organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­ethyl­ammonium N′-(benzyl­sulfanylthio­carbonyl)-2-hy­droxy­benzohydrazidate

aDepartment of Chemistry, Banaras Hindu University, Varanasi 221 005, India, and bDepartment of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, 20 Campus Drive, Saskatoon, SK, Canada S7N 4H4
*Correspondence e-mail: singhnk_bhu@yahoo.com

(Received 2 November 2007; accepted 14 December 2007; online 21 December 2007)

In the title compound, C6H16N+·C15H13N2O2S2, the thione S atom is in a cis configuration with respect to the phenyl and benzene rings, while it adopts a trans configuration with respect to the carbonyl group. The dihedral angle between the benzene and phenyl rings is 78.81 (2)°. The mol­ecular conformation is stabilized by intra­molecular O—H⋯O and N—H⋯S hydrogen bonds, while inter­molecular N—H⋯O, N—H⋯N and weak C—H⋯O inter­actions help to stabilize the crystal structure.

Related literature

For related literature, see: Scovill et al. (1982[Scovill, J. P., Klayman, D. L. & Franchino, C. F. (1982). J. Med. Chem. 25, 1261-1264.], 1984[Scovill, J. P., Klayman, D. L., Lambros, C., Childs, G. E. & Nortsh, J. D. (1984). J. Med. Chem. 27, 87-91.]); West et al. (1989[West, D. X. & Pannell, L. K. (1989). Transition Met. Chem. 14, 457-462.]); Gou et al. (1990[Gou, S. H., You, X. Z., Xu, Z., Yu, K. B. & Zhou, Z. Y. (1990). Polyhedron, 9, 2981-2985.]); Abu-Raquabah et al. (1992[Abu-Raqabah, A., Davies, G., El-Sayed, M. A., El-Toukhy, A., Shaikh, S. N. & Zubieta, J. (1992). Inorg. Chim. Acta, 193, 43-56.]); Marchi et al. (1990[Marchi, A., Rossi, R., Magon, L., Duttai, A., Pasqualini, R., Ferretti, V. & Bertolasi, V. (1990). J. Chem. Soc. Dalton Trans. pp. 1411-1416.]); Ali & Livingston, (1974[Ali, M. A. & Livingston, S. E. (1974). Coord. Chem. Rev. 13, 101-132.]); Wu et al. (2000); Boga et al. (1990[Boga, C., Forlani, L., Silverstoni, C., Corradi, A. B. & Sgarabotto, P. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 1363-1368.]).

[Scheme 1]

Experimental

Crystal data
  • C6H16N+·C15H13N2O2S2

  • Mr = 419.59

  • Orthorhombic, P b c a

  • a = 10.7109 (4) Å

  • b = 18.6807 (6) Å

  • c = 22.1814 (7) Å

  • V = 4438.2 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 173 (2) K

  • 0.08 × 0.08 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 26195 measured reflections

  • 3928 independent reflections

  • 2542 reflections with I > 2σ(I)

  • Rint = 0.138

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.118

  • S = 1.05

  • 3928 reflections

  • 257 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.84 1.79 2.538 (3) 147
N1—H1A⋯S2 0.88 2.39 2.855 (3) 114
N3—H3A⋯O2 0.93 2.18 2.929 (3) 137
N3—H3A⋯N2 0.93 2.27 3.094 (4) 148
C9—H9A⋯S2 0.99 2.59 3.200 (3) 120
C21—H21A⋯O1i 0.98 2.56 3.377 (5) 141
Symmetry code: (i) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT Nonius BV Delft The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97, University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Dithiocarbazates and their derivatives have attracted much attention as they have potential applications as antitumor, antibacterial and antifungal agents (Scovill et al., 1982,1984, West & Pannell, 1989, Gou et al., 1990). Interest in these systems is also stimulated by their unusual physico-chemical (Abu-Raquabah et al.1992, Marchi et al., 1990) and chemotherapeutic properties (Ali & Livingston, 1974). Although N'-acyl hydrazine carbodithioates are structurally similar to the derivatives of dithiocarbazates, little data is available on their synthesis and characterization. As part of our ongoing investigation, we report here the synthesis and structure determination of the title compound (I) which was obtained from the reaction of salicylic acid hydrazide, CS2 and benzyl chloride in the presence of triethylamine.

The molecular structure of (I), together with atom labeling scheme is shown in Fig 1. The Hydrazinic H atom on N1 is trans with respect to the carbonyl group and cis with respect to the thione S atom. The C7—N1 distance of 1.329 (4) Å is intermediate between 1.47 Å for a C—N single bond and 1.29 Å for a double bond (Boga et al., 1999). The N1—N2 distance of 1.396 (3) Å [single bond (N—N) = 1.45 Å and double bond (N=N) = 1.25 Å] and the O2—C7 distance of 1.257 (4) Å suggest extensive delocalization in this part of the molecule. In the crystal structure, there is a weak C—H···π interaction (Fig 2) [C5—H5···Cg = 140.65°, H5···Cg = 2.976 Å and C5···Cg = 3.759 Å, where Cg is the centroid of the phenyl ring]. The molecular conformation is stabilized by intramolecular O—H···O and N—H···S hydrogen bonds while intermolecular N—H···O, N—H···N and weak C—H···O interactions help stabilize the crystal structure.

Related literature top

For related literature, see: Scovill et al. (1982,1984); West et al.(1989); Gou et al. (1990); Abu-Raquabah et al. (1992); Marchi et al.(1990); Ali & Livingston, (1974); Wu et al. (2000); Boga et al. (1990). For related literature, see: Abu-Raqabah et al. (1992); Boga et al. (1999); Gou et al. (1990); Scovill et al. (1982, 1984).

Experimental top

The title compound was synthesized by the reaction of CS2 (1.99 g, 26.29 mmol) with a solution of salicylic acid hydrazide (4 g, 24.09 mmol) in CHCl3 (15 ml) in the presence of triethylamine (2 ml, 24.09 mmol). Benzyl chloride (3.5 ml, 26.30 mmol) was added dropwise to the above clear solution, which was stirred continuously for 2 h at room temperature. The product was obtained on evaporation of the solvent at room temperature. Colorless single crystals of (I) (m.p., 418 K) suitable for X-ray analysis were obtained by slow evaporation of a chloroform solution over a period of 10 days. (Yield 58%). Elemental analysis: Anal. Calcd (%): C, 60.11; H, 6.97; N, 10.01; S, 15.28; Found (%) for C21H29N3O2S2 (419.59): C,60.01; H, 6.87; N, 10.30; S, 15.06. Spectroscopic analysis: 1H NMR (CDCl3, TMS, δ, p.p.m.) 11.66, 12.38 (s, 2H, NH), 7.92–6.9 (m, 4H, benzene ring), 7.18 - 6.89 (m, 5H, phenyl), 4.48 (s, 1H, OH), 4.25 (s, 2H, CH2), 2.49 (s, 6H, CH2 of Et3NH+), 1.15 (s, 9H, CH3 of Et3NH+).13C NMR (CDCl3, TMS, δ, p.p.m.): 117.25 (C1), 158.94 (C2), 116.30 (C3),134.06 (C4), 118.99 (C5), 128.42 (C6), 165.85 (C7), 174.23 (C8), 35.66 (C9), 139.52 (C10),127.60 (C11,C15), 129.09 (C12,C14),126.38 (C13),45.77 (C16,C18, C20), 8.59 (C17, C19, C21).

Refinement top

All H atoms were initially located in a diffrence Fourier map. They were then placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95–0.99 Å; N—H = 0.88Å and O—H = 0.84Å and Uiso(H) = 1.2 Ueq(C,N) or 1.5Ueq(Cmethyl,O).

Structure description top

Dithiocarbazates and their derivatives have attracted much attention as they have potential applications as antitumor, antibacterial and antifungal agents (Scovill et al., 1982,1984, West & Pannell, 1989, Gou et al., 1990). Interest in these systems is also stimulated by their unusual physico-chemical (Abu-Raquabah et al.1992, Marchi et al., 1990) and chemotherapeutic properties (Ali & Livingston, 1974). Although N'-acyl hydrazine carbodithioates are structurally similar to the derivatives of dithiocarbazates, little data is available on their synthesis and characterization. As part of our ongoing investigation, we report here the synthesis and structure determination of the title compound (I) which was obtained from the reaction of salicylic acid hydrazide, CS2 and benzyl chloride in the presence of triethylamine.

The molecular structure of (I), together with atom labeling scheme is shown in Fig 1. The Hydrazinic H atom on N1 is trans with respect to the carbonyl group and cis with respect to the thione S atom. The C7—N1 distance of 1.329 (4) Å is intermediate between 1.47 Å for a C—N single bond and 1.29 Å for a double bond (Boga et al., 1999). The N1—N2 distance of 1.396 (3) Å [single bond (N—N) = 1.45 Å and double bond (N=N) = 1.25 Å] and the O2—C7 distance of 1.257 (4) Å suggest extensive delocalization in this part of the molecule. In the crystal structure, there is a weak C—H···π interaction (Fig 2) [C5—H5···Cg = 140.65°, H5···Cg = 2.976 Å and C5···Cg = 3.759 Å, where Cg is the centroid of the phenyl ring]. The molecular conformation is stabilized by intramolecular O—H···O and N—H···S hydrogen bonds while intermolecular N—H···O, N—H···N and weak C—H···O interactions help stabilize the crystal structure.

For related literature, see: Scovill et al. (1982,1984); West et al.(1989); Gou et al. (1990); Abu-Raquabah et al. (1992); Marchi et al.(1990); Ali & Livingston, (1974); Wu et al. (2000); Boga et al. (1990). For related literature, see: Abu-Raqabah et al. (1992); Boga et al. (1999); Gou et al. (1990); Scovill et al. (1982, 1984).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure showing the atom-numbering scheme and displacement ellipsoids the 30% probability level. Hydrogen atoms are not shown.
[Figure 2] Fig. 2. Part of the crystal structure showing hydrogen bonds as dashed lines. Some H atoms have not been shown but the H atom of the benzene ring which is involved in a C—H···π interaction with the phenyl ring is shown.
Triethylammonium N'-(benzylsulfanylthiocarbonyl)-2-hydroxybenzohydrazidate top
Crystal data top
C6H16N+·C15H13N2O2S2Dx = 1.256 Mg m3
Mr = 419.59Melting point: 418 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 16320 reflections
a = 10.7109 (4) Åθ = 1.0–26.0°
b = 18.6807 (6) ŵ = 0.26 mm1
c = 22.1814 (7) ÅT = 173 K
V = 4438.2 (3) Å3Chip, yellow
Z = 80.08 × 0.08 × 0.05 mm
F(000) = 1792
Data collection top
Nonius KappaCCD
diffractometer
2542 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.138
Horizonally mounted graphite crystal monochromatorθmax = 25.0°, θmin = 2.4°
φ scans and ω scans with κ offsetsh = 1212
26195 measured reflectionsk = 2220
3928 independent reflectionsl = 2626
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.056 w = 1/[σ2(Fo2) + (0.033P)2 + 3.4211P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.118(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.34 e Å3
3928 reflectionsΔρmin = 0.23 e Å3
257 parameters
Crystal data top
C6H16N+·C15H13N2O2S2V = 4438.2 (3) Å3
Mr = 419.59Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.7109 (4) ŵ = 0.26 mm1
b = 18.6807 (6) ÅT = 173 K
c = 22.1814 (7) Å0.08 × 0.08 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
2542 reflections with I > 2σ(I)
26195 measured reflectionsRint = 0.138
3928 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.05Δρmax = 0.34 e Å3
3928 reflectionsΔρmin = 0.23 e Å3
257 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.15592 (9)0.33158 (5)0.05488 (4)0.0436 (2)
S20.34667 (8)0.44725 (4)0.01971 (4)0.0380 (2)
O10.5287 (2)0.23266 (12)0.22154 (10)0.0454 (6)
H10.46380.22590.20100.068*
O20.3691 (2)0.25376 (12)0.13887 (10)0.0427 (6)
N10.3824 (2)0.35026 (14)0.07825 (12)0.0351 (7)
H1A0.41520.39280.07190.042*
N20.2880 (2)0.32553 (13)0.04023 (11)0.0335 (6)
C10.5386 (3)0.33468 (16)0.15530 (13)0.0302 (7)
C20.5870 (3)0.29257 (17)0.20199 (14)0.0348 (8)
C30.6992 (3)0.31114 (19)0.22951 (15)0.0434 (9)
H30.73130.28250.26130.052*
C40.7638 (3)0.3707 (2)0.21095 (16)0.0462 (9)
H40.84080.38260.22970.055*
C50.7178 (3)0.41331 (19)0.16532 (15)0.0431 (9)
H50.76270.45460.15280.052*
C60.6067 (3)0.39574 (17)0.13812 (15)0.0376 (8)
H60.57510.42560.10700.045*
C70.4235 (3)0.31073 (17)0.12389 (14)0.0332 (8)
C80.2719 (3)0.36876 (16)0.00578 (14)0.0320 (7)
C90.1697 (3)0.38403 (17)0.12303 (14)0.0395 (8)
H9A0.25050.40970.12200.047*
H9B0.17190.35090.15790.047*
C100.0678 (3)0.43768 (17)0.13339 (14)0.0355 (8)
C110.0125 (4)0.4435 (2)0.18983 (16)0.0501 (10)
H110.03580.41150.22120.060*
C120.0765 (4)0.4959 (2)0.20057 (19)0.0637 (12)
H120.11350.49950.23940.076*
C130.1118 (4)0.5423 (2)0.1562 (2)0.0597 (11)
H130.17230.57820.16410.072*
C140.0587 (4)0.53656 (19)0.09972 (17)0.0498 (10)
H140.08330.56840.06850.060*
C150.0300 (3)0.48471 (17)0.08859 (15)0.0394 (8)
H150.06590.48120.04950.047*
N30.1590 (3)0.18429 (14)0.07791 (13)0.0420 (7)
H3A0.21450.22240.08070.050*
C160.1821 (3)0.14954 (19)0.01787 (16)0.0476 (9)
H16A0.13110.10550.01490.057*
H16B0.15490.18250.01460.057*
C170.3143 (4)0.1311 (2)0.0086 (2)0.0683 (12)
H17A0.36630.17300.01730.102*
H17B0.32710.11630.03330.102*
H17C0.33740.09190.03570.102*
C180.1836 (3)0.13709 (19)0.13117 (17)0.0498 (10)
H18A0.17160.16550.16840.060*
H18B0.27210.12180.13000.060*
C190.1015 (4)0.0707 (2)0.13475 (18)0.0589 (11)
H19A0.01370.08510.13770.088*
H19B0.12430.04260.17040.088*
H19C0.11350.04160.09850.088*
C200.0303 (4)0.2161 (2)0.07594 (17)0.0527 (10)
H20A0.02300.24610.03930.063*
H20B0.03130.17680.07250.063*
C210.0019 (4)0.2601 (2)0.1287 (2)0.0746 (13)
H21A0.00680.22950.16450.112*
H21B0.08270.28330.12200.112*
H21C0.06250.29670.13470.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0456 (5)0.0354 (5)0.0496 (5)0.0055 (4)0.0148 (5)0.0072 (4)
S20.0395 (5)0.0281 (4)0.0464 (5)0.0009 (4)0.0008 (4)0.0027 (4)
O10.0535 (16)0.0388 (14)0.0439 (14)0.0102 (12)0.0090 (12)0.0085 (11)
O20.0475 (15)0.0396 (13)0.0410 (13)0.0169 (12)0.0066 (11)0.0058 (11)
N10.0346 (16)0.0280 (14)0.0427 (16)0.0063 (12)0.0066 (13)0.0005 (12)
N20.0323 (16)0.0312 (15)0.0371 (15)0.0019 (12)0.0062 (12)0.0018 (12)
C10.0301 (18)0.0315 (17)0.0289 (17)0.0010 (15)0.0045 (14)0.0056 (14)
C20.038 (2)0.0342 (18)0.0325 (18)0.0005 (15)0.0032 (15)0.0045 (15)
C30.041 (2)0.048 (2)0.041 (2)0.0036 (17)0.0057 (17)0.0026 (17)
C40.032 (2)0.057 (2)0.050 (2)0.0019 (18)0.0008 (18)0.0114 (19)
C50.037 (2)0.045 (2)0.047 (2)0.0115 (17)0.0063 (17)0.0070 (17)
C60.042 (2)0.038 (2)0.0331 (19)0.0028 (16)0.0044 (16)0.0010 (15)
C70.035 (2)0.0324 (18)0.0322 (18)0.0019 (15)0.0003 (15)0.0051 (15)
C80.0289 (18)0.0287 (17)0.0384 (18)0.0060 (14)0.0033 (15)0.0024 (15)
C90.045 (2)0.0400 (19)0.0338 (18)0.0037 (17)0.0032 (16)0.0013 (15)
C100.0373 (19)0.0338 (18)0.0354 (19)0.0067 (15)0.0019 (16)0.0044 (15)
C110.062 (3)0.046 (2)0.043 (2)0.001 (2)0.0073 (19)0.0019 (17)
C120.077 (3)0.056 (3)0.058 (3)0.011 (2)0.025 (2)0.017 (2)
C130.059 (3)0.043 (2)0.078 (3)0.010 (2)0.002 (2)0.014 (2)
C140.054 (3)0.041 (2)0.054 (2)0.0064 (19)0.009 (2)0.0055 (18)
C150.041 (2)0.040 (2)0.0371 (19)0.0008 (17)0.0039 (16)0.0043 (16)
N30.0357 (16)0.0339 (15)0.0564 (18)0.0110 (13)0.0012 (15)0.0074 (14)
C160.051 (2)0.040 (2)0.052 (2)0.0060 (18)0.0023 (19)0.0038 (18)
C170.053 (3)0.066 (3)0.086 (3)0.002 (2)0.005 (2)0.018 (2)
C180.046 (2)0.051 (2)0.053 (2)0.0111 (18)0.0063 (19)0.0081 (18)
C190.062 (3)0.057 (3)0.058 (3)0.016 (2)0.007 (2)0.006 (2)
C200.046 (2)0.053 (2)0.059 (2)0.0035 (19)0.001 (2)0.0003 (19)
C210.076 (3)0.068 (3)0.080 (3)0.013 (2)0.008 (3)0.021 (2)
Geometric parameters (Å, º) top
S1—C81.793 (3)C12—H120.9500
S1—C91.807 (3)C13—C141.379 (5)
S2—C81.699 (3)C13—H130.9500
O1—C21.353 (4)C14—C151.379 (5)
O1—H10.8400C14—H140.9500
O2—C71.258 (4)C15—H150.9500
N1—C71.328 (4)N3—C181.498 (4)
N1—N21.395 (3)N3—C201.502 (4)
N1—H1A0.8800N3—C161.502 (4)
N2—C81.313 (4)N3—H3A0.9300
C1—C21.400 (4)C16—C171.471 (5)
C1—C61.407 (4)C16—H16A0.9900
C1—C71.485 (4)C16—H16B0.9900
C2—C31.392 (5)C17—H17A0.9800
C3—C41.374 (5)C17—H17B0.9800
C3—H30.9500C17—H17C0.9800
C4—C51.379 (5)C18—C191.523 (5)
C4—H40.9500C18—H18A0.9900
C5—C61.374 (4)C18—H18B0.9900
C5—H50.9500C19—H19A0.9800
C6—H60.9500C19—H19B0.9800
C9—C101.499 (4)C19—H19C0.9800
C9—H9A0.9900C20—C211.470 (5)
C9—H9B0.9900C20—H20A0.9900
C10—C151.387 (4)C20—H20B0.9900
C10—C111.389 (5)C21—H21A0.9800
C11—C121.387 (5)C21—H21B0.9800
C11—H110.9500C21—H21C0.9800
C12—C131.365 (6)
C8—S1—C9103.99 (15)C13—C14—C15120.1 (4)
C2—O1—H1109.5C13—C14—H14120.0
C7—N1—N2121.1 (3)C15—C14—H14120.0
C7—N1—H1A119.4C14—C15—C10121.2 (3)
N2—N1—H1A119.4C14—C15—H15119.4
C8—N2—N1111.2 (3)C10—C15—H15119.4
C2—C1—C6117.7 (3)C18—N3—C20114.7 (3)
C2—C1—C7119.0 (3)C18—N3—C16114.6 (3)
C6—C1—C7123.2 (3)C20—N3—C16107.3 (3)
O1—C2—C3117.7 (3)C18—N3—H3A106.6
O1—C2—C1122.1 (3)C20—N3—H3A106.6
C3—C2—C1120.3 (3)C16—N3—H3A106.6
C4—C3—C2120.4 (3)C17—C16—N3112.5 (3)
C4—C3—H3119.8C17—C16—H16A109.1
C2—C3—H3119.8N3—C16—H16A109.1
C3—C4—C5120.5 (3)C17—C16—H16B109.1
C3—C4—H4119.8N3—C16—H16B109.1
C5—C4—H4119.8H16A—C16—H16B107.8
C6—C5—C4119.6 (3)C16—C17—H17A109.5
C6—C5—H5120.2C16—C17—H17B109.5
C4—C5—H5120.2H17A—C17—H17B109.5
C5—C6—C1121.6 (3)C16—C17—H17C109.5
C5—C6—H6119.2H17A—C17—H17C109.5
C1—C6—H6119.2H17B—C17—H17C109.5
O2—C7—N1121.2 (3)N3—C18—C19114.8 (3)
O2—C7—C1121.0 (3)N3—C18—H18A108.6
N1—C7—C1117.8 (3)C19—C18—H18A108.6
N2—C8—S2127.6 (2)N3—C18—H18B108.6
N2—C8—S1109.0 (2)C19—C18—H18B108.6
S2—C8—S1123.40 (18)H18A—C18—H18B107.6
C10—C9—S1115.5 (2)C18—C19—H19A109.5
C10—C9—H9A108.4C18—C19—H19B109.5
S1—C9—H9A108.4H19A—C19—H19B109.5
C10—C9—H9B108.4C18—C19—H19C109.5
S1—C9—H9B108.4H19A—C19—H19C109.5
H9A—C9—H9B107.5H19B—C19—H19C109.5
C15—C10—C11118.2 (3)C21—C20—N3114.4 (3)
C15—C10—C9121.7 (3)C21—C20—H20A108.7
C11—C10—C9120.0 (3)N3—C20—H20A108.7
C12—C11—C10120.2 (4)C21—C20—H20B108.7
C12—C11—H11119.9N3—C20—H20B108.7
C10—C11—H11119.9H20A—C20—H20B107.6
C13—C12—C11121.0 (4)C20—C21—H21A109.5
C13—C12—H12119.5C20—C21—H21B109.5
C11—C12—H12119.5H21A—C21—H21B109.5
C12—C13—C14119.4 (4)C20—C21—H21C109.5
C12—C13—H13120.3H21A—C21—H21C109.5
C14—C13—H13120.3H21B—C21—H21C109.5
C7—N1—N2—C8172.4 (3)C9—S1—C8—N2167.1 (2)
C6—C1—C2—O1179.7 (3)C9—S1—C8—S212.3 (2)
C7—C1—C2—O13.5 (4)C8—S1—C9—C10105.5 (3)
C6—C1—C2—C30.5 (4)S1—C9—C10—C1548.7 (4)
C7—C1—C2—C3175.7 (3)S1—C9—C10—C11134.3 (3)
O1—C2—C3—C4178.9 (3)C15—C10—C11—C120.9 (5)
C1—C2—C3—C40.3 (5)C9—C10—C11—C12176.2 (3)
C2—C3—C4—C50.7 (5)C10—C11—C12—C130.2 (6)
C3—C4—C5—C60.3 (5)C11—C12—C13—C140.6 (6)
C4—C5—C6—C10.6 (5)C12—C13—C14—C150.6 (6)
C2—C1—C6—C50.9 (5)C13—C14—C15—C100.1 (5)
C7—C1—C6—C5175.1 (3)C11—C10—C15—C140.9 (5)
N2—N1—C7—O28.7 (5)C9—C10—C15—C14176.2 (3)
N2—N1—C7—C1169.2 (3)C18—N3—C16—C1764.9 (4)
C2—C1—C7—O20.4 (4)C20—N3—C16—C17166.6 (3)
C6—C1—C7—O2176.4 (3)C20—N3—C18—C1962.5 (4)
C2—C1—C7—N1177.5 (3)C16—N3—C18—C1962.2 (4)
C6—C1—C7—N11.5 (4)C18—N3—C20—C2158.6 (4)
N1—N2—C8—S22.5 (4)C16—N3—C20—C21172.9 (3)
N1—N2—C8—S1176.84 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.841.792.538 (3)147
N1—H1A···S20.882.392.855 (3)114
N3—H3A···O20.932.182.929 (3)137
N3—H3A···N20.932.273.094 (4)148
C9—H9A···S20.992.593.200 (3)120
C21—H21A···O1i0.982.563.377 (5)141
Symmetry code: (i) x1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H16N+·C15H13N2O2S2
Mr419.59
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)173
a, b, c (Å)10.7109 (4), 18.6807 (6), 22.1814 (7)
V3)4438.2 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.08 × 0.08 × 0.05
Data collection
DiffractometerNonius KappaCCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
26195, 3928, 2542
Rint0.138
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.118, 1.05
No. of reflections3928
No. of parameters257
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.23

Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), DENZO and SCALEPACK (Otwinowski & Minor 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.841.792.538 (3)147.4
N1—H1A···S20.882.392.855 (3)113.5
N3—H3A···O20.932.182.929 (3)137.0
N3—H3A···N20.932.273.094 (4)147.8
C9—H9A···S20.992.593.200 (3)119.9
C21—H21A···O1i0.982.563.377 (5)141.3
Symmetry code: (i) x1/2, y, z+1/2.
 

Acknowledgements

The authors thank Professor W. Quail, Saskatchewan Structural Sciences Centre, Canada, for the X-ray diffraction facility.

References

First citationAbu-Raqabah, A., Davies, G., El-Sayed, M. A., El-Toukhy, A., Shaikh, S. N. & Zubieta, J. (1992). Inorg. Chim. Acta, 193, 43–56.  CSD CrossRef CAS Web of Science Google Scholar
First citationAli, M. A. & Livingston, S. E. (1974). Coord. Chem. Rev. 13, 101–132.  CAS Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBoga, C., Forlani, L., Silverstoni, C., Corradi, A. B. & Sgarabotto, P. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 1363–1368.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGou, S. H., You, X. Z., Xu, Z., Yu, K. B. & Zhou, Z. Y. (1990). Polyhedron, 9, 2981–2985.  CSD CrossRef CAS Web of Science Google Scholar
First citationMarchi, A., Rossi, R., Magon, L., Duttai, A., Pasqualini, R., Ferretti, V. & Bertolasi, V. (1990). J. Chem. Soc. Dalton Trans. pp. 1411–1416.  CSD CrossRef Web of Science Google Scholar
First citationNonius (1998). COLLECT Nonius BV Delft The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationScovill, J. P., Klayman, D. L. & Franchino, C. F. (1982). J. Med. Chem. 25, 1261–1264.  CrossRef CAS PubMed Web of Science Google Scholar
First citationScovill, J. P., Klayman, D. L., Lambros, C., Childs, G. E. & Nortsh, J. D. (1984). J. Med. Chem. 27, 87–91.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97, University of Göttingen, Germany.  Google Scholar
First citationWest, D. X. & Pannell, L. K. (1989). Transition Met. Chem. 14, 457–462.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds