Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title complex, [Ti4Zr2(C2H3O2)10(C3H7O)6O4], was prepared in supercritical CO2. The mol­ecule lies on a crystallographic inversion center. The metallic core contains two Zr atoms each coordinated by eight O atoms in a distorted square-anti­prismatic geometry and four Ti atoms in distorted octa­hedral coordination geometries. The overall metallic core conformation can be described as `raft'-style since all six metal atoms and four bridging O atoms form an approximately planar arrangement. One of the unique terminal isopropoxide ligands is disordered over two sites with equal occupancies.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807041694/lh2485sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807041694/lh2485Isup2.hkl
Contains datablock I

CCDC reference: 660172

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.008 Å
  • Disorder in main residue
  • R factor = 0.043
  • wR factor = 0.116
  • Data-to-parameter ratio = 14.8

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT220_ALERT_2_A Large Non-Solvent C Ueq(max)/Ueq(min) ... 4.92 Ratio
Author Response: see _publ_section_exptl_refinement
PLAT241_ALERT_2_A Check High      Ueq as Compared to Neighbors for       C33B
Author Response: see _publ_section_exptl_refinement

Alert level B PLAT241_ALERT_2_B Check High Ueq as Compared to Neighbors for C34A
Author Response: see _publ_section_exptl_refinement
PLAT242_ALERT_2_B Check Low       Ueq as Compared to Neighbors for        O31

Alert level C PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 200 Deg. PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.78 Ratio PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C34B
Author Response: see _publ_section_exptl_refinement
PLAT242_ALERT_2_C Check Low       Ueq as Compared to Neighbors for        O21
PLAT242_ALERT_2_C Check Low       Ueq as Compared to Neighbors for        C22
PLAT242_ALERT_2_C Check Low       Ueq as Compared to Neighbors for       C32A
PLAT242_ALERT_2_C Check Low       Ueq as Compared to Neighbors for       C32B
PLAT245_ALERT_2_C U(iso) H32A    Smaller than U(eq) C33B    by ...       0.04 AngSq
PLAT245_ALERT_2_C U(iso) H32B    Smaller than U(eq) C34A    by ...       0.03 AngSq
PLAT301_ALERT_3_C Main Residue  Disorder .........................       8.00 Perc.
PLAT360_ALERT_2_C Short  C(sp3)-C(sp3) Bond  C22    -   C24    ...       1.43 Ang.

Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 28
2 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 12 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 12 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Titanium dioxide (TiO2) nanomaterials have been widely used as photocatalysts, optical coatings and electrodes in solar cells for numerous reasons. They possess favorable opto-electrical properties, and further, they are inexpensive, chemically stable and non-toxic. This field was pioneered by Fujishima & Honda (1972) with their work on the photo–induced splitting of water in the suspensions of micrometer sized titania. The performance depends on some important properties such as surface area, crystal size, thermal stability and quantum efficiency (Ohtani et al., 1997; Pal et al., 2007). These properties depend highly on both the synthesis method, and the subsequent thermal treatment technique, i.e. calcination.

In some cases, doping with a second metal has been found to be very effective in improving the properties of TiO2. Zirconia has been reported as one of the most suitable dopants to enhance the thermal stability and activity of TiO2 nanomaterials (Hernandez-Alonso et al., 2006; Durr et al., 2006; Kitiyanan et al., 2006). Binary metal oxides are synthesized by the Sol-Gel process because it has the ability to produce large scale homogeneous multicomponent metal oxides with lower cost and milder operating conditions compared to the CVD sputtering method (Mihaiu et al., 2007). Laaziz et al. (1992) produced Ti—Zr metal oxide crystals using a 1:1 molar ratio of titanium and zirconium precursors by acetic acid modified Sol-gel process in n-propanol. The resulting crystal structure was Zr6Ti3(OPr)16(OAc)8O6.

The Sol-gel process in supercritical carbon dioxide (ScCO2) has the potential to produce new and high quality materials. SiO2 aerogel (Sui et al., 2004), ZrO2 monolith (Sui et al., 2006), and TiO2 nanofibers (Sui et al., 2005) were produced by poly condensation of acetic acid with respective alkoxide and amorphous ZrO2 by a reverse microemulsion process (Lee et al., 2006). To the best of our knowledge, no one has produced binary metal oxide single crystals in supercritical CO2. It is important to investigate the single-crystal structure of binary metal alkoxides to understand the chemistry and the mechanism of nanostructure formation during the Sol-gel process in ScCO2.

Towards this end we attempted to synthesize an acetic-acid-modified Ti—Zr propoxide in ScCO2 using an acid:alkoxide ratio of 1.33:1. This yielded colourless plates which were fully characterized by single-crystal X-ray crystallography. The results of the study revealed a "raft" style hexanuclear mixed metal complex, Ti4Zr23-O)4 (µ-O2CCH3)10(µ-OiPr)2(OiPr)4, see Scheme. The molecule resided on a centre of symmetry, so only half of the molecule comprises the asymmetric unit. One of the terminal isopropoxide ligands is disordered and was modelled isotropically in equal ratios.

The core of the heterometallic structure consists of two Zr atoms and four Ti atoms linked by triply-bridging O atoms. The compound is also linked together via 10 bridging acetate ligands, 2 bridging isopropoxide ligands with the coordination completed by 4 isopropoxide ligands (Fig. 1). The titanium centers are surrounded by a distorted octahedron of O atoms, which is typical, as is the higher coordination number observed for the zirconium centers, in this case, 8. The µ3-oxo groups appear to be sp2 hybridized (average sum of angles = 352.0°).

Metal pure Titanium or Zirconium hexametallic species have been known to form prismatic hexagons, or octahedrons or "raft" style complexes. A search of the CSD V5.28 (Allen, 2002) revealed only two other hexametallic Zr—Ti metal clusters and they were both "raft" style. The crystal structures of the two complexes Ti2Zr43-O)4(µ-O2CC(CH3)(CH2))10(µ-OnBu)2(O2CC(CH3) (CH2))4and Ti4Zr23-O)4(µ-O2CC(CH3)(CH2))10 (µ-OnBu)2(OnBu)4 were determined by Moraru et al. (2001). As with the title compound both of these complexes crystallize in space group P-1 with Z = 1.

Related literature top

For background information, see: Durr et al. (2006); Fujishima & Honda (1972); Laaziz et al. (1992); Lee et al. (2006); Mihaiu et al. (2007); Ohtani et al. (1997); Pal et al. (2007); Sui et al. (2004, 2005, 2006). The only other two published crystal structures of hexametallic Zr—Ti metal cluster compounds (Moraru et al., 2001) are also triclinic with Z = 1. These both form 'raft'- style complexes as opposed to the numerous forms observed with pure Ti6 or Zr6 complexes.

For related literature, see: Allen (2002); Hernandez-Alonso et al. (2006); Kitiyanan et al. (2006).

Experimental top

The synthesis of single crystals in scCO2 was carried out in a 10 ml stainless steel view cell connected to a syringe pump (ISCO 260DM) for pumping CO2. A check valve (HIP) was used to prevent possible back flow from the view cell. The temperature and pressure in the view cell were measured and controlled by means of a T-type thermocouple (Omega), a heating tape, a temperature controller (Omega) and a pressure transducer (Omega). 2 ml (6.6 mmol) of titanium (IV) isopropoxide (reagent grade 97%), 0.325 ml (0.73 mmol) zirconium (IV) propoxide (reagent grade 90%) and 0.55 ml (9.8 mmol) of 99.7% acetic acid were quickly placed in the view cell, followed by addition of CO2 (insrument grade 99.99%) to 5000 PSI pressure and 313 K temperature. A magnetic stirrer was used for mixing the reaction. Colorless crystals started to appear after 15 days and after 30 days the material was washed continuously using ScCO2 at a controlled flow rate of approximately 0.5 ml/min, followed by controlled venting. The synthesized material was kept under an Argon atmosphere until ready for the X-ray diffraction experiment.

Refinement top

One of the isopropoxide units was modelled as disordered over two sites with occpuncies of 0.50/0.50. The following two bond lengths of the disordered moiety were restrained to be similar: O31—C32A, O31—C32B. The following four bond lengths of the disordered moiety were restrained to be similar: C32A—C33A, C32A—C34A, C32B—C33B, C32B—C34B. Soft restraints were applied to the isotropic displacement parameters of the disordered moiety. C32A and C32B had their displacement parameters restrained to be equal. The disorder has resulted in larger than normal displacment ellipsoids for the atoms involved.

All H atoms were positioned geometrically and constrained as riding atoms with C—H = 0.98Å and Uiso(H) = 1.2Ueq(C) for methyne H atoms and C—H = 0.96Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Structure description top

Titanium dioxide (TiO2) nanomaterials have been widely used as photocatalysts, optical coatings and electrodes in solar cells for numerous reasons. They possess favorable opto-electrical properties, and further, they are inexpensive, chemically stable and non-toxic. This field was pioneered by Fujishima & Honda (1972) with their work on the photo–induced splitting of water in the suspensions of micrometer sized titania. The performance depends on some important properties such as surface area, crystal size, thermal stability and quantum efficiency (Ohtani et al., 1997; Pal et al., 2007). These properties depend highly on both the synthesis method, and the subsequent thermal treatment technique, i.e. calcination.

In some cases, doping with a second metal has been found to be very effective in improving the properties of TiO2. Zirconia has been reported as one of the most suitable dopants to enhance the thermal stability and activity of TiO2 nanomaterials (Hernandez-Alonso et al., 2006; Durr et al., 2006; Kitiyanan et al., 2006). Binary metal oxides are synthesized by the Sol-Gel process because it has the ability to produce large scale homogeneous multicomponent metal oxides with lower cost and milder operating conditions compared to the CVD sputtering method (Mihaiu et al., 2007). Laaziz et al. (1992) produced Ti—Zr metal oxide crystals using a 1:1 molar ratio of titanium and zirconium precursors by acetic acid modified Sol-gel process in n-propanol. The resulting crystal structure was Zr6Ti3(OPr)16(OAc)8O6.

The Sol-gel process in supercritical carbon dioxide (ScCO2) has the potential to produce new and high quality materials. SiO2 aerogel (Sui et al., 2004), ZrO2 monolith (Sui et al., 2006), and TiO2 nanofibers (Sui et al., 2005) were produced by poly condensation of acetic acid with respective alkoxide and amorphous ZrO2 by a reverse microemulsion process (Lee et al., 2006). To the best of our knowledge, no one has produced binary metal oxide single crystals in supercritical CO2. It is important to investigate the single-crystal structure of binary metal alkoxides to understand the chemistry and the mechanism of nanostructure formation during the Sol-gel process in ScCO2.

Towards this end we attempted to synthesize an acetic-acid-modified Ti—Zr propoxide in ScCO2 using an acid:alkoxide ratio of 1.33:1. This yielded colourless plates which were fully characterized by single-crystal X-ray crystallography. The results of the study revealed a "raft" style hexanuclear mixed metal complex, Ti4Zr23-O)4 (µ-O2CCH3)10(µ-OiPr)2(OiPr)4, see Scheme. The molecule resided on a centre of symmetry, so only half of the molecule comprises the asymmetric unit. One of the terminal isopropoxide ligands is disordered and was modelled isotropically in equal ratios.

The core of the heterometallic structure consists of two Zr atoms and four Ti atoms linked by triply-bridging O atoms. The compound is also linked together via 10 bridging acetate ligands, 2 bridging isopropoxide ligands with the coordination completed by 4 isopropoxide ligands (Fig. 1). The titanium centers are surrounded by a distorted octahedron of O atoms, which is typical, as is the higher coordination number observed for the zirconium centers, in this case, 8. The µ3-oxo groups appear to be sp2 hybridized (average sum of angles = 352.0°).

Metal pure Titanium or Zirconium hexametallic species have been known to form prismatic hexagons, or octahedrons or "raft" style complexes. A search of the CSD V5.28 (Allen, 2002) revealed only two other hexametallic Zr—Ti metal clusters and they were both "raft" style. The crystal structures of the two complexes Ti2Zr43-O)4(µ-O2CC(CH3)(CH2))10(µ-OnBu)2(O2CC(CH3) (CH2))4and Ti4Zr23-O)4(µ-O2CC(CH3)(CH2))10 (µ-OnBu)2(OnBu)4 were determined by Moraru et al. (2001). As with the title compound both of these complexes crystallize in space group P-1 with Z = 1.

For background information, see: Durr et al. (2006); Fujishima & Honda (1972); Laaziz et al. (1992); Lee et al. (2006); Mihaiu et al. (2007); Ohtani et al. (1997); Pal et al. (2007); Sui et al. (2004, 2005, 2006). The only other two published crystal structures of hexametallic Zr—Ti metal cluster compounds (Moraru et al., 2001) are also triclinic with Z = 1. These both form 'raft'- style complexes as opposed to the numerous forms observed with pure Ti6 or Zr6 complexes.

For related literature, see: Allen (2002); Hernandez-Alonso et al. (2006); Kitiyanan et al. (2006).

Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 2001); software used to prepare material for publication: SHELXTL/PC.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title ccompound with 30% probability displacement ellipsoids and the atom labelling scheme. H atoms are omitted for clarity. Atoms labelled with the suffix 'a' are related by the symmetry operator (1 - x, 2 - y, 2 - z).
Decakis(µ2-acetato-κ2O:O')bis(µ2-isopropoxy-\k2O:O)tetraisopropoxytetra-µ3-oxo-tetratitaniumdizirconium top
Crystal data top
[Ti4Zr2(C2H3O2)10(C3H7O)6O4]Z = 1
Mr = 1383.00F(000) = 708
Triclinic, P1Dx = 1.595 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.1178 (4) ÅCell parameters from 10310 reflections
b = 11.9884 (5) Åθ = 2.0–27.5°
c = 12.3722 (4) ŵ = 0.96 mm1
α = 94.713 (2)°T = 296 K
β = 90.775 (2)°Plate, colourless
γ = 105.608 (2)°0.20 × 0.07 × 0.04 mm
V = 1439.48 (9) Å3
Data collection top
Nonius KappaCCD
diffractometer
5064 independent reflections
Radiation source: fine-focus sealed tube4164 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
φ scans, and ω scans with κ offsetsθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 1212
Tmin = 0.832, Tmax = 0.969k = 1412
15521 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0533P)2 + 1.8365P]
where P = (Fo2 + 2Fc2)/3
5064 reflections(Δ/σ)max = 0.002
343 parametersΔρmax = 0.45 e Å3
28 restraintsΔρmin = 0.62 e Å3
Crystal data top
[Ti4Zr2(C2H3O2)10(C3H7O)6O4]γ = 105.608 (2)°
Mr = 1383.00V = 1439.48 (9) Å3
Triclinic, P1Z = 1
a = 10.1178 (4) ÅMo Kα radiation
b = 11.9884 (5) ŵ = 0.96 mm1
c = 12.3722 (4) ÅT = 296 K
α = 94.713 (2)°0.20 × 0.07 × 0.04 mm
β = 90.775 (2)°
Data collection top
Nonius KappaCCD
diffractometer
5064 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
4164 reflections with I > 2σ(I)
Tmin = 0.832, Tmax = 0.969Rint = 0.053
15521 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04328 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.04Δρmax = 0.45 e Å3
5064 reflectionsΔρmin = 0.62 e Å3
343 parameters
Special details top

Experimental. Absorption correction: multi-scan from symmetry-related measurements (SORTAV; Blessing, 1995)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zr10.36683 (4)0.91306 (3)0.91786 (3)0.03491 (13)
Ti20.64206 (7)0.97018 (6)0.79062 (5)0.03841 (19)
Ti30.35561 (8)0.74024 (7)0.69502 (6)0.0452 (2)
O10.4534 (3)0.8919 (2)0.7651 (2)0.0392 (6)
O20.4157 (3)1.0079 (2)1.07191 (19)0.0371 (6)
O110.2824 (3)0.7274 (2)0.8373 (2)0.0447 (7)
C120.1925 (5)0.6317 (4)0.8897 (5)0.0681 (14)
H12A0.18690.65990.96560.082*
C130.0541 (6)0.6062 (6)0.8399 (6)0.094 (2)
H13A0.02560.67650.84140.141*
H13B0.00860.55080.87970.141*
H13C0.05460.57460.76610.141*
C140.2513 (7)0.5290 (5)0.8899 (6)0.0912 (19)
H14A0.25580.49750.81660.137*
H14B0.19360.47070.93010.137*
H14C0.34190.55340.92320.137*
O210.6591 (3)1.1083 (3)0.7418 (2)0.0527 (7)
C220.7334 (8)1.2032 (6)0.6853 (6)0.103 (2)
H22A0.66951.22030.63300.123*
C230.7868 (12)1.3112 (6)0.7649 (9)0.184 (5)
H23A0.74231.29860.83260.276*
H23B0.76741.37690.73550.276*
H23C0.88411.32580.77670.276*
C240.8473 (10)1.1835 (7)0.6272 (7)0.154 (4)
H24A0.92411.19310.67690.231*
H24B0.87171.23820.57350.231*
H24C0.82271.10590.59220.231*
O310.2771 (3)0.6024 (3)0.6257 (3)0.0611 (9)
C32A0.261 (2)0.5116 (17)0.5429 (16)0.143 (4)*0.50
H32A0.32070.54640.48570.172*0.50
C33A0.129 (2)0.479 (2)0.4949 (19)0.179 (9)*0.50
H33A0.12260.41670.43910.269*0.50
H33B0.11100.54400.46370.269*0.50
H33C0.06350.45280.54890.269*0.50
C34A0.324 (3)0.425 (2)0.581 (2)0.204 (11)*0.50
H34A0.27400.34930.55030.306*0.50
H34B0.32240.42830.65860.306*0.50
H34C0.41760.44170.55890.306*0.50
C32B0.292 (3)0.5001 (15)0.5687 (16)0.143 (4)*0.50
H32B0.37910.49100.59650.172*0.50
C33B0.308 (3)0.507 (2)0.4565 (18)0.207 (11)*0.50
H33D0.26030.55960.43140.310*0.50
H33E0.27160.43130.41900.310*0.50
H33F0.40410.53480.44260.310*0.50
C34B0.191 (3)0.396 (2)0.592 (2)0.190 (10)*0.50
H34D0.17530.33990.53030.286*0.50
H34E0.10600.41410.60960.286*0.50
H34F0.22270.36430.65320.286*0.50
O410.5140 (3)0.6760 (3)0.7397 (3)0.0548 (8)
C420.6246 (4)0.7114 (4)0.7958 (4)0.0492 (10)
O430.6846 (3)0.8148 (3)0.8253 (2)0.0506 (7)
C440.6887 (6)0.6198 (5)0.8282 (5)0.0821 (17)
H44A0.73170.59200.76690.123*
H44B0.61920.55650.85290.123*
H44C0.75630.65220.88550.123*
O450.4674 (3)0.7947 (3)0.5625 (2)0.0590 (8)
C460.5882 (5)0.8594 (4)0.5547 (3)0.0559 (12)
O470.6705 (3)0.9047 (3)0.6325 (2)0.0561 (8)
C480.6347 (7)0.8837 (6)0.4403 (4)0.092 (2)
H48A0.61340.95310.42120.138*
H48B0.58800.81940.39000.138*
H48C0.73200.89400.43760.138*
O510.8441 (3)1.0276 (3)0.8471 (2)0.0480 (7)
C520.8950 (4)1.0991 (4)0.9271 (3)0.0419 (9)
O530.8269 (3)1.1369 (2)0.9984 (2)0.0473 (7)
C541.0481 (4)1.1436 (5)0.9367 (4)0.0637 (13)
H54A1.07571.22220.91710.096*
H54B1.08831.09560.88900.096*
H54C1.07851.14151.01020.096*
O610.3775 (3)1.0931 (2)0.8858 (2)0.0441 (6)
C620.4569 (4)1.1892 (4)0.9196 (3)0.0455 (10)
O630.5568 (3)1.2066 (2)0.9872 (2)0.0440 (6)
C640.4300 (6)1.2946 (4)0.8765 (5)0.0711 (15)
H64A0.46521.30270.80500.107*
H64B0.47471.36240.92360.107*
H64C0.33301.28610.87330.107*
O710.2073 (3)0.8079 (3)0.6488 (2)0.0528 (7)
C720.1513 (4)0.8744 (4)0.7072 (3)0.0485 (10)
O730.1912 (3)0.9176 (3)0.7996 (2)0.0482 (7)
C740.0268 (6)0.8987 (6)0.6578 (4)0.0774 (16)
H74A0.05050.83180.65980.116*
H74B0.04330.91560.58390.116*
H74C0.00790.96420.69810.116*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zr10.0278 (2)0.0345 (2)0.0407 (2)0.00664 (15)0.00253 (14)0.00048 (15)
Ti20.0311 (4)0.0410 (4)0.0416 (4)0.0078 (3)0.0053 (3)0.0010 (3)
Ti30.0373 (4)0.0457 (4)0.0488 (4)0.0087 (3)0.0006 (3)0.0089 (3)
O10.0357 (14)0.0403 (15)0.0412 (14)0.0111 (12)0.0015 (11)0.0001 (11)
O20.0323 (14)0.0365 (14)0.0415 (14)0.0087 (11)0.0033 (11)0.0007 (11)
O110.0389 (15)0.0359 (15)0.0532 (16)0.0013 (12)0.0056 (12)0.0029 (12)
C120.067 (3)0.048 (3)0.082 (3)0.004 (2)0.013 (3)0.001 (2)
C130.061 (4)0.092 (5)0.119 (5)0.003 (3)0.003 (3)0.004 (4)
C140.104 (5)0.057 (3)0.116 (5)0.025 (3)0.011 (4)0.021 (3)
O210.0484 (18)0.0498 (18)0.0569 (17)0.0051 (14)0.0066 (14)0.0129 (14)
C220.093 (5)0.096 (5)0.120 (5)0.010 (4)0.019 (4)0.056 (4)
C230.246 (13)0.058 (5)0.215 (11)0.018 (6)0.118 (10)0.001 (6)
C240.185 (9)0.118 (7)0.135 (7)0.010 (6)0.096 (7)0.025 (5)
O310.0553 (19)0.0532 (19)0.0669 (19)0.0098 (15)0.0031 (15)0.0225 (16)
O410.0447 (18)0.0458 (17)0.073 (2)0.0145 (14)0.0017 (15)0.0080 (15)
C420.041 (2)0.049 (3)0.059 (3)0.017 (2)0.005 (2)0.001 (2)
O430.0428 (17)0.0445 (17)0.0647 (18)0.0145 (14)0.0024 (14)0.0029 (14)
C440.066 (4)0.054 (3)0.129 (5)0.023 (3)0.020 (3)0.004 (3)
O450.053 (2)0.071 (2)0.0470 (17)0.0109 (17)0.0053 (14)0.0115 (15)
C460.050 (3)0.071 (3)0.045 (2)0.015 (2)0.008 (2)0.002 (2)
O470.0444 (17)0.069 (2)0.0493 (17)0.0102 (15)0.0078 (14)0.0079 (15)
C480.089 (4)0.122 (5)0.050 (3)0.003 (4)0.015 (3)0.000 (3)
O510.0301 (14)0.0549 (18)0.0551 (17)0.0074 (13)0.0056 (12)0.0044 (14)
C520.032 (2)0.046 (2)0.048 (2)0.0086 (18)0.0056 (17)0.0084 (19)
O530.0322 (15)0.0510 (17)0.0533 (16)0.0043 (13)0.0090 (12)0.0055 (13)
C540.032 (2)0.074 (3)0.079 (3)0.007 (2)0.006 (2)0.006 (3)
O610.0384 (15)0.0399 (16)0.0531 (16)0.0092 (13)0.0041 (12)0.0043 (13)
C620.037 (2)0.042 (2)0.058 (2)0.0116 (19)0.0029 (19)0.0052 (19)
O630.0375 (16)0.0341 (15)0.0577 (17)0.0057 (12)0.0008 (13)0.0025 (12)
C640.068 (3)0.047 (3)0.098 (4)0.013 (2)0.020 (3)0.017 (3)
O710.0431 (17)0.063 (2)0.0517 (17)0.0163 (15)0.0039 (13)0.0047 (15)
C720.037 (2)0.056 (3)0.051 (2)0.013 (2)0.0019 (19)0.003 (2)
O730.0354 (15)0.0535 (18)0.0557 (17)0.0151 (13)0.0042 (13)0.0050 (14)
C740.059 (3)0.109 (5)0.072 (3)0.042 (3)0.013 (3)0.008 (3)
Geometric parameters (Å, º) top
Zr1—O22.118 (2)C32A—H32A0.9800
Zr1—O12.118 (2)C33A—H33A0.9600
Zr1—O2i2.147 (3)C33A—H33B0.9600
Zr1—O53i2.191 (3)C33A—H33C0.9600
Zr1—O612.201 (3)C34A—H34A0.9600
Zr1—O63i2.210 (3)C34A—H34B0.9600
Zr1—O112.295 (3)C34A—H34C0.9600
Zr1—O732.301 (3)C32B—C33B1.406 (16)
Zr1—Ti23.1578 (8)C32B—C34B1.441 (16)
Zr1—Ti33.2913 (8)C32B—H32B0.9800
Zr1—Zr1i3.4454 (7)C33B—H33D0.9600
Ti2—O211.775 (3)C33B—H33E0.9600
Ti2—O2i1.827 (2)C33B—H33F0.9600
Ti2—O11.896 (3)C34B—H34D0.9600
Ti2—O512.065 (3)C34B—H34E0.9600
Ti2—O432.097 (3)C34B—H34F0.9600
Ti2—O472.100 (3)O41—C421.261 (5)
Ti3—O311.772 (3)C42—O431.247 (5)
Ti3—O111.921 (3)C42—C441.495 (6)
Ti3—O11.946 (3)C44—H44A0.9600
Ti3—O711.986 (3)C44—H44B0.9600
Ti3—O412.044 (3)C44—H44C0.9600
Ti3—O452.055 (3)O45—C461.268 (6)
O2—Ti2i1.827 (2)C46—O471.251 (5)
O2—Zr1i2.147 (3)C46—C481.524 (7)
O11—C121.462 (6)C48—H48A0.9600
C12—C131.466 (8)C48—H48B0.9600
C12—C141.505 (7)C48—H48C0.9600
C12—H12A0.9800O51—C521.261 (5)
C13—H13A0.9600C52—O531.255 (5)
C13—H13B0.9600C52—C541.496 (6)
C13—H13C0.9600O53—Zr1i2.191 (3)
C14—H14A0.9600C54—H54A0.9600
C14—H14B0.9600C54—H54B0.9600
C14—H14C0.9600C54—H54C0.9600
O21—C221.426 (7)O61—C621.250 (5)
C22—C241.428 (10)C62—O631.265 (5)
C22—C231.529 (11)C62—C641.498 (6)
C22—H22A0.9800O63—Zr1i2.210 (3)
C23—H23A0.9600C64—H64A0.9600
C23—H23B0.9600C64—H64B0.9600
C23—H23C0.9600C64—H64C0.9600
C24—H24A0.9600O71—C721.279 (5)
C24—H24B0.9600C72—O731.231 (5)
C24—H24C0.9600C72—C741.500 (6)
O31—C32A1.407 (14)C74—H74A0.9600
O31—C32B1.408 (15)C74—H74B0.9600
C32A—C33A1.396 (15)C74—H74C0.9600
C32A—C34A1.456 (16)
O2—Zr1—O1140.96 (10)C12—C13—H13A109.5
O2—Zr1—O2i72.20 (11)C12—C13—H13B109.5
O1—Zr1—O2i69.68 (10)H13A—C13—H13B109.5
O2—Zr1—O53i76.97 (10)C12—C13—H13C109.5
O1—Zr1—O53i141.85 (10)H13A—C13—H13C109.5
O2i—Zr1—O53i148.21 (10)H13B—C13—H13C109.5
O2—Zr1—O6175.99 (10)C12—C14—H14A109.5
O1—Zr1—O6188.40 (10)C12—C14—H14B109.5
O2i—Zr1—O6178.44 (10)H14A—C14—H14B109.5
O53i—Zr1—O61101.67 (11)C12—C14—H14C109.5
O2—Zr1—O63i77.27 (10)H14A—C14—H14C109.5
O1—Zr1—O63i102.10 (10)H14B—C14—H14C109.5
O2i—Zr1—O63i77.47 (10)C22—O21—Ti2150.7 (4)
O53i—Zr1—O63i88.45 (11)O21—C22—C24115.2 (6)
O61—Zr1—O63i148.32 (10)O21—C22—C23109.8 (6)
O2—Zr1—O11141.88 (10)C24—C22—C23107.9 (7)
O1—Zr1—O1168.41 (10)O21—C22—H22A107.9
O2i—Zr1—O11119.81 (9)C24—C22—H22A107.9
O53i—Zr1—O1180.96 (10)C23—C22—H22A107.9
O61—Zr1—O11139.47 (10)C22—C23—H23A109.5
O63i—Zr1—O1171.41 (10)C22—C23—H23B109.5
O2—Zr1—O73126.31 (9)H23A—C23—H23B109.5
O1—Zr1—O7378.02 (10)C22—C23—H23C109.5
O2i—Zr1—O73134.51 (10)H23A—C23—H23C109.5
O53i—Zr1—O7371.69 (11)H23B—C23—H23C109.5
O61—Zr1—O7369.29 (10)C22—C24—H24A109.5
O63i—Zr1—O73141.88 (10)C22—C24—H24B109.5
O11—Zr1—O7373.50 (10)H24A—C24—H24B109.5
O2—Zr1—Ti2105.70 (7)C22—C24—H24C109.5
O1—Zr1—Ti235.70 (7)H24A—C24—H24C109.5
O2i—Zr1—Ti233.99 (6)H24B—C24—H24C109.5
O53i—Zr1—Ti2176.67 (7)C32A—O31—Ti3155.7 (11)
O61—Zr1—Ti281.03 (7)C32B—O31—Ti3148.6 (11)
O63i—Zr1—Ti290.22 (7)C33A—C32A—O31112.0 (17)
O11—Zr1—Ti295.72 (7)C33A—C32A—C34A121 (2)
O73—Zr1—Ti2107.73 (7)O31—C32A—C34A108.5 (16)
O2—Zr1—Ti3165.63 (7)C33A—C32A—H32A104.6
O1—Zr1—Ti334.20 (7)O31—C32A—H32A104.6
O2i—Zr1—Ti398.04 (6)C34A—C32A—H32A104.6
O53i—Zr1—Ti3110.59 (7)C33B—C32B—O31114.6 (18)
O61—Zr1—Ti3113.07 (7)C33B—C32B—C34B112 (2)
O63i—Zr1—Ti390.48 (7)O31—C32B—C34B114.2 (19)
O11—Zr1—Ti334.77 (7)C33B—C32B—H32B104.8
O73—Zr1—Ti368.06 (7)O31—C32B—H32B104.8
Ti2—Zr1—Ti366.362 (19)C34B—C32B—H32B104.8
O2—Zr1—Zr1i36.38 (7)C32B—C33B—H33D109.5
O1—Zr1—Zr1i105.14 (7)C32B—C33B—H33E109.5
O2i—Zr1—Zr1i35.82 (6)H33D—C33B—H33E109.5
O53i—Zr1—Zr1i113.02 (7)C32B—C33B—H33F109.5
O61—Zr1—Zr1i74.12 (7)H33D—C33B—H33F109.5
O63i—Zr1—Zr1i74.30 (7)H33E—C33B—H33F109.5
O11—Zr1—Zr1i142.49 (7)C32B—C34B—H34D109.5
O73—Zr1—Zr1i143.19 (7)C32B—C34B—H34E109.5
Ti2—Zr1—Zr1i69.503 (17)H34D—C34B—H34E109.5
Ti3—Zr1—Zr1i133.05 (2)C32B—C34B—H34F109.5
O21—Ti2—O2i101.96 (13)H34D—C34B—H34F109.5
O21—Ti2—O1104.06 (13)H34E—C34B—H34F109.5
O2i—Ti2—O181.71 (11)C42—O41—Ti3137.5 (3)
O21—Ti2—O5188.72 (13)O43—C42—O41125.9 (4)
O2i—Ti2—O5190.22 (11)O43—C42—C44117.9 (4)
O1—Ti2—O51166.02 (12)O41—C42—C44116.2 (4)
O21—Ti2—O43161.19 (13)C42—O43—Ti2131.3 (3)
O2i—Ti2—O4391.35 (12)C42—C44—H44A109.5
O1—Ti2—O4390.87 (12)C42—C44—H44B109.5
O51—Ti2—O4377.87 (12)H44A—C44—H44B109.5
O21—Ti2—O4788.87 (13)C42—C44—H44C109.5
O2i—Ti2—O47165.51 (13)H44A—C44—H44C109.5
O1—Ti2—O4786.37 (11)H44B—C44—H44C109.5
O51—Ti2—O4799.72 (11)C46—O45—Ti3131.7 (3)
O43—Ti2—O4780.58 (12)O47—C46—O45125.6 (4)
O21—Ti2—Zr1106.25 (10)O47—C46—C48118.0 (5)
O2i—Ti2—Zr141.05 (8)O45—C46—C48116.4 (4)
O1—Ti2—Zr140.69 (7)C46—O47—Ti2132.3 (3)
O51—Ti2—Zr1130.54 (8)C46—C48—H48A109.5
O43—Ti2—Zr192.52 (8)C46—C48—H48B109.5
O47—Ti2—Zr1126.75 (9)H48A—C48—H48B109.5
O31—Ti3—O11103.45 (14)C46—C48—H48C109.5
O31—Ti3—O1175.91 (13)H48A—C48—H48C109.5
O11—Ti3—O179.97 (11)H48B—C48—H48C109.5
O31—Ti3—O7193.18 (14)C52—O51—Ti2128.7 (2)
O11—Ti3—O7190.21 (12)O53—C52—O51125.0 (4)
O1—Ti3—O7189.02 (12)O53—C52—C54117.7 (4)
O31—Ti3—O4188.12 (14)O51—C52—C54117.4 (4)
O11—Ti3—O4191.42 (13)C52—O53—Zr1i141.7 (3)
O1—Ti3—O4189.57 (11)C52—C54—H54A109.5
O71—Ti3—O41177.63 (14)C52—C54—H54B109.5
O31—Ti3—O4591.71 (14)H54A—C54—H54B109.5
O11—Ti3—O45164.65 (12)C52—C54—H54C109.5
O1—Ti3—O4584.79 (12)H54A—C54—H54C109.5
O71—Ti3—O4591.39 (13)H54B—C54—H54C109.5
O41—Ti3—O4586.59 (13)C62—O61—Zr1133.0 (3)
O31—Ti3—Zr1146.00 (11)O61—C62—O63126.6 (4)
O11—Ti3—Zr142.94 (8)O61—C62—C64116.6 (4)
O1—Ti3—Zr137.72 (8)O63—C62—C64116.7 (4)
O71—Ti3—Zr183.70 (8)C62—O63—Zr1i131.9 (3)
O41—Ti3—Zr196.33 (8)C62—C64—H64A109.5
O45—Ti3—Zr1122.15 (9)C62—C64—H64B109.5
Ti2—O1—Ti3133.57 (14)H64A—C64—H64B109.5
Ti2—O1—Zr1103.61 (11)C62—C64—H64C109.5
Ti3—O1—Zr1108.08 (12)H64A—C64—H64C109.5
Ti2i—O2—Zr1145.76 (14)H64B—C64—H64C109.5
Ti2i—O2—Zr1i104.95 (12)C72—O71—Ti3127.0 (3)
Zr1—O2—Zr1i107.80 (10)O73—C72—O71124.9 (4)
C12—O11—Ti3133.3 (3)O73—C72—C74118.9 (4)
C12—O11—Zr1124.4 (3)O71—C72—C74116.3 (4)
Ti3—O11—Zr1102.28 (12)C72—O73—Zr1135.7 (3)
O11—C12—C13108.6 (5)C72—C74—H74A109.5
O11—C12—C14111.8 (4)C72—C74—H74B109.5
C13—C12—C14114.9 (5)H74A—C74—H74B109.5
O11—C12—H12A107.1C72—C74—H74C109.5
C13—C12—H12A107.1H74A—C74—H74C109.5
C14—C12—H12A107.1H74B—C74—H74C109.5
O2—Zr1—Ti2—O2179.65 (13)O61—Zr1—O2—Ti2i115.4 (3)
O1—Zr1—Ti2—O2192.81 (16)O63i—Zr1—O2—Ti2i81.7 (2)
O2i—Zr1—Ti2—O2189.65 (16)O11—Zr1—O2—Ti2i46.6 (3)
O61—Zr1—Ti2—O217.05 (12)O73—Zr1—O2—Ti2i64.9 (3)
O63i—Zr1—Ti2—O21156.47 (12)Ti2—Zr1—O2—Ti2i168.3 (2)
O11—Zr1—Ti2—O21132.19 (13)Ti3—Zr1—O2—Ti2i113.8 (3)
O73—Zr1—Ti2—O2157.72 (13)Zr1i—Zr1—O2—Ti2i162.5 (3)
Ti3—Zr1—Ti2—O21113.10 (11)O1—Zr1—O2—Zr1i12.8 (2)
Zr1i—Zr1—Ti2—O2183.35 (10)O2i—Zr1—O2—Zr1i0.0
O2—Zr1—Ti2—O2i10.00 (19)O53i—Zr1—O2—Zr1i172.10 (14)
O1—Zr1—Ti2—O2i177.54 (17)O61—Zr1—O2—Zr1i82.13 (12)
O61—Zr1—Ti2—O2i82.60 (14)O63i—Zr1—O2—Zr1i80.74 (12)
O63i—Zr1—Ti2—O2i66.83 (14)O11—Zr1—O2—Zr1i115.89 (15)
O11—Zr1—Ti2—O2i138.16 (14)O73—Zr1—O2—Zr1i132.66 (12)
O73—Zr1—Ti2—O2i147.37 (14)Ti2—Zr1—O2—Zr1i5.85 (11)
Ti3—Zr1—Ti2—O2i157.25 (12)Ti3—Zr1—O2—Zr1i48.7 (4)
Zr1i—Zr1—Ti2—O2i6.30 (12)O31—Ti3—O11—C124.4 (4)
O2—Zr1—Ti2—O1172.46 (14)O1—Ti3—O11—C12173.3 (4)
O2i—Zr1—Ti2—O1177.54 (17)O71—Ti3—O11—C1297.7 (4)
O61—Zr1—Ti2—O199.86 (14)O41—Ti3—O11—C1284.0 (4)
O63i—Zr1—Ti2—O1110.72 (14)O45—Ti3—O11—C12166.3 (5)
O11—Zr1—Ti2—O139.39 (14)Zr1—Ti3—O11—C12178.2 (4)
O73—Zr1—Ti2—O135.09 (14)O31—Ti3—O11—Zr1173.82 (13)
Ti3—Zr1—Ti2—O120.29 (12)O1—Ti3—O11—Zr18.46 (11)
Zr1i—Zr1—Ti2—O1176.16 (12)O71—Ti3—O11—Zr180.51 (13)
O2—Zr1—Ti2—O5122.99 (14)O41—Ti3—O11—Zr197.77 (12)
O1—Zr1—Ti2—O51164.56 (17)O45—Ti3—O11—Zr115.5 (5)
O2i—Zr1—Ti2—O5112.99 (16)O2—Zr1—O11—C1225.2 (4)
O61—Zr1—Ti2—O5195.59 (13)O1—Zr1—O11—C12173.3 (3)
O63i—Zr1—Ti2—O5153.84 (13)O2i—Zr1—O11—C12124.4 (3)
O11—Zr1—Ti2—O51125.17 (13)O53i—Zr1—O11—C1229.8 (3)
O73—Zr1—Ti2—O51160.35 (14)O61—Zr1—O11—C12127.3 (3)
Ti3—Zr1—Ti2—O51144.27 (12)O63i—Zr1—O11—C1261.6 (3)
Zr1i—Zr1—Ti2—O5119.28 (11)O73—Zr1—O11—C12103.3 (3)
O2—Zr1—Ti2—O4399.15 (11)Ti2—Zr1—O11—C12149.9 (3)
O1—Zr1—Ti2—O4388.39 (15)Ti3—Zr1—O11—C12178.4 (4)
O2i—Zr1—Ti2—O4389.15 (14)Zr1i—Zr1—O11—C1286.5 (3)
O61—Zr1—Ti2—O43171.75 (10)O2—Zr1—O11—Ti3156.34 (12)
O63i—Zr1—Ti2—O4322.33 (11)O1—Zr1—O11—Ti38.23 (10)
O11—Zr1—Ti2—O4349.01 (11)O2i—Zr1—O11—Ti357.16 (15)
O73—Zr1—Ti2—O43123.48 (11)O53i—Zr1—O11—Ti3148.59 (14)
Ti3—Zr1—Ti2—O4368.10 (8)O61—Zr1—O11—Ti351.2 (2)
Zr1i—Zr1—Ti2—O4395.45 (8)O63i—Zr1—O11—Ti3120.00 (14)
O2—Zr1—Ti2—O47179.28 (14)O73—Zr1—O11—Ti375.13 (12)
O1—Zr1—Ti2—O478.27 (16)Ti2—Zr1—O11—Ti331.70 (11)
O2i—Zr1—Ti2—O47169.28 (17)Zr1i—Zr1—O11—Ti395.12 (14)
O61—Zr1—Ti2—O47108.12 (14)Ti3—O11—C12—C1369.9 (5)
O63i—Zr1—Ti2—O47102.45 (14)Zr1—O11—C12—C13108.0 (4)
O11—Zr1—Ti2—O4731.12 (14)Ti3—O11—C12—C1457.9 (6)
O73—Zr1—Ti2—O4743.36 (14)Zr1—O11—C12—C14124.2 (4)
Ti3—Zr1—Ti2—O4712.02 (12)O2i—Ti2—O21—C22136.2 (8)
Zr1i—Zr1—Ti2—O47175.57 (12)O1—Ti2—O21—C22139.5 (8)
O2—Zr1—Ti3—O3197.2 (4)O51—Ti2—O21—C2246.3 (8)
O1—Zr1—Ti3—O31177.1 (2)O43—Ti2—O21—C222.1 (10)
O2i—Zr1—Ti3—O31143.4 (2)O47—Ti2—O21—C2253.5 (8)
O53i—Zr1—Ti3—O3122.6 (2)Zr1—Ti2—O21—C22178.4 (8)
O61—Zr1—Ti3—O31135.8 (2)Ti2—O21—C22—C2410.0 (13)
O63i—Zr1—Ti3—O3166.0 (2)Ti2—O21—C22—C23112.1 (9)
O11—Zr1—Ti3—O3110.8 (2)O11—Ti3—O31—C32A162 (2)
O73—Zr1—Ti3—O3181.7 (2)O71—Ti3—O31—C32A107 (2)
Ti2—Zr1—Ti3—O31156.0 (2)O41—Ti3—O31—C32A71 (2)
Zr1i—Zr1—Ti3—O31134.7 (2)O45—Ti3—O31—C32A15 (2)
O2—Zr1—Ti3—O1186.4 (3)Zr1—Ti3—O31—C32A170 (2)
O1—Zr1—Ti3—O11166.30 (17)O11—Ti3—O31—C32B121.0 (18)
O2i—Zr1—Ti3—O11132.58 (14)O71—Ti3—O31—C32B148.0 (18)
O53i—Zr1—Ti3—O1133.36 (15)O41—Ti3—O31—C32B30.0 (18)
O61—Zr1—Ti3—O11146.61 (15)O45—Ti3—O31—C32B56.5 (18)
O63i—Zr1—Ti3—O1155.17 (14)Zr1—Ti3—O31—C32B128.6 (18)
O73—Zr1—Ti3—O1192.48 (15)C32B—O31—C32A—C33A144 (6)
Ti2—Zr1—Ti3—O11145.19 (13)Ti3—O31—C32A—C33A127 (2)
Zr1i—Zr1—Ti3—O11123.92 (13)C32B—O31—C32A—C34A8 (4)
O2—Zr1—Ti3—O179.9 (3)Ti3—O31—C32A—C34A97 (3)
O2i—Zr1—Ti3—O133.71 (14)C32A—O31—C32B—C33B41 (4)
O53i—Zr1—Ti3—O1160.35 (15)Ti3—O31—C32B—C33B87 (3)
O61—Zr1—Ti3—O147.09 (14)C32A—O31—C32B—C34B90 (5)
O63i—Zr1—Ti3—O1111.13 (14)Ti3—O31—C32B—C34B141.8 (16)
O11—Zr1—Ti3—O1166.30 (17)O31—Ti3—O41—C42178.2 (5)
O73—Zr1—Ti3—O1101.22 (15)O11—Ti3—O41—C4274.8 (5)
Ti2—Zr1—Ti3—O121.10 (12)O1—Ti3—O41—C425.2 (5)
Zr1i—Zr1—Ti3—O142.38 (13)O45—Ti3—O41—C4290.0 (5)
O2—Zr1—Ti3—O71176.5 (3)Zr1—Ti3—O41—C4232.0 (5)
O1—Zr1—Ti3—O7196.58 (16)Ti3—O41—C42—O4316.3 (8)
O2i—Zr1—Ti3—O71130.29 (12)Ti3—O41—C42—C44164.2 (4)
O53i—Zr1—Ti3—O7163.77 (13)O41—C42—O43—Ti24.4 (7)
O61—Zr1—Ti3—O7149.49 (12)C44—C42—O43—Ti2175.1 (3)
O63i—Zr1—Ti3—O71152.29 (12)O21—Ti2—O43—C42117.0 (5)
O11—Zr1—Ti3—O7197.12 (16)O2i—Ti2—O43—C42107.6 (4)
O73—Zr1—Ti3—O714.64 (12)O1—Ti2—O43—C4225.9 (4)
Ti2—Zr1—Ti3—O71117.68 (10)O51—Ti2—O43—C42162.4 (4)
Zr1i—Zr1—Ti3—O71138.96 (10)O47—Ti2—O43—C4260.3 (4)
O2—Zr1—Ti3—O411.1 (3)Zr1—Ti2—O43—C4266.6 (4)
O1—Zr1—Ti3—O4181.03 (15)O31—Ti3—O45—C46144.2 (4)
O2i—Zr1—Ti3—O4147.32 (12)O11—Ti3—O45—C4626.7 (8)
O53i—Zr1—Ti3—O41118.62 (13)O1—Ti3—O45—C4633.7 (4)
O61—Zr1—Ti3—O41128.13 (12)O71—Ti3—O45—C46122.6 (4)
O63i—Zr1—Ti3—O4130.09 (12)O41—Ti3—O45—C4656.2 (4)
O11—Zr1—Ti3—O4185.26 (15)Zr1—Ti3—O45—C4639.1 (5)
O73—Zr1—Ti3—O41177.74 (13)Ti3—O45—C46—O471.5 (8)
Ti2—Zr1—Ti3—O4159.93 (9)Ti3—O45—C46—C48178.0 (4)
Zr1i—Zr1—Ti3—O4138.65 (10)O45—C46—O47—Ti234.4 (8)
O2—Zr1—Ti3—O4588.8 (3)C48—C46—O47—Ti2145.1 (4)
O1—Zr1—Ti3—O458.91 (16)O21—Ti2—O47—C4689.8 (5)
O2i—Zr1—Ti3—O4542.62 (13)O2i—Ti2—O47—C4649.0 (8)
O53i—Zr1—Ti3—O45151.44 (14)O1—Ti2—O47—C4614.3 (4)
O61—Zr1—Ti3—O4538.18 (14)O51—Ti2—O47—C46178.4 (4)
O63i—Zr1—Ti3—O45120.03 (13)O43—Ti2—O47—C46105.8 (5)
O11—Zr1—Ti3—O45175.20 (17)Zr1—Ti2—O47—C4619.7 (5)
O73—Zr1—Ti3—O4592.32 (14)O21—Ti2—O51—C5272.6 (4)
Ti2—Zr1—Ti3—O4530.01 (11)O2i—Ti2—O51—C5229.3 (4)
Zr1i—Zr1—Ti3—O4551.29 (12)O1—Ti2—O51—C5283.8 (6)
O21—Ti2—O1—Ti3129.2 (2)O43—Ti2—O51—C52120.6 (4)
O2i—Ti2—O1—Ti3130.5 (2)O47—Ti2—O51—C52161.3 (3)
O51—Ti2—O1—Ti375.2 (5)Zr1—Ti2—O51—C5237.8 (4)
O43—Ti2—O1—Ti339.3 (2)Ti2—O51—C52—O5311.2 (6)
O47—Ti2—O1—Ti341.2 (2)Ti2—O51—C52—C54167.8 (3)
Zr1—Ti2—O1—Ti3132.1 (3)O51—C52—O53—Zr1i30.5 (7)
O21—Ti2—O1—Zr198.70 (14)C54—C52—O53—Zr1i150.5 (4)
O2i—Ti2—O1—Zr11.63 (11)O2—Zr1—O61—C6240.7 (4)
O51—Ti2—O1—Zr156.9 (5)O1—Zr1—O61—C62103.2 (4)
O43—Ti2—O1—Zr192.86 (12)O2i—Zr1—O61—C6233.6 (4)
O47—Ti2—O1—Zr1173.37 (13)O53i—Zr1—O61—C62113.9 (4)
O11—Ti3—O1—Ti2121.3 (2)O63i—Zr1—O61—C627.5 (5)
O71—Ti3—O1—Ti2148.3 (2)O11—Zr1—O61—C62156.4 (3)
O41—Ti3—O1—Ti229.8 (2)O73—Zr1—O61—C62179.0 (4)
O45—Ti3—O1—Ti256.9 (2)Ti2—Zr1—O61—C6268.1 (4)
Zr1—Ti3—O1—Ti2130.7 (3)Ti3—Zr1—O61—C62127.5 (3)
O11—Ti3—O1—Zr19.43 (12)Zr1i—Zr1—O61—C623.0 (3)
O71—Ti3—O1—Zr180.95 (13)Zr1—O61—C62—O631.3 (7)
O41—Ti3—O1—Zr1100.95 (13)Zr1—O61—C62—C64179.4 (3)
O45—Ti3—O1—Zr1172.44 (14)O61—C62—O63—Zr1i3.5 (6)
O2—Zr1—O1—Ti211.6 (2)C64—C62—O63—Zr1i175.7 (3)
O2i—Zr1—O1—Ti21.46 (10)O31—Ti3—O71—C72137.7 (4)
O53i—Zr1—O1—Ti2176.23 (13)O11—Ti3—O71—C7234.3 (4)
O61—Zr1—O1—Ti276.80 (12)O1—Ti3—O71—C7245.7 (4)
O63i—Zr1—O1—Ti273.05 (13)O45—Ti3—O71—C72130.5 (4)
O11—Zr1—O1—Ti2137.23 (14)Zr1—Ti3—O71—C728.3 (4)
O73—Zr1—O1—Ti2145.96 (13)Ti3—O71—C72—O738.2 (7)
Ti3—Zr1—O1—Ti2145.59 (19)Ti3—O71—C72—C74170.9 (4)
Zr1i—Zr1—O1—Ti23.73 (12)O71—C72—O73—Zr10.2 (7)
O2—Zr1—O1—Ti3157.16 (12)C74—C72—O73—Zr1179.2 (4)
O2i—Zr1—O1—Ti3144.13 (14)O2—Zr1—O73—C72175.9 (4)
O53i—Zr1—O1—Ti330.6 (2)O1—Zr1—O73—C7229.9 (4)
O61—Zr1—O1—Ti3137.61 (12)O2i—Zr1—O73—C7275.0 (4)
O63i—Zr1—O1—Ti372.54 (13)O53i—Zr1—O73—C72126.6 (4)
O11—Zr1—O1—Ti38.36 (11)O61—Zr1—O73—C72122.7 (4)
O73—Zr1—O1—Ti368.45 (12)O63i—Zr1—O73—C7264.5 (5)
Ti2—Zr1—O1—Ti3145.59 (19)O11—Zr1—O73—C7240.9 (4)
Zr1i—Zr1—O1—Ti3149.32 (9)Ti2—Zr1—O73—C7250.0 (4)
O1—Zr1—O2—Ti2i175.29 (19)Ti3—Zr1—O73—C724.4 (4)
O2i—Zr1—O2—Ti2i162.5 (3)Zr1i—Zr1—O73—C72129.2 (4)
O53i—Zr1—O2—Ti2i9.6 (2)
Symmetry code: (i) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formula[Ti4Zr2(C2H3O2)10(C3H7O)6O4]
Mr1383.00
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.1178 (4), 11.9884 (5), 12.3722 (4)
α, β, γ (°)94.713 (2), 90.775 (2), 105.608 (2)
V3)1439.48 (9)
Z1
Radiation typeMo Kα
µ (mm1)0.96
Crystal size (mm)0.20 × 0.07 × 0.04
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.832, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
15521, 5064, 4164
Rint0.053
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.116, 1.04
No. of reflections5064
No. of parameters343
No. of restraints28
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.62

Computer programs: COLLECT (Nonius, 2001), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL/PC (Sheldrick, 2001), SHELXTL/PC.

 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds