Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title complex, [Hg2Cl4(C6H18N4)], one HgII ion is coordinated by four N atoms from a tris­(2-amino­ethyl)amine ligand and one Cl atom of a tetra­chlorido­mercurate group in a distorted trigonal–bipyramidal geometry. The Cl atom occupies an axial position and bridges to a second HgII ion, which is coordinated in a distorted tetra­hedral geometry by four Cl atoms. The bonds involving the bridging Cl atom are significantly longer than the other Hg—Cl bonds. In the crystal structure, mol­ecules are linked by inter­molecular N—H...Cl hydrogen bonds into a two-dimensional network, which is further stabilized by weak inter­molecular C—H...Cl hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807059983/lh2568sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807059983/lh2568Isup2.hkl
Contains datablock I

CCDC reference: 672758

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.016 Å
  • R factor = 0.038
  • wR factor = 0.103
  • Data-to-parameter ratio = 19.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT061_ALERT_3_C Tmax/Tmin Range Test RR' too Large ............. 0.81 PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.36 PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Hg1 - Cl1 .. 9.76 su PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 16 PLAT420_ALERT_2_C D-H Without Acceptor N4 - H4A ... ? PLAT420_ALERT_2_C D-H Without Acceptor N4 - H4B ... ?
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.357 Tmax scaled 0.058 Tmin scaled 0.054 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Research of organic polyamines is currently of great insterest because of their potential applications as useful organic ligands, in which the amine nitrogen atoms have strong coordination ablity to transition metal ions and recongnition function (Adam et al., 1988; Marchetti et al., 1989; Dakternicks, 1990; Adam et al., 1994). Their transition metal complexes play an excellent role in catalysis and mimic studies on dismutase and chlorophyll (Gou et al., 1993; Cai et al., 1997; Wang et al., 1997). In this paper, we report the synthesis and crystal structure of the title compound.

The molecular structure of the title bimetallic and bridged complex (C6H18N4)Hg—Cl—HgCl3 (I) is shown in Fig. 1. The coordination geometry around Hg1 atom can be described as distorted trigonal bipyramidal with the axial positions occupied by the N1 and Cl1 atoms (N1— Hg1— Cl1 = 172.4 (2) °). Atom Hg2 is four-coordinated in a distorted tetrahedral coordination geometry by one bridging Cl atoms and three terminal Cl atoms. The bond distances of Hg—N are in the range of 2.308 (8) – 2.521 (8) Å, the bond distances of Hg—Cl are in the range of 2.361 (3) – 2.785 (3) Å. Tris(2-aminoethyl)amine ligand consists of three five-membered chelate rings, the dihedral angle between the mean planes of these chelate rings range from 55.80 (0.28) to to 64.12 (0.31) °.

In the crystal structure, adjacent molecules are linked by intermolecular N—H···Cl hydrogen bonds into a two-dimensional network which is further stabilzed by weak intermolecular C—H···Cl hydrogen bonds (Fig. 2).

Related literature top

For general background, see: Adam et al. (1988); Gou et al. (1993); Cai et al. (1997); Wang et al. (1997). For related structures, see: Marchetti et al. (1989); Dakternicks (1990); Adam et al. (1994)

Experimental top

Tris(2-aminoethyl)amine (2 mmol, 292.5 mg) in hot absolute ethanol (10 ml) was added dropwise to a absolute ethanol solution (20 ml) of mercury chloride (4 mmol, 868.8 mg). The mixture was heated under reflux with stirring for 5 h. The solution was kept at room temperature for about 20 days, after which large yellow block-shaped crystals of the title complex suitable for X-ray diffraction analysis were obtained.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model, with C—H 0.97 (methylene) and N—H (amino) 0.90 Å, withUiso(H) =1.2Ueq(C,N).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Part of the crystal structure showing hydrogen bonds as dashed lines.
µ-Chlorido-1:2κ2Cl-trichlorido-2κ3Cl-[tris(2-aminoethyl)amine-\ 1κ4N,N',N'',N''']dimercury(II) top
Crystal data top
[Hg2Cl4(C6H18N4)]F(000) = 1240
Mr = 689.22Dx = 2.930 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 3679 reflections
a = 10.4378 (6) Åθ = 2.4–27.5°
b = 11.5537 (8) ŵ = 20.30 mm1
c = 13.1306 (10) ÅT = 298 K
β = 99.395 (1)°Block, yellow
V = 1562.25 (18) Å30.15 × 0.14 × 0.14 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
2245 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.058
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1012
Tmin = 0.151, Tmax = 0.163k = 1313
7516 measured reflectionsl = 1511
2757 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0433P)2 + 0.6626P]
where P = (Fo2 + 2Fc2)/3
2757 reflections(Δ/σ)max = 0.001
139 parametersΔρmax = 1.69 e Å3
1 restraintΔρmin = 1.45 e Å3
Crystal data top
[Hg2Cl4(C6H18N4)]V = 1562.25 (18) Å3
Mr = 689.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.4378 (6) ŵ = 20.30 mm1
b = 11.5537 (8) ÅT = 298 K
c = 13.1306 (10) Å0.15 × 0.14 × 0.14 mm
β = 99.395 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2757 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2245 reflections with I > 2σ(I)
Tmin = 0.151, Tmax = 0.163Rint = 0.058
7516 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0381 restraint
wR(F2) = 0.103H-atom parameters constrained
S = 1.07Δρmax = 1.69 e Å3
2757 reflectionsΔρmin = 1.45 e Å3
139 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.11574 (4)0.36983 (3)0.70931 (3)0.03894 (16)
Hg20.27774 (4)0.42828 (4)0.61195 (3)0.04422 (17)
Cl10.0774 (2)0.2723 (2)0.5996 (2)0.04422 (17)
Cl20.4650 (3)0.3269 (3)0.5348 (2)0.0615 (8)
Cl30.1733 (3)0.5903 (2)0.5366 (2)0.0507 (7)
Cl40.2391 (3)0.4612 (3)0.7999 (2)0.0567 (8)
N10.3069 (7)0.4444 (7)0.8345 (6)0.0341 (19)
N20.2892 (8)0.2545 (7)0.6860 (7)0.042 (2)
H2A0.26210.18100.67460.051*
H2B0.32170.27890.63040.051*
N30.0576 (8)0.3501 (8)0.8729 (7)0.044 (2)
H3A0.02710.36720.86980.052*
H3B0.07010.27650.89470.052*
N40.1280 (9)0.5653 (8)0.6750 (8)0.051 (2)
H4A0.10260.57840.60720.061*
H4B0.07520.60500.71010.061*
C10.4199 (10)0.3836 (10)0.8101 (9)0.045 (3)
H1A0.48750.38430.87030.054*
H1B0.45240.42430.75500.054*
C20.3906 (10)0.2588 (10)0.7772 (8)0.043 (3)
H2C0.46880.22230.76160.052*
H2D0.36230.21640.83330.052*
C30.2799 (9)0.4150 (9)0.9393 (7)0.038 (2)
H3C0.32980.46580.98970.045*
H3D0.30710.33610.95610.045*
C40.1357 (10)0.4275 (10)0.9452 (8)0.045 (3)
H4C0.12160.41011.01480.054*
H4D0.10890.50680.92980.054*
C50.3144 (11)0.5708 (9)0.8183 (9)0.047 (3)
H5A0.40380.59590.83730.057*
H5B0.26300.61020.86300.057*
C60.2654 (11)0.6044 (10)0.7069 (10)0.055 (3)
H6A0.27020.68770.69950.066*
H6B0.32000.56920.66240.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0296 (3)0.0429 (3)0.0411 (3)0.00315 (17)0.00385 (17)0.00563 (17)
Hg20.0362 (3)0.0502 (3)0.0459 (3)0.01336 (18)0.00534 (19)0.00858 (19)
Cl10.0362 (3)0.0502 (3)0.0459 (3)0.01336 (18)0.00534 (19)0.00858 (19)
Cl20.0410 (16)0.077 (2)0.061 (2)0.0240 (15)0.0089 (13)0.0014 (16)
Cl30.0464 (16)0.0447 (15)0.0605 (19)0.0098 (13)0.0075 (13)0.0081 (13)
Cl40.0558 (18)0.0717 (19)0.0395 (17)0.0081 (15)0.0019 (13)0.0160 (14)
N10.027 (4)0.040 (5)0.036 (5)0.000 (4)0.005 (3)0.007 (4)
N20.054 (5)0.039 (5)0.034 (5)0.006 (4)0.008 (4)0.010 (4)
N30.031 (5)0.056 (6)0.045 (6)0.007 (4)0.009 (4)0.003 (4)
N40.049 (6)0.044 (6)0.054 (6)0.012 (4)0.005 (4)0.006 (4)
C10.022 (5)0.068 (8)0.045 (7)0.009 (5)0.007 (4)0.006 (6)
C20.035 (6)0.056 (7)0.040 (6)0.012 (5)0.009 (5)0.001 (5)
C30.034 (6)0.054 (6)0.023 (5)0.000 (5)0.000 (4)0.010 (5)
C40.044 (6)0.059 (7)0.036 (6)0.007 (5)0.014 (5)0.006 (5)
C50.054 (7)0.039 (6)0.049 (7)0.017 (5)0.009 (5)0.010 (5)
C60.054 (8)0.045 (6)0.067 (9)0.001 (6)0.015 (6)0.008 (6)
Geometric parameters (Å, º) top
Hg1—N22.308 (8)N4—C61.497 (14)
Hg1—N42.310 (9)N4—H4A0.9000
Hg1—N32.337 (8)N4—H4B0.9000
Hg1—N12.521 (8)C1—C21.521 (16)
Hg1—Cl12.542 (2)C1—H1A0.9700
Hg2—Cl22.361 (3)C1—H1B0.9700
Hg2—Cl32.454 (3)C2—H2C0.9700
Hg2—Cl42.465 (3)C2—H2D0.9700
Hg2—Cl12.785 (3)C3—C41.526 (13)
N1—C11.452 (12)C3—H3C0.9700
N1—C51.480 (13)C3—H3D0.9700
N1—C31.488 (13)C4—H4C0.9700
N2—C21.463 (13)C4—H4D0.9700
N2—H2A0.9000C5—C61.519 (16)
N2—H2B0.9000C5—H5A0.9700
N3—C41.453 (13)C5—H5B0.9700
N3—H3A0.9000C6—H6A0.9700
N3—H3B0.9000C6—H6B0.9700
N2—Hg1—N4118.0 (3)Hg1—N4—H4B109.9
N2—Hg1—N3113.1 (3)H4A—N4—H4B108.3
N4—Hg1—N3107.8 (3)N1—C1—C2112.8 (8)
N2—Hg1—N174.3 (3)N1—C1—H1A109.0
N4—Hg1—N174.3 (3)C2—C1—H1A109.0
N3—Hg1—N174.4 (3)N1—C1—H1B109.0
N2—Hg1—Cl1103.6 (2)C2—C1—H1B109.0
N4—Hg1—Cl1112.8 (2)H1A—C1—H1B107.8
N3—Hg1—Cl1100.2 (2)N2—C2—C1110.5 (9)
N1—Hg1—Cl1172.4 (2)N2—C2—H2C109.6
Cl2—Hg2—Cl3126.63 (10)C1—C2—H2C109.6
Cl2—Hg2—Cl4119.67 (11)N2—C2—H2D109.6
Cl3—Hg2—Cl4105.97 (11)C1—C2—H2D109.6
Cl2—Hg2—Cl1103.36 (10)H2C—C2—H2D108.1
Cl3—Hg2—Cl194.75 (9)N1—C3—C4111.3 (8)
Cl4—Hg2—Cl199.00 (9)N1—C3—H3C109.4
Hg1—Cl1—Hg2102.34 (9)C4—C3—H3C109.4
C1—N1—C5112.5 (8)N1—C3—H3D109.4
C1—N1—C3112.1 (8)C4—C3—H3D109.4
C5—N1—C3112.3 (8)H3C—C3—H3D108.0
C1—N1—Hg1106.0 (6)N3—C4—C3111.2 (8)
C5—N1—Hg1107.4 (6)N3—C4—H4C109.4
C3—N1—Hg1106.0 (5)C3—C4—H4C109.4
C2—N2—Hg1110.5 (6)N3—C4—H4D109.4
C2—N2—H2A109.6C3—C4—H4D109.4
Hg1—N2—H2A109.6H4C—C4—H4D108.0
C2—N2—H2B109.6N1—C5—C6111.9 (9)
Hg1—N2—H2B109.6N1—C5—H5A109.2
H2A—N2—H2B108.1C6—C5—H5A109.2
C4—N3—Hg1109.8 (6)N1—C5—H5B109.2
C4—N3—H3A109.7C6—C5—H5B109.2
Hg1—N3—H3A109.7H5A—C5—H5B107.9
C4—N3—H3B109.7N4—C6—C5110.4 (9)
Hg1—N3—H3B109.7N4—C6—H6A109.6
H3A—N3—H3B108.2C5—C6—H6A109.6
C6—N4—Hg1108.8 (6)N4—C6—H6B109.6
C6—N4—H4A109.9C5—C6—H6B109.6
Hg1—N4—H4A109.9H6A—C6—H6B108.1
C6—N4—H4B109.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···Cl3i0.902.513.378 (9)163
N2—H2B···Cl2ii0.902.783.590 (9)150
N2—H2A···Cl4i0.902.583.438 (9)160
C5—H5B···Cl1iii0.972.803.684 (12)153
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x+1, y, z; (iii) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Hg2Cl4(C6H18N4)]
Mr689.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.4378 (6), 11.5537 (8), 13.1306 (10)
β (°) 99.395 (1)
V3)1562.25 (18)
Z4
Radiation typeMo Kα
µ (mm1)20.30
Crystal size (mm)0.15 × 0.14 × 0.14
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.151, 0.163
No. of measured, independent and
observed [I > 2σ(I)] reflections
7516, 2757, 2245
Rint0.058
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.103, 1.07
No. of reflections2757
No. of parameters139
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.69, 1.45

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Selected bond lengths (Å) top
Hg1—N22.308 (8)Hg2—Cl22.361 (3)
Hg1—N42.310 (9)Hg2—Cl32.454 (3)
Hg1—N32.337 (8)Hg2—Cl42.465 (3)
Hg1—N12.521 (8)Hg2—Cl12.785 (3)
Hg1—Cl12.542 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···Cl3i0.902.513.378 (9)163.1
N2—H2B···Cl2ii0.902.783.590 (9)149.8
N2—H2A···Cl4i0.902.583.438 (9)160.3
C5—H5B···Cl1iii0.972.803.684 (12)152.7
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x+1, y, z; (iii) x, y+1/2, z+3/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds