organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(iso­butyl­ammonium) phthalate monohydrate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 14 May 2008; accepted 20 May 2008; online 24 May 2008)

N-Isobutyl­phthalimic acid hydrolyzes to the title salt, 2C4H12N+·C8H4O4·H2O, which adopts a hydrogen-bonded layer structure. In the anion, the carboxyl­ate groups are twisted with respect to the benzene ring [dihedral angles = 43.8 (1) and 50.9 (1)°].

Related literature

For kinetic studies relating to the hydrolysis of N-isobutyl­phthalimic acid, see: Ariffin & Khan (2005[Ariffin, A. & Khan, M. N. (2005). Bull. Kor. Chem. Soc. 26, 1037-1043.]); Khan & Ariffin (2003[Khan, M. N. & Ariffin, A. (2003). Org. Biomol. Chem. 1, 1404-1408.]).

[Scheme 1]

Experimental

Crystal data
  • 2C4H12N+·C8H4O42−·H2O

  • Mr = 330.42

  • Triclinic, [P \overline 1]

  • a = 8.8647 (4) Å

  • b = 9.4340 (5) Å

  • c = 12.9119 (6) Å

  • α = 72.298 (3)°

  • β = 79.449 (3)°

  • γ = 69.059 (3)°

  • V = 957.37 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 (2) K

  • 0.32 × 0.08 × 0.08 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: none

  • 8057 measured reflections

  • 4343 independent reflections

  • 2454 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.156

  • S = 0.97

  • 4343 reflections

  • 241 parameters

  • 15 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H1w1⋯O2 0.86 (1) 1.97 (2) 2.780 (2) 156 (3)
O1w—H1w2⋯O4i 0.86 (1) 1.97 (2) 2.780 (2) 157 (3)
N1—H1n1⋯O1 0.85 (1) 1.94 (1) 2.788 (2) 172 (2)
N1—H1n2⋯O3ii 0.87 (1) 1.91 (1) 2.755 (2) 167 (2)
N1—H1n3⋯O1wiii 0.86 (1) 1.99 (1) 2.823 (3) 164 (2)
N2—H2n1⋯O2 0.86 (1) 2.35 (2) 2.996 (2) 132 (2)
N2—H2n1⋯O4i 0.86 (1) 2.42 (2) 2.995 (3) 124 (2)
N2—H2n2⋯O2i 0.87 (1) 1.91 (1) 2.781 (2) 172 (2)
N2—H2n3⋯O3 0.87 (1) 1.89 (1) 2.741 (2) 166 (2)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

The title salt (Fig. 1) was obtained as a wet crystalline compound when N-isobutylphthalimic acid was left aside for several years. The acid has been shown by kinetic studies to be converted to phthalic acid and isobutylamine under neutral and acidic conditions (Ariffin & Khan, 2005; Khan Ariffin, 2003). In the anion, the carboxyl –CO2 groups are twisted with respect to the phenylene ring [dihedral angles 43.8 (1) and 50.9 (1) °]. Hydrogen bonds which involve the ammonium cations and water molecules link the components of the salt into a layer motif (Table 1).

Related literature top

For kinetic studies relating to the hydrolysis of N-isobutylphthalimic acid, see: Ariffin & Khan (2005); Khan & Ariffin (2003).

Experimental top

N-Isobutylphthalimidic acid was synthesized as described earlier (Ariffin & Khan, 2005; Khan & Ariffin, 2003). The crystalline compound was left aside for several years. The hydrolyzed title salt was obtained as a wet crystalline compound.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C). The oxygen- and nitrogen-bound H-atoms were located in a difference Fourier map, and were refined with restraints of O–H = N–H = 0.85±0.01 Å; H···H = 1.39±0.01 Å; their temperature factors were freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of [C4H12N]2[C8H4O4].H2O at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radiius.
Bis(isobutylammonium) phthalate monohydrate top
Crystal data top
2C4H12N+·C8H4O42·H2OZ = 2
Mr = 330.42F(000) = 360
Triclinic, P1Dx = 1.146 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8647 (4) ÅCell parameters from 941 reflections
b = 9.4340 (5) Åθ = 2.5–22.7°
c = 12.9119 (6) ŵ = 0.08 mm1
α = 72.298 (3)°T = 100 K
β = 79.449 (3)°Prism, colorless
γ = 69.059 (3)°0.32 × 0.08 × 0.08 mm
V = 957.37 (8) Å3
Data collection top
Bruker SMART APEX
diffractometer
2454 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.050
Graphite monochromatorθmax = 27.5°, θmin = 2.5°
ω scansh = 1111
8057 measured reflectionsk = 1012
4343 independent reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.0703P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.001
4343 reflectionsΔρmax = 0.33 e Å3
241 parametersΔρmin = 0.27 e Å3
15 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.049 (5)
Crystal data top
2C4H12N+·C8H4O42·H2Oγ = 69.059 (3)°
Mr = 330.42V = 957.37 (8) Å3
Triclinic, P1Z = 2
a = 8.8647 (4) ÅMo Kα radiation
b = 9.4340 (5) ŵ = 0.08 mm1
c = 12.9119 (6) ÅT = 100 K
α = 72.298 (3)°0.32 × 0.08 × 0.08 mm
β = 79.449 (3)°
Data collection top
Bruker SMART APEX
diffractometer
2454 reflections with I > 2σ(I)
8057 measured reflectionsRint = 0.050
4343 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06115 restraints
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.33 e Å3
4343 reflectionsΔρmin = 0.27 e Å3
241 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.49468 (17)0.58257 (19)0.62388 (12)0.0271 (4)
O20.75147 (17)0.58034 (18)0.58411 (12)0.0250 (4)
O30.86510 (16)0.23828 (19)0.58460 (12)0.0254 (4)
O41.08162 (16)0.21636 (19)0.66133 (12)0.0285 (4)
O1w0.7147 (2)0.8989 (2)0.50641 (15)0.0342 (4)
H1w10.696 (3)0.811 (2)0.535 (2)0.078 (12)*
H1w20.785 (3)0.887 (3)0.4520 (18)0.096 (14)*
N10.4142 (2)0.8164 (2)0.43079 (16)0.0230 (5)
H1n10.448 (3)0.7460 (19)0.4886 (14)0.062 (10)*
H1n20.3266 (18)0.809 (2)0.4159 (16)0.034 (7)*
H1n30.391 (2)0.9076 (13)0.4421 (17)0.028 (7)*
N20.9312 (2)0.4473 (3)0.39672 (16)0.0259 (5)
H2n10.873 (2)0.5321 (15)0.4154 (19)0.054 (9)*
H2n21.0323 (12)0.440 (2)0.3961 (17)0.042 (8)*
H2n30.917 (2)0.3689 (16)0.4499 (14)0.037 (8)*
C10.6391 (3)0.5332 (3)0.64401 (17)0.0216 (5)
C20.6832 (2)0.4119 (3)0.75120 (17)0.0212 (5)
C30.5823 (3)0.4347 (3)0.84480 (18)0.0265 (5)
H30.48500.52150.83930.032*
C40.6217 (3)0.3327 (3)0.94606 (19)0.0338 (6)
H40.55090.34891.00920.041*
C50.7644 (3)0.2070 (3)0.95501 (19)0.0326 (6)
H50.79280.13781.02440.039*
C60.8653 (3)0.1828 (3)0.86233 (18)0.0268 (6)
H60.96300.09640.86880.032*
C70.8264 (2)0.2824 (3)0.76022 (17)0.0207 (5)
C80.9328 (2)0.2442 (3)0.66050 (18)0.0217 (5)
C90.5386 (2)0.7900 (3)0.33858 (17)0.0231 (5)
H9A0.55350.68650.32730.028*
H9B0.64300.78610.35840.028*
C100.4971 (3)0.9152 (3)0.23207 (19)0.0309 (6)
H100.38830.92360.21480.037*
C110.4909 (3)1.0755 (3)0.2390 (2)0.0464 (8)
H11A0.40911.10740.29700.070*
H11B0.46261.15290.16920.070*
H11C0.59721.06930.25530.070*
C120.6223 (3)0.8638 (3)0.14157 (19)0.0369 (7)
H12A0.62510.76050.13830.055*
H12B0.72930.85750.15650.055*
H12C0.59310.94050.07160.055*
C130.8993 (3)0.4525 (3)0.28710 (19)0.0308 (6)
H13A0.91740.54690.23400.037*
H13B0.78450.46110.28770.037*
C141.0072 (3)0.3079 (3)0.2514 (2)0.0397 (7)
H141.12140.29210.26270.048*
C150.9981 (5)0.3334 (5)0.1306 (3)0.0870 (13)
H15A1.02640.42770.08930.130*
H15B0.88780.34690.11740.130*
H15C1.07430.24210.10690.130*
C160.9674 (5)0.1631 (4)0.3167 (3)0.0663 (10)
H16A0.97320.14930.39440.100*
H16B1.04520.07150.29410.100*
H16C0.85760.17360.30430.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0211 (8)0.0247 (10)0.0298 (9)0.0054 (7)0.0062 (7)0.0010 (7)
O20.0246 (8)0.0226 (9)0.0271 (8)0.0104 (7)0.0012 (7)0.0027 (7)
O30.0224 (8)0.0283 (10)0.0282 (9)0.0094 (7)0.0021 (7)0.0094 (7)
O40.0175 (8)0.0308 (10)0.0379 (10)0.0074 (7)0.0028 (7)0.0102 (8)
O1w0.0366 (10)0.0226 (11)0.0420 (11)0.0109 (8)0.0042 (9)0.0093 (9)
N10.0209 (10)0.0173 (12)0.0286 (12)0.0047 (8)0.0045 (9)0.0031 (10)
N20.0240 (10)0.0219 (12)0.0325 (12)0.0080 (9)0.0040 (9)0.0063 (10)
C10.0250 (11)0.0155 (12)0.0251 (12)0.0066 (10)0.0013 (10)0.0068 (10)
C20.0227 (11)0.0195 (13)0.0227 (12)0.0086 (10)0.0027 (9)0.0047 (10)
C30.0275 (12)0.0233 (14)0.0256 (13)0.0045 (10)0.0033 (10)0.0060 (10)
C40.0405 (14)0.0363 (17)0.0227 (13)0.0132 (12)0.0010 (11)0.0059 (12)
C50.0423 (14)0.0301 (15)0.0227 (13)0.0113 (12)0.0097 (11)0.0005 (11)
C60.0286 (12)0.0230 (14)0.0292 (13)0.0081 (10)0.0092 (10)0.0034 (11)
C70.0203 (11)0.0199 (13)0.0235 (12)0.0093 (10)0.0032 (9)0.0039 (10)
C80.0200 (11)0.0136 (12)0.0295 (13)0.0051 (9)0.0045 (9)0.0015 (10)
C90.0207 (11)0.0201 (13)0.0270 (12)0.0065 (9)0.0023 (9)0.0038 (10)
C100.0253 (12)0.0320 (15)0.0301 (13)0.0098 (11)0.0068 (10)0.0027 (11)
C110.0577 (17)0.0253 (16)0.0409 (16)0.0109 (13)0.0083 (14)0.0027 (13)
C120.0443 (15)0.0433 (18)0.0267 (13)0.0213 (13)0.0027 (12)0.0059 (12)
C130.0396 (14)0.0233 (14)0.0286 (13)0.0081 (11)0.0115 (11)0.0029 (11)
C140.0430 (15)0.0404 (18)0.0359 (15)0.0071 (13)0.0066 (12)0.0156 (13)
C150.139 (4)0.091 (3)0.0396 (19)0.038 (3)0.001 (2)0.031 (2)
C160.116 (3)0.0258 (18)0.060 (2)0.0150 (18)0.023 (2)0.0156 (16)
Geometric parameters (Å, º) top
O1—C11.243 (2)C7—C81.507 (3)
O2—C11.270 (2)C9—C101.519 (3)
O3—C81.263 (3)C9—H9A0.9900
O4—C81.251 (2)C9—H9B0.9900
O1w—H1w10.861 (10)C10—C121.522 (3)
O1w—H1w20.858 (10)C10—C111.523 (4)
N1—C91.483 (3)C10—H101.0000
N1—H1n10.852 (9)C11—H11A0.9800
N1—H1n20.865 (9)C11—H11B0.9800
N1—H1n30.861 (9)C11—H11C0.9800
N2—C131.477 (3)C12—H12A0.9800
N2—H2n10.860 (9)C12—H12B0.9800
N2—H2n20.874 (9)C12—H12C0.9800
N2—H2n30.873 (9)C13—C141.508 (4)
C1—C21.514 (3)C13—H13A0.9900
C2—C31.389 (3)C13—H13B0.9900
C2—C71.406 (3)C14—C161.496 (4)
C3—C41.386 (3)C14—C151.518 (4)
C3—H30.9500C14—H141.0000
C4—C51.384 (3)C15—H15A0.9800
C4—H40.9500C15—H15B0.9800
C5—C61.383 (3)C15—H15C0.9800
C5—H50.9500C16—H16A0.9800
C6—C71.386 (3)C16—H16B0.9800
C6—H60.9500C16—H16C0.9800
H1w1—O1w—H1w2107.2 (15)C9—C10—C12108.7 (2)
C9—N1—H1n1109.2 (17)C9—C10—C11112.0 (2)
C9—N1—H1n2108.1 (14)C12—C10—C11110.4 (2)
H1n1—N1—H1n2109.4 (13)C9—C10—H10108.5
C9—N1—H1n3113.4 (15)C12—C10—H10108.5
H1n1—N1—H1n3108.9 (13)C11—C10—H10108.5
H1n2—N1—H1n3107.9 (12)C10—C11—H11A109.5
C13—N2—H2n1111.6 (16)C10—C11—H11B109.5
C13—N2—H2n2109.3 (15)H11A—C11—H11B109.5
H2n1—N2—H2n2106.4 (13)C10—C11—H11C109.5
C13—N2—H2n3116.3 (15)H11A—C11—H11C109.5
H2n1—N2—H2n3107.0 (13)H11B—C11—H11C109.5
H2n2—N2—H2n3105.7 (13)C10—C12—H12A109.5
O1—C1—O2125.4 (2)C10—C12—H12B109.5
O1—C1—C2117.22 (19)H12A—C12—H12B109.5
O2—C1—C2117.30 (18)C10—C12—H12C109.5
C3—C2—C7119.0 (2)H12A—C12—H12C109.5
C3—C2—C1118.49 (19)H12B—C12—H12C109.5
C7—C2—C1122.38 (19)N2—C13—C14111.78 (19)
C4—C3—C2121.0 (2)N2—C13—H13A109.3
C4—C3—H3119.5C14—C13—H13A109.3
C2—C3—H3119.5N2—C13—H13B109.3
C5—C4—C3119.9 (2)C14—C13—H13B109.3
C5—C4—H4120.1H13A—C13—H13B107.9
C3—C4—H4120.1C16—C14—C13112.4 (2)
C6—C5—C4119.6 (2)C16—C14—C15110.8 (3)
C6—C5—H5120.2C13—C14—C15110.0 (3)
C4—C5—H5120.2C16—C14—H14107.8
C5—C6—C7121.2 (2)C13—C14—H14107.8
C5—C6—H6119.4C15—C14—H14107.8
C7—C6—H6119.4C14—C15—H15A109.5
C6—C7—C2119.3 (2)C14—C15—H15B109.5
C6—C7—C8119.4 (2)H15A—C15—H15B109.5
C2—C7—C8121.22 (19)C14—C15—H15C109.5
O4—C8—O3125.5 (2)H15A—C15—H15C109.5
O4—C8—C7117.10 (19)H15B—C15—H15C109.5
O3—C8—C7117.40 (18)C14—C16—H16A109.5
N1—C9—C10113.95 (18)C14—C16—H16B109.5
N1—C9—H9A108.8H16A—C16—H16B109.5
C10—C9—H9A108.8C14—C16—H16C109.5
N1—C9—H9B108.8H16A—C16—H16C109.5
C10—C9—H9B108.8H16B—C16—H16C109.5
H9A—C9—H9B107.7
O1—C1—C2—C343.9 (3)C1—C2—C7—C6174.98 (19)
O2—C1—C2—C3133.5 (2)C3—C2—C7—C8174.7 (2)
O1—C1—C2—C7139.7 (2)C1—C2—C7—C88.9 (3)
O2—C1—C2—C742.9 (3)C6—C7—C8—O451.4 (3)
C7—C2—C3—C40.4 (3)C2—C7—C8—O4132.5 (2)
C1—C2—C3—C4176.1 (2)C6—C7—C8—O3126.5 (2)
C2—C3—C4—C50.8 (4)C2—C7—C8—O349.7 (3)
C3—C4—C5—C61.1 (4)N1—C9—C10—C12172.76 (19)
C4—C5—C6—C70.1 (4)N1—C9—C10—C1165.0 (3)
C5—C6—C7—C21.2 (3)N2—C13—C14—C1668.6 (3)
C5—C6—C7—C8175.0 (2)N2—C13—C14—C15167.4 (2)
C3—C2—C7—C61.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w1···O20.86 (1)1.97 (2)2.780 (2)156 (3)
O1w—H1w2···O4i0.86 (1)1.97 (2)2.780 (2)157 (3)
N1—H1n1···O10.85 (1)1.94 (1)2.788 (2)172 (2)
N1—H1n2···O3ii0.87 (1)1.91 (1)2.755 (2)167 (2)
N1—H1n3···O1wiii0.86 (1)1.99 (1)2.823 (3)164 (2)
N2—H2n1···O20.86 (1)2.35 (2)2.996 (2)132 (2)
N2—H2n1···O4i0.86 (1)2.42 (2)2.995 (3)124 (2)
N2—H2n2···O2i0.87 (1)1.91 (1)2.781 (2)172 (2)
N2—H2n3···O30.87 (1)1.89 (1)2.741 (2)166 (2)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula2C4H12N+·C8H4O42·H2O
Mr330.42
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.8647 (4), 9.4340 (5), 12.9119 (6)
α, β, γ (°)72.298 (3), 79.449 (3), 69.059 (3)
V3)957.37 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.32 × 0.08 × 0.08
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8057, 4343, 2454
Rint0.050
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.156, 0.97
No. of reflections4343
No. of parameters241
No. of restraints15
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.27

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w1···O20.86 (1)1.97 (2)2.780 (2)156 (3)
O1w—H1w2···O4i0.86 (1)1.97 (2)2.780 (2)157 (3)
N1—H1n1···O10.85 (1)1.94 (1)2.788 (2)172 (2)
N1—H1n2···O3ii0.87 (1)1.91 (1)2.755 (2)167 (2)
N1—H1n3···O1wiii0.86 (1)1.99 (1)2.823 (3)164 (2)
N2—H2n1···O20.86 (1)2.35 (2)2.996 (2)132 (2)
N2—H2n1···O4i0.86 (1)2.42 (2)2.995 (3)124 (2)
N2—H2n2···O2i0.87 (1)1.91 (1)2.781 (2)172 (2)
N2—H2n3···O30.87 (1)1.89 (1)2.741 (2)166 (2)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y+2, z+1.
 

Acknowledgements

We acknowledge the SAGA grant (06–02-03–0147) for supporting this study, and the University of Malaya for the purchase of the diffractometer.

References

First citationAriffin, A. & Khan, M. N. (2005). Bull. Kor. Chem. Soc. 26, 1037–1043.  CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKhan, M. N. & Ariffin, A. (2003). Org. Biomol. Chem. 1, 1404–1408.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds