Nardelli (1995); Diana & Ganis (1963).

Experimental top

The title compound was prepared by adding 2.0 g of cyclohexanecarbaldehyde (17.8 mmol) to benzene (20 ml). To this solution 0.200 g of PTSA.H2O (1.05 mmol) was added. The mixture was refluxed for 6 h and then it was cooled overnight in the refrigerator. The solid formed, a trimeric complex, was separated and dried. 0.20 g of PTSA.H2O (1.05 mmol) was added to an acetone–water (3:1) solution (20 ml). To this solution 0.500 g of trimeric complex (2.23 mmol) was added. The mixture was stirred for 5 minutes and then the solid was filtered and dried. The product was recrystalized from ethyl ether. This last compound was identified as (I) on the basis of its spectra and X-ray analysis. cis,cis-2,4,6-tricyclohexyl-1,3,5-trioxane. Colourless crystals; yield 76%; mp 435 (1) K. IR (KBr) 2923, 2851, 1161, 1124, 1068 cm-1; δH (300 MHz; CDCl3; Me4Si) 0.99–1.21 (15H, m, equatorial Hs in cyclohexyl groups), 1.56–183 (18H, m, axial Hs in cyclohexyl groups), and 4.47 (3H, d) [lit., 1.01–1.24 (15H, m), 1.58–1.83 (18H, m) and 4.49 (3H, d)]; δC (75 MHz; CDCl3; Me4Si) 25.655, 26.466, 27.038, 41.865 and 104.292 (lit., 25.6, 26.5, 27.0, 41.9 and 104.3); m/z(EI) 336 (M+, 2%), 95 (100).

Crystals for X-ray diffraction were grown from a solution of the title compound in diethyl ether.

Refinement top

In the absence of significant anomalous dispersion effects the Friedel pairs were merged before refinement. All H-atoms were located in difference maps and then treated as riding atoms [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CAD-4 SDP (Frenz, 1978); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PARST95 (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) plot of the (I) compound, with the atomic labelling scheme (for the asymmetric unit). The shapes of the ellipsoids correspond to 50% probability contours of atomic displacement and, for the sake of clarity, H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. View normal to (001) of the crystal structure of (I). [Symmetry code: (i) -x+y+1, y, z-1/2]. Weak C—H..O hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. Reaction scheme
2,4,6-tricyclohexyl-1,3,5-trioxane top
Crystal data top
C21H36O3Dx = 1.149 Mg m3
Mr = 336.50Melting point: 435(1) K
Hexagonal, P63cmMo Kα radiation, λ = 0.71073 Å
Hall symbol: P 6c -2Cell parameters from 25 reflections
a = 11.8542 (3) Åθ = 3.0–25.0°
c = 7.9908 (3) ŵ = 0.07 mm1
V = 972.44 (5) Å3T = 298 K
Z = 2Plate, colourless
F(000) = 3720.21 × 0.18 × 0.08 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.026
Radiation source: fine-focus sealed tubeθmax = 27.5°, θmin = 3.4°
Graphite monochromatorh = 115
ω/2θ scansk = 150
1372 measured reflectionsl = 1010
439 independent reflections2 standard reflections every 150 min
382 reflections with I > 2σ(I) intensity decay: 0.1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.1112P]
where P = (Fo2 + 2Fc2)/3
439 reflections(Δ/σ)max < 0.001
43 parametersΔρmax = 0.17 e Å3
1 restraintΔρmin = 0.17 e Å3
Crystal data top
C21H36O3Z = 2
Mr = 336.50Mo Kα radiation
Hexagonal, P63cmµ = 0.07 mm1
a = 11.8542 (3) ÅT = 298 K
c = 7.9908 (3) Å0.21 × 0.18 × 0.08 mm
V = 972.44 (5) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.026
1372 measured reflections2 standard reflections every 150 min
439 independent reflections intensity decay: 0.1%
382 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0351 restraint
wR(F2) = 0.096H-atom parameters constrained
S = 1.18Δρmax = 0.17 e Å3
439 reflectionsΔρmin = 0.17 e Å3
43 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.00000.88684 (11)0.6920 (2)0.0148 (4)
C10.88552 (16)0.88552 (16)0.7497 (3)0.0145 (6)
H10.88190.88190.87220.017*
C20.76794 (17)0.76794 (17)0.6771 (3)0.0162 (5)
H20.77430.77430.55490.019*
C30.76350 (16)0.64144 (15)0.7298 (2)0.0208 (5)
H310.84300.64400.69450.025*
H320.75820.63390.85080.025*
C40.64605 (15)0.52264 (14)0.6519 (3)0.0257 (5)
H410.65590.52580.53120.031*
H420.64300.44380.69170.031*
C50.51833 (18)0.51833 (18)0.6966 (3)0.0233 (6)
H510.50200.50200.81550.028*
H520.44710.44710.63690.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0117 (7)0.0142 (6)0.0176 (11)0.0058 (4)0.0000.0021 (5)
C10.0153 (9)0.0153 (9)0.0142 (14)0.0087 (8)0.0007 (7)0.0007 (7)
C20.0147 (8)0.0147 (8)0.0189 (14)0.0072 (8)0.0010 (8)0.0010 (8)
C30.0171 (7)0.0166 (8)0.0300 (13)0.0095 (6)0.0013 (7)0.0025 (7)
C40.0186 (8)0.0143 (7)0.0428 (14)0.0072 (6)0.0014 (8)0.0001 (8)
C50.0164 (8)0.0164 (8)0.0315 (17)0.0041 (9)0.0041 (9)0.0041 (9)
Geometric parameters (Å, º) top
O1—C11.426 (3)C3—H320.9700
C1—C21.509 (3)C4—C51.531 (2)
C1—H10.9800C4—H410.9700
C2—C31.5328 (18)C4—H420.9700
C2—H20.9800C5—H510.9700
C3—C41.532 (2)C5—H520.9700
C3—H310.9700
C1i—O1—C1111.0 (2)C4—C3—H32109.4
O1ii—C1—O1109.12 (19)C2—C3—H32109.4
O1ii—C1—C2108.68 (14)H31—C3—H32108.0
O1—C1—C2108.68 (13)C5—C4—C3111.40 (16)
O1ii—C1—H1110.1C5—C4—H41109.3
O1—C1—H1110.1C3—C4—H41109.3
C2—C1—H1110.1C5—C4—H42109.3
C1—C2—C3111.23 (12)C3—C4—H42109.3
C1—C2—H2108.2H41—C4—H42108.0
C3—C2—H2108.2C4—C5—H51109.3
C4—C3—C2111.01 (14)C4—C5—H52109.3
C4—C3—H31109.4H51—C5—H52108.0
C2—C3—H31109.4
C1i—O1—C1—O1ii58.5 (3)O1—C1—C2—C359.4 (2)
C1i—O1—C1—C2176.87 (11)C1—C2—C3—C4178.44 (18)
O1ii—C1—C2—C3178.04 (17)C2—C3—C4—C556.1 (2)
Symmetry codes: (i) y+2, xy+1, z; (ii) x+y+1, x+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1iii0.982.563.534 (3)176
Symmetry code: (iii) y, x+y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H36O3
Mr336.50
Crystal system, space groupHexagonal, P63cm
Temperature (K)298
a, c (Å)11.8542 (3), 7.9908 (3)
V3)972.44 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.21 × 0.18 × 0.08
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1372, 439, 382
Rint0.026
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.096, 1.18
No. of reflections439
No. of parameters43
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.17

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CAD-4 SDP (Frenz, 1978), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PARST95 (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.982.563.534 (3)176.2
Symmetry code: (i) y, x+y+1, z+1/2.
 

Acknowledgements

RMF is grateful to the Instituto de Química Física Rocasolano, CSIC, Spain, for the use of a licence for the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). RMF and LMJ acknowledge the Universidad del Valle, Colombia, and ER acknowledges the Universidad del Quindío, Colombia, for partial financial support. RMF acknowledges Dr A. Kennedy for collecting the diffraction data of the title compound.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAugé, J. & Gil, J. (2002). Tetrahedron Lett. 43, 7919–7920.  Google Scholar
First citationDiana, G. & Ganis, P. (1963). Atti Accad. Naz. Lincei, 35, 80–88.  CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFrenz, B. A. (1978). The Enraf–Nonius CAD-4 SDP – a Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution. Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld & G. C. Bassi, pp. 64–71. Delft University Press.  Google Scholar
First citationHo, Y. S. & Lee, C. F. (2001). Tetrahedron, 57, 6181–6187.  Web of Science CrossRef Google Scholar
First citationIulek, J. & Zukerman-Schpector, J. (1997). Química Nova, 20, 433–434.  CrossRef CAS Google Scholar
First citationJohnson, A. P., Luke, R. W. A., Singh, G. & Boa, A. N. (1996). J. Chem. Soc. Perkin Trans. 1, pp. 907–913.  CrossRef Web of Science Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds