Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C34H32N10·4CH4O·2H2O, crystallizes with the mid-point of the central C—C bond of the tetra­benzimidazolylethanediamine mol­ecule located on an inversion centre. The crystal packing is stabilized by O(or N)—H...O and O—H...N hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807038111/lh2470sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807038111/lh2470Isup2.hkl
Contains datablock I

CCDC reference: 660253

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.059
  • wR factor = 0.163
  • Data-to-parameter ratio = 15.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 100 Deg. PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 4
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 7
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

As part of our continuing studies on the ligands or metal complexes containing multi-benzimidazole groups (Chen et al., 2004;Liao et al.,2001), we report here the crystal structure of the related title compound, which was obtained unexpectedly by reacting N,N,N ', N' - tetrakis (2 '-benzimidazolyl methyl) -1,2-ethanediamine (EDTB) with Mn (NO3)2 ˙4H2O in CH3OH and H2O solution.

In the molecule (Fig. 1), the N2/N3/C3—C9 benzimidazole ring is twisted from the benzimidazole ring (N4/N5/C11—C17) by a dihedral angle of 47.1 (1)°. In the asymmetric unit, there is half of an EDTB molecule, two methanol and one water solvent molecules.

In the supramolecular structure, by a combination of O(or N)–H···O, and O–H···N hydrogen bonds the molecules are linked into a three-dimensional framework (Fig.2). Analysis using PLATON (Spek, 2003) shows that no ππ and C–H···π interactions are observed in the crystal structure.

Related literature top

For related literature, see: Chen et al. (2004); Hendriks et al. (1982); Liao et al. (2001).

Experimental top

Chemicals of reagent grade were used without further purification. The ligand N,N,N ', N' - tetrakis (2 '-benzimidazolyl methyl) -1,2-ethanediamine (EDTB) was synthesized from reported literature earlier (Hendriks, et al.,1982). The title pink salt was obtained unexpectedly by reacting EDTB (0.29 g, 0.5 mmol) in 20 ml hot methanol with Mn (NO3)2 ˙4H2O (0.25 g, 1.0 mmol) solution of 10 ml H2O. The mixture was stirred for 1 h at 303k and then filtered. The resulting pink solution was allowed to stand at room temperature for 1 week. Crystals suitale for X-ray analysis were obtained at the bottom of the vessel.

Refinement top

All H atoms bonded to carbon atoms were located at their ideal positions with C–H = 0.96 Å (methyl), 0.93 Å (aromatic), 0.97 Å (methylene) and with Uiso(H)=1.5Ueq(C, methyl) or 1.2Ueq(C, aromatic and methylene). H atoms bonded to N and O atoms were located in difference Fourier maps and refined with distance constraints of N–H =0.86 (4) Å, O–H = 0.82 (4) Å, H–H = 1.35 (4) Å (water H) and their Uiso values were set 1.2 (for imine) or 1.5 (for water and hydroxyl) times that of their carrier atoms.

Structure description top

As part of our continuing studies on the ligands or metal complexes containing multi-benzimidazole groups (Chen et al., 2004;Liao et al.,2001), we report here the crystal structure of the related title compound, which was obtained unexpectedly by reacting N,N,N ', N' - tetrakis (2 '-benzimidazolyl methyl) -1,2-ethanediamine (EDTB) with Mn (NO3)2 ˙4H2O in CH3OH and H2O solution.

In the molecule (Fig. 1), the N2/N3/C3—C9 benzimidazole ring is twisted from the benzimidazole ring (N4/N5/C11—C17) by a dihedral angle of 47.1 (1)°. In the asymmetric unit, there is half of an EDTB molecule, two methanol and one water solvent molecules.

In the supramolecular structure, by a combination of O(or N)–H···O, and O–H···N hydrogen bonds the molecules are linked into a three-dimensional framework (Fig.2). Analysis using PLATON (Spek, 2003) shows that no ππ and C–H···π interactions are observed in the crystal structure.

For related literature, see: Chen et al. (2004); Hendriks et al. (1982); Liao et al. (2001).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

Figures top
[Figure 1] Fig. 1. View of the title molecular structure, showing 50% probability displacement ellipsoids and H atoms as small spheres. Atoms labeled with suffix 'a' are related by the symmetry operator (-x, -y, -z + 1).
[Figure 2] Fig. 2. Part of the crystal structure showing the formation of the three-dimensinal network. Hydrogen bonds are shown as dashed lines.
N,N,N',N'-Tetrakis(benzimidazol-2-ylmethyl)ethane-1,2-diamine methanol tetrasolvate dihydrate top
Crystal data top
C34H32N10·4CH4O·2H2OZ = 1
Mr = 744.90F(000) = 398
Triclinic, P1Dx = 1.183 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2349 (6) ÅCell parameters from 3273 reflections
b = 10.4290 (7) Åθ = 2.3–24.9°
c = 11.5344 (8) ŵ = 0.08 mm1
α = 100.500 (1)°T = 296 K
β = 101.763 (1)°Block, pink
γ = 99.417 (1)°0.20 × 0.20 × 0.10 mm
V = 1045.83 (12) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4083 independent reflections
Radiation source: fine focus sealed Siemens Mo tube2726 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.094
0.3° wide ω exposures scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1011
Tmin = 0.984, Tmax = 0.992k = 1212
10988 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.087P)2]
where P = (Fo2 + 2Fc2)/3
4083 reflections(Δ/σ)max < 0.001
264 parametersΔρmax = 0.23 e Å3
7 restraintsΔρmin = 0.26 e Å3
Crystal data top
C34H32N10·4CH4O·2H2Oγ = 99.417 (1)°
Mr = 744.90V = 1045.83 (12) Å3
Triclinic, P1Z = 1
a = 9.2349 (6) ÅMo Kα radiation
b = 10.4290 (7) ŵ = 0.08 mm1
c = 11.5344 (8) ÅT = 296 K
α = 100.500 (1)°0.20 × 0.20 × 0.10 mm
β = 101.763 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4083 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
2726 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.992Rint = 0.094
10988 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0597 restraints
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.23 e Å3
4083 reflectionsΔρmin = 0.26 e Å3
264 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0644 (2)0.05926 (17)0.52781 (15)0.0480 (4)
H1A0.03990.11630.59430.058*
H1B0.15490.02890.56040.058*
C20.1912 (2)0.0801 (2)0.36638 (17)0.0568 (5)
H2A0.16930.01610.35540.068*
H2B0.29550.11310.41180.068*
C30.1733 (2)0.11411 (17)0.24450 (16)0.0503 (5)
C40.0658 (2)0.16310 (17)0.07461 (16)0.0545 (5)
C50.0262 (3)0.1985 (2)0.01979 (18)0.0683 (6)
H50.12380.20930.01820.082*
C60.0359 (4)0.2169 (2)0.11684 (19)0.0812 (7)
H60.02080.24280.18150.097*
C70.1793 (4)0.1977 (3)0.1200 (2)0.0887 (8)
H70.21590.20910.18760.106*
C80.2696 (3)0.1622 (2)0.0263 (2)0.0758 (7)
H80.36600.14910.02950.091*
C90.2119 (2)0.14626 (18)0.07405 (17)0.0567 (5)
C100.1497 (2)0.27781 (18)0.49058 (18)0.0553 (5)
H10A0.17500.32370.42910.066*
H10B0.24080.29030.55420.066*
C110.0337 (2)0.33503 (17)0.54216 (17)0.0504 (5)
C120.0839 (2)0.43572 (17)0.66124 (17)0.0550 (5)
C130.1279 (3)0.5076 (2)0.7564 (2)0.0724 (6)
H130.05760.55040.82870.087*
C140.2771 (3)0.5143 (2)0.7419 (2)0.0815 (7)
H140.30780.56330.80480.098*
C150.3834 (3)0.4495 (2)0.6349 (3)0.0812 (7)
H150.48410.45570.62770.097*
C160.3428 (3)0.3760 (2)0.5389 (2)0.0719 (6)
H160.41380.33260.46710.086*
C170.1918 (2)0.36981 (18)0.55440 (18)0.0552 (5)
C180.4678 (4)0.8728 (4)0.2625 (4)0.1300 (12)
H18A0.54120.81830.25530.195*
H18B0.37080.82500.21260.195*
H18C0.46170.89440.34570.195*
C190.6472 (5)0.4394 (4)0.0909 (4)0.174 (2)
H19A0.60460.51710.10580.261*
H19B0.57150.36740.03680.261*
H19C0.73070.45860.05460.261*
N10.09316 (17)0.13561 (13)0.43655 (12)0.0474 (4)
N20.27737 (18)0.11545 (16)0.18230 (14)0.0581 (4)
N30.04414 (19)0.14113 (15)0.18572 (13)0.0521 (4)
H3A0.040 (2)0.151 (2)0.2111 (18)0.063*
N40.05769 (19)0.41225 (14)0.65166 (14)0.0560 (4)
N50.11288 (19)0.30662 (16)0.48112 (15)0.0553 (4)
H5A0.143 (2)0.259 (2)0.4045 (18)0.066*
O10.75915 (17)0.17048 (18)0.23664 (15)0.0740 (5)
H1C0.732 (3)0.238 (3)0.209 (3)0.111*
H1D0.682 (3)0.114 (3)0.236 (3)0.111*
O20.6956 (3)0.4047 (2)0.1961 (3)0.1419 (10)
H2C0.771 (4)0.468 (4)0.242 (4)0.213*
O30.5088 (2)0.9845 (3)0.2266 (3)0.1536 (11)
H3B0.444 (5)1.036 (5)0.228 (5)0.230*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0588 (12)0.0470 (9)0.0433 (9)0.0109 (8)0.0137 (8)0.0211 (7)
C20.0630 (13)0.0591 (11)0.0616 (11)0.0201 (10)0.0246 (10)0.0293 (9)
C30.0565 (12)0.0468 (10)0.0556 (10)0.0122 (8)0.0237 (9)0.0191 (8)
C40.0748 (14)0.0404 (10)0.0487 (10)0.0055 (9)0.0194 (9)0.0117 (8)
C50.0903 (16)0.0552 (12)0.0555 (12)0.0125 (11)0.0105 (11)0.0131 (10)
C60.126 (2)0.0644 (14)0.0463 (12)0.0075 (15)0.0132 (13)0.0163 (10)
C70.127 (2)0.0845 (17)0.0526 (13)0.0038 (16)0.0335 (15)0.0189 (12)
C80.0915 (17)0.0760 (15)0.0612 (13)0.0005 (12)0.0367 (12)0.0132 (11)
C90.0719 (14)0.0471 (10)0.0533 (11)0.0031 (9)0.0260 (10)0.0126 (8)
C100.0591 (12)0.0495 (10)0.0592 (11)0.0036 (9)0.0151 (9)0.0228 (9)
C110.0597 (13)0.0377 (9)0.0538 (10)0.0040 (8)0.0102 (9)0.0193 (8)
C120.0716 (14)0.0396 (10)0.0559 (11)0.0100 (9)0.0155 (10)0.0175 (8)
C130.0969 (19)0.0534 (12)0.0660 (13)0.0141 (12)0.0204 (12)0.0115 (10)
C140.105 (2)0.0613 (14)0.0914 (18)0.0244 (14)0.0462 (17)0.0193 (13)
C150.0784 (17)0.0675 (14)0.109 (2)0.0199 (13)0.0368 (16)0.0287 (14)
C160.0683 (15)0.0625 (13)0.0814 (15)0.0101 (11)0.0125 (12)0.0162 (11)
C170.0639 (13)0.0443 (10)0.0593 (11)0.0101 (9)0.0143 (10)0.0185 (9)
C180.103 (2)0.124 (3)0.196 (4)0.043 (2)0.055 (2)0.079 (3)
C190.165 (4)0.112 (3)0.186 (4)0.004 (2)0.079 (3)0.051 (3)
N10.0593 (10)0.0430 (8)0.0477 (8)0.0106 (7)0.0202 (7)0.0213 (6)
N20.0597 (11)0.0605 (10)0.0618 (10)0.0112 (8)0.0267 (8)0.0206 (8)
N30.0592 (11)0.0527 (9)0.0535 (9)0.0142 (8)0.0237 (8)0.0209 (7)
N40.0680 (11)0.0435 (8)0.0539 (9)0.0069 (8)0.0099 (8)0.0141 (7)
N50.0617 (11)0.0506 (9)0.0496 (9)0.0078 (8)0.0083 (8)0.0102 (7)
O10.0586 (10)0.0798 (11)0.0793 (10)0.0146 (8)0.0091 (8)0.0155 (9)
O20.1251 (19)0.0802 (13)0.171 (2)0.0134 (12)0.0549 (16)0.0371 (14)
O30.0777 (15)0.147 (2)0.290 (3)0.0454 (14)0.0767 (18)0.128 (2)
Geometric parameters (Å, º) top
C1—N11.471 (2)C11—N51.349 (2)
C1—C1i1.508 (4)C12—C131.384 (3)
C1—H1A0.9700C12—N41.391 (3)
C1—H1B0.9700C12—C171.397 (3)
C2—N11.452 (2)C13—C141.368 (3)
C2—C31.495 (2)C13—H130.9300
C2—H2A0.9700C14—C151.389 (4)
C2—H2B0.9700C14—H140.9300
C3—N21.311 (2)C15—C161.381 (3)
C3—N31.346 (2)C15—H150.9300
C4—C51.384 (3)C16—C171.383 (3)
C4—C91.389 (3)C16—H160.9300
C4—N31.390 (2)C17—N51.373 (2)
C5—C61.386 (3)C18—O31.330 (4)
C5—H50.9300C18—H18A0.9600
C6—C71.378 (4)C18—H18B0.9600
C6—H60.9300C18—H18C0.9600
C7—C81.372 (4)C19—O21.340 (4)
C7—H70.9300C19—H19A0.9600
C8—C91.394 (3)C19—H19B0.9600
C8—H80.9300C19—H19C0.9600
C9—N21.389 (3)N3—H3A0.899 (18)
C10—N11.462 (2)N5—H5A0.895 (19)
C10—C111.482 (3)O1—H1C0.87 (2)
C10—H10A0.9700O1—H1D0.84 (2)
C10—H10B0.9700O2—H2C0.88 (3)
C11—N41.323 (2)O3—H3B0.86 (3)
N1—C1—C1i110.60 (17)C13—C12—C17119.8 (2)
N1—C1—H1A109.5N4—C12—C17109.68 (16)
C1i—C1—H1A109.5C14—C13—C12118.6 (2)
N1—C1—H1B109.5C14—C13—H13120.7
C1i—C1—H1B109.5C12—C13—H13120.7
H1A—C1—H1B108.1C13—C14—C15121.3 (2)
N1—C2—C3113.09 (14)C13—C14—H14119.4
N1—C2—H2A109.0C15—C14—H14119.4
C3—C2—H2A109.0C16—C15—C14121.4 (2)
N1—C2—H2B109.0C16—C15—H15119.3
C3—C2—H2B109.0C14—C15—H15119.3
H2A—C2—H2B107.8C15—C16—C17117.0 (2)
N2—C3—N3113.39 (16)C15—C16—H16121.5
N2—C3—C2124.18 (17)C17—C16—H16121.5
N3—C3—C2122.37 (15)N5—C17—C16132.83 (19)
C5—C4—C9122.96 (18)N5—C17—C12105.11 (17)
C5—C4—N3131.8 (2)C16—C17—C12122.06 (19)
C9—C4—N3105.17 (17)O3—C18—H18A109.5
C4—C5—C6116.0 (2)O3—C18—H18B109.5
C4—C5—H5122.0H18A—C18—H18B109.5
C6—C5—H5122.0O3—C18—H18C109.5
C7—C6—C5121.8 (2)H18A—C18—H18C109.5
C7—C6—H6119.1H18B—C18—H18C109.5
C5—C6—H6119.1O2—C19—H19A109.5
C8—C7—C6121.9 (2)O2—C19—H19B109.5
C8—C7—H7119.1H19A—C19—H19B109.5
C6—C7—H7119.1O2—C19—H19C109.5
C7—C8—C9117.8 (2)H19A—C19—H19C109.5
C7—C8—H8121.1H19B—C19—H19C109.5
C9—C8—H8121.1C2—N1—C10112.26 (14)
N2—C9—C4109.66 (15)C2—N1—C1111.51 (13)
N2—C9—C8130.7 (2)C10—N1—C1111.94 (13)
C4—C9—C8119.6 (2)C3—N2—C9105.00 (16)
N1—C10—C11110.23 (15)C3—N3—C4106.77 (15)
N1—C10—H10A109.6C3—N3—H3A129.9 (13)
C11—C10—H10A109.6C4—N3—H3A123.2 (13)
N1—C10—H10B109.6C11—N4—C12104.79 (16)
C11—C10—H10B109.6C11—N5—C17107.78 (16)
H10A—C10—H10B108.1C11—N5—H5A121.4 (13)
N4—C11—N5112.63 (17)C17—N5—H5A130.7 (13)
N4—C11—C10125.50 (18)H1C—O1—H1D110 (2)
N5—C11—C10121.80 (17)C19—O2—H2C109 (3)
C13—C12—N4130.5 (2)C18—O3—H3B114 (4)
N1—C2—C3—N2156.56 (17)C13—C12—C17—C161.4 (3)
N1—C2—C3—N326.3 (3)N4—C12—C17—C16179.99 (17)
C9—C4—C5—C60.1 (3)C3—C2—N1—C1077.3 (2)
N3—C4—C5—C6177.65 (19)C3—C2—N1—C1156.14 (16)
C4—C5—C6—C71.5 (3)C11—C10—N1—C2169.89 (14)
C5—C6—C7—C81.4 (4)C11—C10—N1—C163.81 (19)
C6—C7—C8—C90.3 (4)C1i—C1—N1—C284.5 (2)
C5—C4—C9—N2177.98 (17)C1i—C1—N1—C10148.77 (19)
N3—C4—C9—N20.3 (2)N3—C3—N2—C90.2 (2)
C5—C4—C9—C81.5 (3)C2—C3—N2—C9177.57 (17)
N3—C4—C9—C8179.79 (18)C4—C9—N2—C30.0 (2)
C7—C8—C9—N2177.7 (2)C8—C9—N2—C3179.5 (2)
C7—C8—C9—C41.7 (3)N2—C3—N3—C40.4 (2)
N1—C10—C11—N4132.12 (17)C2—C3—N3—C4177.79 (16)
N1—C10—C11—N544.6 (2)C5—C4—N3—C3177.6 (2)
N4—C12—C13—C14179.68 (19)C9—C4—N3—C30.38 (19)
C17—C12—C13—C141.4 (3)N5—C11—N4—C120.37 (19)
C12—C13—C14—C150.8 (3)C10—C11—N4—C12177.35 (15)
C13—C14—C15—C160.2 (4)C13—C12—N4—C11178.59 (18)
C14—C15—C16—C170.1 (3)C17—C12—N4—C110.16 (18)
C15—C16—C17—N5179.17 (19)N4—C11—N5—C170.4 (2)
C15—C16—C17—C120.7 (3)C10—C11—N5—C17177.55 (14)
C13—C12—C17—N5178.53 (16)C16—C17—N5—C11179.8 (2)
N4—C12—C17—N50.09 (19)C12—C17—N5—C110.30 (18)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1C···O20.87 (2)1.85 (2)2.702 (3)164 (3)
O3—H3B···N2ii0.86 (3)1.90 (4)2.731 (2)163 (5)
N5—H5A···O1iii0.90 (2)1.94 (2)2.828 (2)170 (2)
N3—H3A···O1iii0.90 (2)1.97 (2)2.862 (2)170 (2)
O2—H2C···N4iv0.88 (3)1.89 (3)2.765 (3)173 (5)
O1—H1D···O3v0.84 (2)1.89 (2)2.731 (3)177 (3)
Symmetry codes: (ii) x, y+1, z; (iii) x1, y, z; (iv) x+1, y+1, z+1; (v) x, y1, z.

Experimental details

Crystal data
Chemical formulaC34H32N10·4CH4O·2H2O
Mr744.90
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.2349 (6), 10.4290 (7), 11.5344 (8)
α, β, γ (°)100.500 (1), 101.763 (1), 99.417 (1)
V3)1045.83 (12)
Z1
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.984, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
10988, 4083, 2726
Rint0.094
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.163, 1.01
No. of reflections4083
No. of parameters264
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.26

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), PLATON.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1C···O20.87 (2)1.85 (2)2.702 (3)164 (3)
O3—H3B···N2i0.86 (3)1.90 (4)2.731 (2)163 (5)
N5—H5A···O1ii0.895 (19)1.94 (2)2.828 (2)169.5 (19)
N3—H3A···O1ii0.899 (18)1.972 (19)2.862 (2)170.0 (18)
O2—H2C···N4iii0.88 (3)1.89 (3)2.765 (3)173 (5)
O1—H1D···O3iv0.84 (2)1.89 (2)2.731 (3)177 (3)
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z; (iii) x+1, y+1, z+1; (iv) x, y1, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds