Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, C4H12N+·C9H13NO3P·CHCl3, there are two independent formula units in the asymmetric unit. In the crystal structure, inter­molecular N—H...O hydrogen bonds form two independent one-dimensional chains along the a axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807041499/lh2482sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807041499/lh2482Isup2.hkl
Contains datablock I

CCDC reference: 663687

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.052
  • wR factor = 0.155
  • Data-to-parameter ratio = 18.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.97 PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.35 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N3 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N4 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C27 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C28 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C9 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C18 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 1 C9 H13 N O3 P PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 2 C9 H13 N O3 P PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 3 C4 H12 N PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 4 C4 H12 N PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 5 C H Cl3 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 6 C H Cl3
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 14 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 8 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Although O,N-substituted phosphoramidic acids have been reported as a useful agents in the synthesis of pyrophosphate groups, (Quin & Jankowski, 1994), crystal structures of these types of materials are not well characterized. As part of an investigation of the use of the O,N-substituted phosphoramidic acids as ligand in the synthesis of new metal phosphate frameworks, the title compound was obtained as a salt of the O,N-substituted phosphoramidic acid.

As shown in Figure 1, the asymmetric unit of the title compound is composed of two chloroform molecules, two diethylamine cations and two N-ethoxyphosphorl-p -tolylamide anions. The geometrical parameters of the two independent anions are similar. The phosphorus atoms have tetrahedral coordination geometry and there are three types of P—O bonds and one P—N bond existing in the [PO3N] tetrahetra. The shortest bond lengths of 1.4945 (17) Å (P1—O3) and 1.4891 (17) Å (P2—O4) refer to the P=O double bonds at the [P1O3N] and [P2O3N] tetrahetra respectively, while the P—O bond lengths of 1.6002 (19) Å and 1.6055 (18) Å are attributed to the P-OEt connections. These longer P—O distances are due to the influence of the –OEt group, according to the literature report (Andrianov et al., 1977). The P—N bond lengths in the [PO3N] tetrahetra are 1.656 (2) Å (P1—N1)and 1.659 (2) Å (P2—N) respectively. The bond angles of O—P—O and O—P—N range from 103.44 (10)- 118.32 (10)° and 103.03 (10)- 119.28 (10)°, indicating that the tetrahetra are slightly distorted. Solvated chloroform molecules fill the voids in the crystal lattice.

In the crystal structure, intermolecular N—H···O hydrogen bonds form two independent one-dimensional chains along the a axis.

Related literature top

For the corresponding dimeric complex with similar P—O and P—N bonds, see: Andrianov et al. (1977). For related literature, see: Quin & Jankowski (1994).

Experimental top

A solution of toluidine 12.5 mmol and 12.5 mmol of Et2NH in 15 ml of ether was added to a solution of 12.5 mmol of ethyl phosphorodichloridate in 15 ml of ether. After 20 h, the solution was filtrated and the filtrate was evaporated to give a solid powder. The powder was dissolved in 30 ml of acetone-water containing 1 g of NaOH. After 10 min, the solvent was evaporated and the residue dried over in vacuo. Recrystalization of a chloroform solution of the title compound gave crystals suitable for X-ray diffraction.

Refinement top

H atoms bonded to N atoms and the C atoms of the chloroform molecules were located in a difference map and refined with distance restraints of N—H = 0.85 (3), and C—H = 0.95 (3) Å, and isotropic displacement parameters. Other H atoms were positioned geometrically and refined using a riding- model approximation, with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2 (1.5 for methyl groups)Ueq(C).

Structure description top

Although O,N-substituted phosphoramidic acids have been reported as a useful agents in the synthesis of pyrophosphate groups, (Quin & Jankowski, 1994), crystal structures of these types of materials are not well characterized. As part of an investigation of the use of the O,N-substituted phosphoramidic acids as ligand in the synthesis of new metal phosphate frameworks, the title compound was obtained as a salt of the O,N-substituted phosphoramidic acid.

As shown in Figure 1, the asymmetric unit of the title compound is composed of two chloroform molecules, two diethylamine cations and two N-ethoxyphosphorl-p -tolylamide anions. The geometrical parameters of the two independent anions are similar. The phosphorus atoms have tetrahedral coordination geometry and there are three types of P—O bonds and one P—N bond existing in the [PO3N] tetrahetra. The shortest bond lengths of 1.4945 (17) Å (P1—O3) and 1.4891 (17) Å (P2—O4) refer to the P=O double bonds at the [P1O3N] and [P2O3N] tetrahetra respectively, while the P—O bond lengths of 1.6002 (19) Å and 1.6055 (18) Å are attributed to the P-OEt connections. These longer P—O distances are due to the influence of the –OEt group, according to the literature report (Andrianov et al., 1977). The P—N bond lengths in the [PO3N] tetrahetra are 1.656 (2) Å (P1—N1)and 1.659 (2) Å (P2—N) respectively. The bond angles of O—P—O and O—P—N range from 103.44 (10)- 118.32 (10)° and 103.03 (10)- 119.28 (10)°, indicating that the tetrahetra are slightly distorted. Solvated chloroform molecules fill the voids in the crystal lattice.

In the crystal structure, intermolecular N—H···O hydrogen bonds form two independent one-dimensional chains along the a axis.

For the corresponding dimeric complex with similar P—O and P—N bonds, see: Andrianov et al. (1977). For related literature, see: Quin & Jankowski (1994).

Computing details top

Data collection: SMART (Bruker, 1996); cell refinement: SAINT (Bruker, 1994); data reduction: SAINT (Bruker, 1994); program(s) used to solve structure: SHELXTL (Bruker, 1994); program(s) used to refine structure: SHELXTL (Bruker, 1994); molecular graphics: SHELXTL (Bruker, 1994); software used to prepare material for publication: SHELXTL (Bruker, 1994).

Figures top
[Figure 1] Fig. 1. The asymmetric unit with atom labels and 50% probability displacement ellipsoids for non-H atoms. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The packing of the title compound viewed down the a axis, showing N—H···O hydrogen bonds as dashed lines.
Diethylammonium ethyl (4-methylanilino)phosphonate chloroform solvate top
Crystal data top
C4H12N+·C9H13NO3P·CHCl3Z = 4
Mr = 407.69F(000) = 856
Triclinic, P1Dx = 1.326 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4030 (2) ÅCell parameters from 14646 reflections
b = 12.5575 (4) Åθ = 2.6–26.4°
c = 19.6980 (7) ŵ = 0.54 mm1
α = 82.8707 (15)°T = 173 K
β = 83.869 (2)°Block, colourless
γ = 84.9637 (18)°0.4 × 0.4 × 0.2 mm
V = 2044.82 (11) Å3
Data collection top
Bruker SMART CCD
diffractometer
8048 independent reflections
Radiation source: fine-focus sealed tube5266 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.811, Tmax = 0.895k = 1515
14646 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0688P)2 + 1.5923P]
where P = (Fo2 + 2Fc2)/3
8048 reflections(Δ/σ)max = 0.002
447 parametersΔρmax = 0.87 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C4H12N+·C9H13NO3P·CHCl3γ = 84.9637 (18)°
Mr = 407.69V = 2044.82 (11) Å3
Triclinic, P1Z = 4
a = 8.4030 (2) ÅMo Kα radiation
b = 12.5575 (4) ŵ = 0.54 mm1
c = 19.6980 (7) ÅT = 173 K
α = 82.8707 (15)°0.4 × 0.4 × 0.2 mm
β = 83.869 (2)°
Data collection top
Bruker SMART CCD
diffractometer
8048 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5266 reflections with I > 2σ(I)
Tmin = 0.811, Tmax = 0.895Rint = 0.026
14646 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.87 e Å3
8048 reflectionsΔρmin = 0.37 e Å3
447 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P11.29263 (7)0.89735 (5)1.05042 (3)0.02205 (16)
P20.71031 (7)1.10383 (5)1.44730 (3)0.02143 (16)
C11.5019 (4)0.9023 (3)1.19335 (18)0.0534 (9)
H1B1.60760.91001.20560.080*
H1C1.43940.86771.23220.080*
H1F1.45110.97211.17980.080*
C21.5139 (3)0.8359 (2)1.13512 (16)0.0392 (7)
H2A1.57840.87041.09610.047*
H2B1.56670.76571.14850.047*
C31.4176 (3)0.76561 (18)0.95398 (13)0.0244 (5)
C41.3400 (3)0.6769 (2)0.98657 (14)0.0339 (6)
H4A1.28090.68121.02900.041*
C51.3499 (3)0.5826 (2)0.95654 (15)0.0372 (7)
H5A1.29640.52480.97940.045*
C61.4366 (3)0.5708 (2)0.89340 (15)0.0326 (6)
C71.5153 (3)0.6589 (2)0.86158 (14)0.0348 (6)
H7A1.57550.65380.81950.042*
C81.5066 (3)0.7547 (2)0.89096 (14)0.0315 (6)
H8A1.56090.81230.86820.038*
C91.4443 (4)0.4666 (2)0.86181 (17)0.0469 (8)
H9A1.50920.47330.81850.070*
H9B1.33790.45110.85470.070*
H9C1.49080.40930.89220.070*
C100.5322 (4)1.1069 (3)1.29435 (16)0.0507 (8)
H10A0.43081.09881.27790.076*
H10B0.58441.03711.30680.076*
H10C0.59861.14601.25880.076*
C110.5053 (3)1.1669 (2)1.35537 (15)0.0384 (7)
H11A0.45101.23701.34290.046*
H11B0.43681.12801.39100.046*
C120.5763 (3)1.23085 (18)1.54516 (12)0.0221 (5)
C130.6510 (3)1.32177 (19)1.51385 (14)0.0314 (6)
H13A0.70821.32041.47080.038*
C140.6406 (3)1.4135 (2)1.54627 (15)0.0351 (6)
H14A0.69191.47291.52450.042*
C150.5556 (3)1.4207 (2)1.61081 (14)0.0313 (6)
C160.4814 (3)1.3295 (2)1.64106 (14)0.0328 (6)
H16A0.42341.33111.68390.039*
C170.4911 (3)1.2363 (2)1.60930 (13)0.0287 (6)
H17A0.44001.17681.63110.034*
C180.5453 (4)1.5223 (2)1.64501 (17)0.0442 (7)
H18A0.48251.51201.68870.066*
H18B0.49551.58051.61640.066*
H18C0.65141.53911.65180.066*
C190.9895 (4)1.0396 (3)1.18932 (18)0.0625 (10)
H19A0.91860.99971.22260.094*
H19B1.01031.10491.20640.094*
H19C1.08870.99691.18120.094*
C200.9133 (4)1.0663 (3)1.12371 (15)0.0469 (8)
H20A0.81181.10781.13250.056*
H20B0.89071.00001.10720.056*
C211.0452 (4)1.2393 (2)1.07998 (19)0.0513 (8)
H21A1.10691.23671.11920.062*
H21B0.94281.27911.09020.062*
C221.1338 (5)1.2952 (3)1.0177 (2)0.0731 (12)
H22A1.15071.36701.02590.110*
H22B1.07201.29830.97910.110*
H22C1.23561.25631.00810.110*
C231.1327 (4)0.9797 (3)1.36070 (18)0.0609 (10)
H23A1.19590.99041.31720.091*
H23B1.19840.98451.39710.091*
H23C1.04501.03421.36230.091*
C241.0701 (4)0.8741 (3)1.36913 (16)0.0531 (9)
H24A1.15890.81941.36680.064*
H24B1.00600.86901.33170.064*
C250.9187 (4)0.7405 (2)1.4462 (2)0.0550 (10)
H25A0.85680.72911.40930.066*
H25B1.01270.68971.44540.066*
C260.8194 (4)0.7206 (3)1.5135 (2)0.0675 (11)
H26A0.78720.64821.51940.101*
H26B0.72580.77031.51410.101*
H26C0.88140.73041.55010.101*
C270.9296 (3)1.3268 (2)1.31187 (16)0.0370 (7)
C281.0752 (3)0.6802 (2)1.18552 (16)0.0361 (6)
O11.3562 (2)0.82291 (14)1.11549 (9)0.0304 (4)
O21.31494 (19)1.01307 (13)1.05514 (9)0.0274 (4)
O31.12594 (18)0.86509 (13)1.04931 (9)0.0263 (4)
O40.87397 (18)1.13685 (13)1.45287 (9)0.0274 (4)
O50.68917 (19)0.98893 (13)1.43997 (9)0.0273 (4)
O60.6545 (2)1.18052 (13)1.38125 (9)0.0292 (4)
Cl10.81294 (9)1.34074 (7)1.24222 (4)0.0466 (2)
Cl20.91751 (11)1.44700 (7)1.34968 (5)0.0574 (2)
Cl31.13127 (9)1.28867 (8)1.28418 (5)0.0570 (2)
Cl40.87684 (9)0.72423 (8)1.21407 (6)0.0698 (3)
Cl51.07822 (12)0.55915 (7)1.14978 (5)0.0607 (3)
Cl61.19441 (9)0.66534 (7)1.25426 (4)0.0490 (2)
N11.4088 (3)0.86350 (17)0.98185 (11)0.0276 (5)
H11.480 (4)0.902 (3)0.9688 (17)0.047 (10)*
N20.5856 (2)1.13562 (17)1.51415 (11)0.0260 (5)
H20.521 (4)1.094 (3)1.5298 (17)0.044 (9)*
N31.0184 (3)1.13005 (19)1.06806 (12)0.0304 (5)
H31.102 (4)1.097 (3)1.0637 (16)0.039 (9)*
H40.970 (3)1.132 (2)1.0265 (17)0.039 (8)*
N40.9706 (3)0.85319 (19)1.43514 (12)0.0303 (5)
H50.882 (4)0.896 (3)1.4384 (16)0.046 (9)*
H61.029 (3)0.859 (2)1.4702 (16)0.035 (8)*
H70.889 (3)1.272 (2)1.3452 (15)0.037 (8)*
H81.113 (3)0.737 (2)1.1534 (16)0.042 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0208 (3)0.0206 (3)0.0255 (3)0.0042 (2)0.0029 (2)0.0034 (2)
P20.0196 (3)0.0207 (3)0.0247 (3)0.0046 (2)0.0021 (2)0.0035 (2)
C10.063 (2)0.0459 (18)0.059 (2)0.0036 (16)0.0318 (18)0.0195 (16)
C20.0372 (15)0.0373 (15)0.0478 (18)0.0049 (12)0.0223 (13)0.0129 (13)
C30.0212 (12)0.0212 (12)0.0309 (14)0.0012 (9)0.0039 (10)0.0026 (10)
C40.0374 (15)0.0271 (13)0.0353 (15)0.0060 (11)0.0082 (12)0.0031 (11)
C50.0448 (16)0.0203 (13)0.0457 (18)0.0070 (12)0.0035 (13)0.0043 (12)
C60.0327 (14)0.0273 (13)0.0392 (16)0.0043 (11)0.0076 (12)0.0104 (12)
C70.0355 (14)0.0371 (15)0.0320 (15)0.0024 (12)0.0030 (12)0.0099 (12)
C80.0320 (14)0.0311 (14)0.0317 (15)0.0078 (11)0.0015 (11)0.0044 (11)
C90.0557 (19)0.0325 (15)0.055 (2)0.0032 (14)0.0081 (15)0.0179 (14)
C100.060 (2)0.0543 (19)0.0435 (19)0.0111 (16)0.0163 (16)0.0156 (16)
C110.0352 (15)0.0404 (16)0.0428 (17)0.0015 (12)0.0167 (13)0.0099 (13)
C120.0181 (11)0.0225 (12)0.0266 (13)0.0036 (9)0.0050 (9)0.0028 (10)
C130.0369 (14)0.0239 (13)0.0320 (15)0.0054 (11)0.0047 (11)0.0026 (11)
C140.0418 (15)0.0229 (13)0.0407 (17)0.0077 (11)0.0017 (13)0.0050 (12)
C150.0323 (14)0.0262 (13)0.0369 (15)0.0006 (11)0.0062 (11)0.0091 (11)
C160.0331 (14)0.0363 (14)0.0288 (14)0.0022 (11)0.0021 (11)0.0082 (12)
C170.0281 (13)0.0286 (13)0.0298 (14)0.0095 (10)0.0011 (11)0.0030 (11)
C180.0507 (18)0.0343 (15)0.0504 (19)0.0006 (13)0.0066 (15)0.0177 (14)
C190.070 (2)0.067 (2)0.046 (2)0.0003 (19)0.0016 (18)0.0014 (18)
C200.0357 (16)0.067 (2)0.0358 (17)0.0067 (15)0.0047 (13)0.0022 (15)
C210.056 (2)0.0374 (16)0.066 (2)0.0032 (15)0.0239 (17)0.0199 (16)
C220.085 (3)0.049 (2)0.091 (3)0.029 (2)0.042 (2)0.015 (2)
C230.053 (2)0.077 (3)0.049 (2)0.0022 (19)0.0029 (16)0.0027 (19)
C240.0422 (17)0.079 (2)0.0377 (18)0.0091 (17)0.0037 (14)0.0139 (17)
C250.0407 (17)0.0396 (17)0.094 (3)0.0057 (14)0.0284 (18)0.0323 (18)
C260.060 (2)0.047 (2)0.097 (3)0.0234 (17)0.026 (2)0.013 (2)
C270.0326 (14)0.0365 (15)0.0407 (17)0.0079 (12)0.0007 (12)0.0019 (13)
C280.0315 (14)0.0366 (15)0.0395 (17)0.0062 (12)0.0034 (12)0.0013 (13)
O10.0312 (9)0.0303 (9)0.0318 (10)0.0035 (7)0.0121 (8)0.0029 (8)
O20.0230 (8)0.0217 (8)0.0385 (10)0.0056 (7)0.0011 (7)0.0064 (7)
O30.0219 (8)0.0301 (9)0.0286 (10)0.0070 (7)0.0027 (7)0.0055 (7)
O40.0202 (8)0.0328 (9)0.0309 (10)0.0080 (7)0.0031 (7)0.0064 (8)
O50.0243 (8)0.0210 (8)0.0371 (10)0.0050 (7)0.0014 (7)0.0070 (7)
O60.0313 (9)0.0296 (9)0.0280 (10)0.0069 (7)0.0084 (7)0.0008 (7)
Cl10.0401 (4)0.0578 (5)0.0423 (4)0.0038 (3)0.0082 (3)0.0038 (4)
Cl20.0731 (6)0.0455 (4)0.0558 (5)0.0118 (4)0.0042 (4)0.0107 (4)
Cl30.0326 (4)0.0710 (6)0.0650 (6)0.0005 (4)0.0016 (4)0.0038 (4)
Cl40.0325 (4)0.0831 (7)0.0890 (7)0.0047 (4)0.0021 (4)0.0014 (6)
Cl50.0874 (7)0.0465 (5)0.0511 (5)0.0216 (4)0.0063 (5)0.0061 (4)
Cl60.0441 (4)0.0613 (5)0.0424 (5)0.0017 (4)0.0093 (3)0.0087 (4)
N10.0252 (11)0.0230 (11)0.0350 (13)0.0080 (9)0.0036 (9)0.0065 (9)
N20.0247 (11)0.0224 (10)0.0312 (12)0.0088 (9)0.0036 (9)0.0048 (9)
N30.0269 (12)0.0343 (12)0.0304 (13)0.0036 (10)0.0053 (10)0.0073 (10)
N40.0224 (11)0.0387 (13)0.0320 (13)0.0027 (10)0.0075 (10)0.0125 (10)
Geometric parameters (Å, º) top
P1—O31.4945 (17)C16—H16A0.9300
P1—O21.4959 (17)C17—H17A0.9300
P1—O11.6002 (19)C18—H18A0.9600
P1—N11.656 (2)C18—H18B0.9600
P2—O41.4891 (17)C18—H18C0.9600
P2—O51.4946 (17)C19—C201.491 (5)
P2—O61.6055 (18)C19—H19A0.9600
P2—N21.659 (2)C19—H19B0.9600
C1—C21.489 (4)C19—H19C0.9600
C1—H1B0.9600C20—N31.523 (4)
C1—H1C0.9600C20—H20A0.9700
C1—H1F0.9600C20—H20B0.9700
C2—O11.447 (3)C21—N31.460 (4)
C2—H2A0.9700C21—C221.495 (5)
C2—H2B0.9700C21—H21A0.9700
C3—C41.392 (3)C21—H21B0.9700
C3—C81.394 (3)C22—H22A0.9600
C3—N11.399 (3)C22—H22B0.9600
C4—C51.379 (4)C22—H22C0.9600
C4—H4A0.9300C23—C241.453 (5)
C5—C61.390 (4)C23—H23A0.9600
C5—H5A0.9300C23—H23B0.9600
C6—C71.385 (4)C23—H23C0.9600
C6—C91.510 (4)C24—N41.476 (4)
C7—C81.390 (4)C24—H24A0.9700
C7—H7A0.9300C24—H24B0.9700
C8—H8A0.9300C25—C261.493 (5)
C9—H9A0.9600C25—N41.500 (4)
C9—H9B0.9600C25—H25A0.9700
C9—H9C0.9600C25—H25B0.9700
C10—C111.483 (4)C26—H26A0.9600
C10—H10A0.9600C26—H26B0.9600
C10—H10B0.9600C26—H26C0.9600
C10—H10C0.9600C27—Cl11.752 (3)
C11—O61.433 (3)C27—Cl21.754 (3)
C11—H11A0.9700C27—Cl31.767 (3)
C11—H11B0.9700C27—H70.95 (3)
C12—C171.390 (3)C28—Cl51.749 (3)
C12—C131.394 (3)C28—Cl61.750 (3)
C12—N21.401 (3)C28—Cl41.764 (3)
C13—C141.376 (4)C28—H80.94 (3)
C13—H13A0.9300N1—H10.80 (3)
C14—C151.398 (4)N2—H20.80 (3)
C14—H14A0.9300N3—H30.79 (3)
C15—C161.389 (4)N3—H40.95 (3)
C15—C181.506 (4)N4—H50.88 (3)
C16—C171.385 (4)N4—H60.90 (3)
O3—P1—O2118.32 (10)H18A—C18—H18C109.5
O3—P1—O1103.44 (10)H18B—C18—H18C109.5
O2—P1—O1110.39 (10)C20—C19—H19A109.5
O3—P1—N1110.78 (11)C20—C19—H19B109.5
O2—P1—N1106.60 (11)H19A—C19—H19B109.5
O1—P1—N1106.81 (11)C20—C19—H19C109.5
O4—P2—O5119.28 (10)H19A—C19—H19C109.5
O4—P2—O6103.03 (10)H19B—C19—H19C109.5
O5—P2—O6110.12 (10)C19—C20—N3112.8 (3)
O4—P2—N2110.52 (11)C19—C20—H20A109.0
O5—P2—N2106.51 (11)N3—C20—H20A109.0
O6—P2—N2106.80 (10)C19—C20—H20B109.0
C2—C1—H1B109.5N3—C20—H20B109.0
C2—C1—H1C109.5H20A—C20—H20B107.8
H1B—C1—H1C109.5N3—C21—C22110.0 (3)
C2—C1—H1F109.5N3—C21—H21A109.7
H1B—C1—H1F109.5C22—C21—H21A109.7
H1C—C1—H1F109.5N3—C21—H21B109.7
O1—C2—C1110.7 (2)C22—C21—H21B109.7
O1—C2—H2A109.5H21A—C21—H21B108.2
C1—C2—H2A109.5C21—C22—H22A109.5
O1—C2—H2B109.5C21—C22—H22B109.5
C1—C2—H2B109.5H22A—C22—H22B109.5
H2A—C2—H2B108.1C21—C22—H22C109.5
C4—C3—C8117.5 (2)H22A—C22—H22C109.5
C4—C3—N1122.7 (2)H22B—C22—H22C109.5
C8—C3—N1119.8 (2)C24—C23—H23A109.5
C5—C4—C3120.6 (2)C24—C23—H23B109.5
C5—C4—H4A119.7H23A—C23—H23B109.5
C3—C4—H4A119.7C24—C23—H23C109.5
C4—C5—C6122.5 (2)H23A—C23—H23C109.5
C4—C5—H5A118.7H23B—C23—H23C109.5
C6—C5—H5A118.7C23—C24—N4112.1 (3)
C7—C6—C5116.6 (2)C23—C24—H24A109.2
C7—C6—C9122.2 (3)N4—C24—H24A109.2
C5—C6—C9121.2 (3)C23—C24—H24B109.2
C6—C7—C8121.7 (2)N4—C24—H24B109.2
C6—C7—H7A119.2H24A—C24—H24B107.9
C8—C7—H7A119.2C26—C25—N4110.9 (3)
C7—C8—C3121.0 (2)C26—C25—H25A109.5
C7—C8—H8A119.5N4—C25—H25A109.5
C3—C8—H8A119.5C26—C25—H25B109.5
C6—C9—H9A109.5N4—C25—H25B109.5
C6—C9—H9B109.5H25A—C25—H25B108.0
H9A—C9—H9B109.5C25—C26—H26A109.5
C6—C9—H9C109.5C25—C26—H26B109.5
H9A—C9—H9C109.5H26A—C26—H26B109.5
H9B—C9—H9C109.5C25—C26—H26C109.5
C11—C10—H10A109.5H26A—C26—H26C109.5
C11—C10—H10B109.5H26B—C26—H26C109.5
H10A—C10—H10B109.5Cl1—C27—Cl2110.84 (16)
C11—C10—H10C109.5Cl1—C27—Cl3109.84 (17)
H10A—C10—H10C109.5Cl2—C27—Cl3110.34 (16)
H10B—C10—H10C109.5Cl1—C27—H7108.2 (18)
O6—C11—C10110.9 (2)Cl2—C27—H7108.5 (18)
O6—C11—H11A109.5Cl3—C27—H7109.1 (17)
C10—C11—H11A109.5Cl5—C28—Cl6110.80 (16)
O6—C11—H11B109.5Cl5—C28—Cl4110.50 (16)
C10—C11—H11B109.5Cl6—C28—Cl4109.60 (17)
H11A—C11—H11B108.0Cl5—C28—H8112.5 (19)
C17—C12—C13118.1 (2)Cl6—C28—H8107.8 (19)
C17—C12—N2119.9 (2)Cl4—C28—H8105.4 (18)
C13—C12—N2122.1 (2)C2—O1—P1119.30 (17)
C14—C13—C12120.4 (2)C11—O6—P2120.05 (17)
C14—C13—H13A119.8C3—N1—P1126.97 (18)
C12—C13—H13A119.8C3—N1—H1117 (2)
C13—C14—C15122.5 (2)P1—N1—H1115 (2)
C13—C14—H14A118.8C12—N2—P2126.94 (17)
C15—C14—H14A118.8C12—N2—H2115 (2)
C16—C15—C14116.3 (2)P2—N2—H2118 (2)
C16—C15—C18122.3 (3)C21—N3—C20116.5 (3)
C14—C15—C18121.4 (2)C21—N3—H3109 (2)
C17—C16—C15122.0 (2)C20—N3—H3107 (2)
C17—C16—H16A119.0C21—N3—H4109.6 (18)
C15—C16—H16A119.0C20—N3—H4106.9 (18)
C16—C17—C12120.8 (2)H3—N3—H4107 (3)
C16—C17—H17A119.6C24—N4—C25111.7 (3)
C12—C17—H17A119.6C24—N4—H5114 (2)
C15—C18—H18A109.5C25—N4—H5106 (2)
C15—C18—H18B109.5C24—N4—H6109.6 (19)
H18A—C18—H18B109.5C25—N4—H6106.2 (18)
C15—C18—H18C109.5H5—N4—H6109 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O20.79 (3)2.00 (3)2.782 (3)179 (4)
N4—H5···O50.88 (3)1.91 (3)2.790 (3)177 (3)

Experimental details

Crystal data
Chemical formulaC4H12N+·C9H13NO3P·CHCl3
Mr407.69
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.4030 (2), 12.5575 (4), 19.6980 (7)
α, β, γ (°)82.8707 (15), 83.869 (2), 84.9637 (18)
V3)2044.82 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.54
Crystal size (mm)0.4 × 0.4 × 0.2
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.811, 0.895
No. of measured, independent and
observed [I > 2σ(I)] reflections
14646, 8048, 5266
Rint0.026
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.155, 1.04
No. of reflections8048
No. of parameters447
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.87, 0.37

Computer programs: SMART (Bruker, 1996), SAINT (Bruker, 1994), SHELXTL (Bruker, 1994).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O20.79 (3)2.00 (3)2.782 (3)179 (4)
N4—H5···O50.88 (3)1.91 (3)2.790 (3)177 (3)
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds