Download citation
Download citation
link to html
The title compound, C12H9NS·C6H3N3O7, is a 1:1 adduct of neutral phenothia­zine (pz) and picric acid (pa). A weak bifurcated N—H...(O,O) hydrogen bond links the pa and pz species and an intra­molecular O—H...O bond occurs within the pa molecule. The O atoms of one of the pa nitro groups are disordered over two positions of almost equal [0.54 (2): 0.46 (2)] occupancy. The dihedral angle between the pz aromatic ring planes is 11.81 (10)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807030176/lh2440sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807030176/lh2440Isup2.hkl
Contains datablock I

CCDC reference: 655043

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.005 Å
  • Disorder in main residue
  • R factor = 0.047
  • wR factor = 0.097
  • Data-to-parameter ratio = 13.9

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT430_ALERT_2_A Short Inter D...A Contact O6A .. O7A .. 2.40 Ang.
Author Response: This is an artefact of disorder of the nitro group containing these O atoms.

Alert level B PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for N4
Alert level C CRYSC01_ALERT_1_C The word below has not been recognised as a standard identifier. very PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for S1 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for N1 PLAT301_ALERT_3_C Main Residue Disorder ......................... 6.00 Perc. PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 5 PLAT480_ALERT_4_C Long H...A H-Bond Reported H1 .. O6A .. 2.74 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H1 .. O6B .. 2.77 Ang.
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.58 From the CIF: _reflns_number_total 4124 Count of symmetry unique reflns 2408 Completeness (_total/calc) 171.26% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1716 Fraction of Friedel pairs measured 0.713 Are heavy atom types Z>Si present yes
1 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Phenothiazine, C12H9NS, has a number of interesting features. It is a potent antibacterial agent (Feinberg & Snyder, 1975; Amaral et al., 2001) and shows remarkable redox properties, easily generating a stable C12H9NS+ radical cation that can be crystallized (Sun et al., 2004). Phenothiazine is polymorphic: as well as a P21 monoclinic form (Bell et al., 1968), a second modification shows unusual twinning, with the true P21/c monoclinic structure (van de Waal & Feil, 1977) masquerading as orthorhombic (McDowell, 1976).

Here we describe the synthesis and structure of the title compound a 1:1 adduct of neutral phenothiazine and picric acid (Fig. 1).

The phenothiazine molecule shows a rather small deviation from planarity [dihedral angle between the C1—C6 and C7—C12 rings = 11.81 (10)°] and the C—S distances [C1—S1 = 1.762 (3) Å, C12—S1 = 1.747 (3) Å] are consistent with the presence of the neutral molecule, rather than the radical cation (Sun et al., 2004), in (I). With respect to the mean plane of the C1—C6 ring, N1 and S1 deviate by 0.034 (5) and 0.122 (4) Å, respectively. For the C7—C12 ring, the equivalent deviations are 0.038 (5) and 0.028 (4) Å.

The significant variation of the C—C bond lengths around the picric acid aromatic ring can be related to the contributions of various resonance forms involving the nitro groups (Herbstein & Kaftory, 1976). The N4/O6/O7 nitro group is disordered over two orientations, with almost equal occupancies of 0.54 (2):0.46 (2). The dihedral angle between the disorder components is 78 (1)°. The other two nitro groups are almost co-planar with the benzene ring.

The two constituents of the title adduct interact by a weak, bifurcated N—H···(O,O) bond from phenothiazine to the disordered nitro group of the picric acid, with both disorder components resulting in similar H bond geometries. A typical (Herbstein & Kaftory, 1976) intramolecular O—H···O hydrogen bond occurs within the picric acid molecule. The disorder of the nitro group appears to be correlated with close intermolecular O···O contacts involving the picric acid molecules in the a unit-cell direction.

Related literature top

For background, see: Bell et al. (1968); McDowell (1976); van de Waal & Feil (1977); Sun et al. (2004); Feinberg & Snyder (1975); Amaral et al. (2001).

For related literature, see: Herbstein & Kaftory (1976); Spek (2003).

Experimental top

Phenothiazine (0.9970 g, 0.05 mol) and picric acid (1.1468 g, 0.05 mol) were dissolved in chloroform separately and the solutions were mixed and stirred in a beaker. After one week, black needle shaped crystals were harvested and washed well with carbon tetrachloride and dried in a vacuum desiccator over P2O5. Dark, very soft, rods of the title compound were recrystallized from CHCl3. When the rods are crushed and smeared on a glass slide, a dark orange colour is apparent. They melt with decomposition at 393 K.

Refinement top

The N4 nitro group is disordered over two orientations with populations 0.54 (2):0.46 (2) (sum constraind to unity).

The O– and N-bound H atoms were located in difference maps and their positions were freely refined with Uiso(H) = 1.2Ueq(carrier).

The C-bound H atoms were geometrically placed (C—H = 0.93 Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier).

Structure description top

Phenothiazine, C12H9NS, has a number of interesting features. It is a potent antibacterial agent (Feinberg & Snyder, 1975; Amaral et al., 2001) and shows remarkable redox properties, easily generating a stable C12H9NS+ radical cation that can be crystallized (Sun et al., 2004). Phenothiazine is polymorphic: as well as a P21 monoclinic form (Bell et al., 1968), a second modification shows unusual twinning, with the true P21/c monoclinic structure (van de Waal & Feil, 1977) masquerading as orthorhombic (McDowell, 1976).

Here we describe the synthesis and structure of the title compound a 1:1 adduct of neutral phenothiazine and picric acid (Fig. 1).

The phenothiazine molecule shows a rather small deviation from planarity [dihedral angle between the C1—C6 and C7—C12 rings = 11.81 (10)°] and the C—S distances [C1—S1 = 1.762 (3) Å, C12—S1 = 1.747 (3) Å] are consistent with the presence of the neutral molecule, rather than the radical cation (Sun et al., 2004), in (I). With respect to the mean plane of the C1—C6 ring, N1 and S1 deviate by 0.034 (5) and 0.122 (4) Å, respectively. For the C7—C12 ring, the equivalent deviations are 0.038 (5) and 0.028 (4) Å.

The significant variation of the C—C bond lengths around the picric acid aromatic ring can be related to the contributions of various resonance forms involving the nitro groups (Herbstein & Kaftory, 1976). The N4/O6/O7 nitro group is disordered over two orientations, with almost equal occupancies of 0.54 (2):0.46 (2). The dihedral angle between the disorder components is 78 (1)°. The other two nitro groups are almost co-planar with the benzene ring.

The two constituents of the title adduct interact by a weak, bifurcated N—H···(O,O) bond from phenothiazine to the disordered nitro group of the picric acid, with both disorder components resulting in similar H bond geometries. A typical (Herbstein & Kaftory, 1976) intramolecular O—H···O hydrogen bond occurs within the picric acid molecule. The disorder of the nitro group appears to be correlated with close intermolecular O···O contacts involving the picric acid molecules in the a unit-cell direction.

For background, see: Bell et al. (1968); McDowell (1976); van de Waal & Feil (1977); Sun et al. (2004); Feinberg & Snyder (1975); Amaral et al. (2001).

For related literature, see: Herbstein & Kaftory (1976); Spek (2003).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. View of the molecular structure showing 50% displacement ellipsoids (arbitrary sphere for the H atom). The hydrogen bonds are shown as double-dashed lines. Only one orientation of the disordered N4/O6/O7 nitro group is shown.
Phenothiazine–picric acid (1/1) top
Crystal data top
C12H9NS·C6H3N3O7Z = 4
Mr = 428.38F(000) = 880
Orthorhombic, P212121Dx = 1.582 Mg m3
Hall symbol: P 2ac 2abMo Kα radiation, λ = 0.71073 Å
a = 7.2723 (7) ŵ = 0.23 mm1
b = 8.9800 (9) ÅT = 295 K
c = 27.549 (3) ÅRod, very dark orange
V = 1799.1 (3) Å30.30 × 0.10 × 0.10 mm
Data collection top
Bruker SMART1000 CCD
diffractometer
2300 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
Graphite monochromatorθmax = 27.6°, θmin = 4.3°
ω scansh = 99
11121 measured reflectionsk = 711
4124 independent reflectionsl = 3535
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difmap (O-H and N-H) and geom (C-H)
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0411P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.89(Δ/σ)max = 0.001
4124 reflectionsΔρmax = 0.18 e Å3
296 parametersΔρmin = 0.17 e Å3
0 restraintsAbsolute structure: Flack (1983), 1716 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.12 (10)
Crystal data top
C12H9NS·C6H3N3O7V = 1799.1 (3) Å3
Mr = 428.38Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.2723 (7) ŵ = 0.23 mm1
b = 8.9800 (9) ÅT = 295 K
c = 27.549 (3) Å0.30 × 0.10 × 0.10 mm
Data collection top
Bruker SMART1000 CCD
diffractometer
2300 reflections with I > 2σ(I)
11121 measured reflectionsRint = 0.044
4124 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097Δρmax = 0.18 e Å3
S = 0.89Δρmin = 0.17 e Å3
4124 reflectionsAbsolute structure: Flack (1983), 1716 Friedel pairs
296 parametersAbsolute structure parameter: 0.12 (10)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6577 (3)0.5800 (3)0.33533 (10)0.0512 (7)
C20.6216 (4)0.6559 (4)0.29269 (11)0.0675 (9)
H2A0.62610.60590.26320.081*
C30.5791 (5)0.8049 (5)0.29381 (15)0.0800 (10)
H30.55420.85540.26510.096*
C40.5735 (4)0.8792 (4)0.33742 (15)0.0767 (9)
H40.54260.97970.33820.092*
C50.6135 (4)0.8054 (3)0.37971 (12)0.0664 (9)
H50.61240.85720.40890.080*
C60.6555 (4)0.6544 (3)0.37959 (10)0.0530 (7)
C70.7653 (4)0.4400 (3)0.42768 (10)0.0531 (7)
C80.8347 (4)0.3950 (4)0.47242 (11)0.0662 (8)
H80.83140.46010.49870.079*
C90.9084 (5)0.2543 (5)0.47808 (14)0.0859 (11)
H90.95510.22560.50810.103*
C100.9133 (5)0.1569 (4)0.43996 (18)0.0901 (12)
H100.96140.06180.44400.108*
C110.8468 (5)0.2008 (3)0.39565 (13)0.0718 (9)
H110.85080.13470.36970.086*
C120.7738 (4)0.3412 (3)0.38875 (10)0.0543 (7)
N10.6881 (5)0.5818 (3)0.42300 (9)0.0762 (9)
H10.697 (5)0.631 (4)0.4475 (12)0.091*
S10.69464 (12)0.38660 (9)0.33075 (3)0.0718 (3)
C210.6419 (4)0.7960 (3)0.63036 (10)0.0486 (7)
C220.6397 (3)0.8755 (3)0.67412 (9)0.0457 (6)
C230.6772 (3)1.0262 (3)0.67629 (9)0.0458 (6)
H230.67041.07720.70560.055*
C240.7245 (3)1.0987 (3)0.63455 (8)0.0427 (6)
C250.7296 (4)1.0264 (3)0.59049 (9)0.0480 (7)
H250.76131.07740.56230.058*
C260.6870 (4)0.8776 (3)0.58903 (9)0.0478 (6)
N20.5977 (4)0.8011 (3)0.71962 (10)0.0636 (7)
N30.7712 (3)1.2571 (3)0.63615 (9)0.0562 (6)
N40.6920 (5)0.8059 (3)0.54120 (10)0.0714 (7)
O10.6062 (3)0.6509 (2)0.62691 (9)0.0744 (7)
H20.572 (5)0.623 (4)0.6589 (12)0.089*
O20.5599 (4)0.6672 (3)0.71851 (9)0.0902 (8)
O30.6021 (4)0.8721 (3)0.75672 (9)0.0945 (8)
O40.7424 (3)1.3233 (2)0.67420 (8)0.0773 (6)
O50.8380 (3)1.3140 (2)0.59996 (7)0.0734 (6)
O6A0.803 (3)0.8473 (16)0.5120 (4)0.118 (5)0.54 (2)
O7A0.576 (2)0.7138 (16)0.5324 (2)0.116 (5)0.54 (2)
O6B0.672 (3)0.8824 (10)0.5057 (3)0.109 (5)0.46 (2)
O7B0.717 (4)0.6743 (8)0.5391 (4)0.126 (7)0.46 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0421 (15)0.0557 (17)0.0559 (18)0.0024 (13)0.0034 (14)0.0001 (14)
C20.066 (2)0.083 (3)0.0535 (19)0.0080 (19)0.0008 (16)0.0050 (17)
C30.080 (2)0.079 (3)0.081 (3)0.004 (2)0.008 (2)0.026 (2)
C40.068 (2)0.0543 (19)0.108 (3)0.0069 (17)0.001 (2)0.013 (2)
C50.070 (2)0.055 (2)0.074 (2)0.0141 (17)0.0044 (17)0.0071 (16)
C60.0517 (18)0.0544 (19)0.0529 (17)0.0086 (14)0.0027 (14)0.0038 (13)
C70.0487 (17)0.0538 (18)0.0568 (18)0.0030 (14)0.0045 (14)0.0016 (14)
C80.0632 (19)0.076 (2)0.0595 (18)0.0041 (18)0.0086 (16)0.0085 (16)
C90.076 (2)0.097 (3)0.085 (3)0.020 (2)0.018 (2)0.044 (3)
C100.091 (3)0.063 (2)0.116 (3)0.021 (2)0.029 (3)0.031 (2)
C110.073 (2)0.050 (2)0.092 (3)0.0019 (17)0.0130 (19)0.0046 (17)
C120.0458 (16)0.0477 (17)0.0694 (19)0.0047 (14)0.0077 (14)0.0011 (14)
N10.117 (2)0.0646 (19)0.0475 (16)0.0315 (19)0.0094 (16)0.0129 (12)
S10.0836 (5)0.0639 (5)0.0680 (5)0.0109 (5)0.0123 (5)0.0211 (4)
C210.0466 (17)0.0352 (16)0.0639 (19)0.0031 (13)0.0079 (13)0.0002 (13)
C220.0460 (15)0.0444 (15)0.0465 (15)0.0011 (12)0.0011 (12)0.0046 (14)
C230.0501 (15)0.0424 (15)0.0450 (15)0.0047 (13)0.0031 (13)0.0005 (12)
C240.0480 (15)0.0330 (14)0.0469 (15)0.0007 (13)0.0051 (12)0.0012 (12)
C250.0550 (17)0.0450 (16)0.0440 (15)0.0011 (14)0.0012 (13)0.0027 (12)
C260.0520 (15)0.0441 (15)0.0473 (15)0.0047 (15)0.0048 (13)0.0096 (12)
N20.0690 (16)0.0524 (18)0.0694 (18)0.0041 (14)0.0053 (14)0.0146 (14)
N30.0658 (17)0.0432 (14)0.0597 (16)0.0010 (13)0.0043 (13)0.0022 (13)
N40.095 (2)0.0576 (19)0.0618 (18)0.003 (2)0.004 (2)0.0163 (15)
O10.0936 (16)0.0415 (13)0.0881 (15)0.0134 (12)0.0104 (13)0.0010 (11)
O20.118 (2)0.0613 (16)0.0916 (17)0.0266 (14)0.0041 (15)0.0236 (13)
O30.153 (2)0.0712 (15)0.0594 (14)0.0167 (17)0.0229 (15)0.0142 (13)
O40.1124 (18)0.0496 (11)0.0700 (14)0.0081 (12)0.0071 (13)0.0163 (10)
O50.1043 (18)0.0492 (12)0.0668 (13)0.0180 (12)0.0052 (13)0.0078 (10)
O6A0.161 (11)0.120 (7)0.072 (4)0.036 (7)0.029 (6)0.025 (4)
O7A0.160 (10)0.086 (7)0.100 (4)0.034 (7)0.029 (4)0.035 (4)
O6B0.176 (13)0.101 (5)0.049 (4)0.027 (6)0.005 (5)0.011 (4)
O7B0.235 (19)0.054 (4)0.088 (5)0.030 (5)0.002 (7)0.034 (3)
Geometric parameters (Å, º) top
C1—C21.383 (4)C12—S11.747 (3)
C1—C61.390 (3)N1—H10.81 (3)
C1—S11.762 (3)C21—O11.332 (3)
C2—C31.373 (5)C21—C261.393 (4)
C2—H2A0.9300C21—C221.401 (3)
C3—C41.375 (5)C22—C231.381 (3)
C3—H30.9300C22—N21.453 (3)
C4—C51.372 (4)C23—C241.365 (3)
C4—H40.9300C23—H230.9300
C5—C61.390 (4)C24—C251.377 (3)
C5—H50.9300C24—N31.463 (3)
C6—N11.382 (3)C25—C261.373 (4)
C7—C81.392 (4)C25—H250.9300
C7—C121.393 (4)C26—N41.467 (3)
C7—N11.398 (4)N2—O31.205 (3)
C8—C91.382 (5)N2—O21.234 (3)
C8—H80.9300N3—O51.221 (3)
C9—C101.367 (5)N3—O41.223 (3)
C9—H90.9300N4—O7B1.197 (8)
C10—C111.371 (5)N4—O6B1.205 (9)
C10—H100.9300N4—O6A1.197 (9)
C11—C121.381 (4)N4—O7A1.207 (7)
C11—H110.9300O1—H20.95 (3)
C2—C1—C6120.4 (3)C7—N1—H1113 (2)
C2—C1—S1117.0 (2)C12—S1—C1102.40 (14)
C6—C1—S1122.6 (2)O1—C21—C26120.1 (3)
C3—C2—C1120.3 (3)O1—C21—C22123.9 (3)
C3—C2—H2A119.9C26—C21—C22116.0 (2)
C1—C2—H2A119.9C23—C22—C21122.3 (2)
C2—C3—C4120.0 (3)C23—C22—N2117.1 (2)
C2—C3—H3120.0C21—C22—N2120.7 (2)
C4—C3—H3120.0C24—C23—C22118.7 (2)
C5—C4—C3120.1 (3)C24—C23—H23120.6
C5—C4—H4120.0C22—C23—H23120.6
C3—C4—H4120.0C23—C24—C25121.6 (2)
C4—C5—C6121.1 (3)C23—C24—N3119.8 (2)
C4—C5—H5119.5C25—C24—N3118.6 (2)
C6—C5—H5119.5C26—C25—C24118.6 (2)
N1—C6—C5119.7 (3)C26—C25—H25120.7
N1—C6—C1122.0 (3)C24—C25—H25120.7
C5—C6—C1118.2 (3)C25—C26—C21122.8 (2)
C8—C7—C12118.7 (3)C25—C26—N4116.6 (3)
C8—C7—N1119.5 (3)C21—C26—N4120.6 (3)
C12—C7—N1121.8 (3)O3—N2—O2122.9 (3)
C9—C8—C7120.4 (3)O3—N2—C22118.8 (3)
C9—C8—H8119.8O2—N2—C22118.3 (3)
C7—C8—H8119.8O5—N3—O4124.4 (2)
C10—C9—C8120.6 (3)O5—N3—C24118.3 (2)
C10—C9—H9119.7O4—N3—C24117.3 (2)
C8—C9—H9119.7O7B—N4—O6B122.8 (7)
C9—C10—C11119.4 (3)O7B—N4—O6A99.9 (7)
C9—C10—H10120.3O6B—N4—O6A50.1 (4)
C11—C10—H10120.3O7B—N4—O7A54.6 (6)
C10—C11—C12121.4 (3)O6B—N4—O7A98.1 (7)
C10—C11—H11119.3O6A—N4—O7A123.2 (7)
C12—C11—H11119.3O7B—N4—C26118.7 (6)
C11—C12—C7119.5 (3)O6B—N4—C26118.5 (5)
C11—C12—S1117.8 (2)O6A—N4—C26119.0 (5)
C7—C12—S1122.8 (2)O7A—N4—C26117.7 (6)
C6—N1—C7125.3 (2)C21—O1—H2104 (2)
C6—N1—H1119 (2)
C6—C1—C2—C31.5 (5)C26—C21—C22—C230.9 (4)
S1—C1—C2—C3175.6 (3)O1—C21—C22—N20.3 (4)
C1—C2—C3—C40.4 (5)C26—C21—C22—N2178.9 (2)
C2—C3—C4—C51.2 (5)C21—C22—C23—C242.4 (4)
C3—C4—C5—C61.7 (5)N2—C22—C23—C24177.4 (2)
C4—C5—C6—N1177.5 (3)C22—C23—C24—C252.2 (4)
C4—C5—C6—C10.6 (5)C22—C23—C24—N3177.8 (2)
C2—C1—C6—N1179.0 (3)C23—C24—C25—C260.4 (4)
S1—C1—C6—N12.1 (4)N3—C24—C25—C26179.6 (2)
C2—C1—C6—C51.0 (4)C24—C25—C26—C211.1 (4)
S1—C1—C6—C5175.9 (2)C24—C25—C26—N4179.2 (3)
C12—C7—C8—C90.8 (4)O1—C21—C26—C25178.3 (3)
N1—C7—C8—C9178.8 (3)C22—C21—C26—C250.9 (4)
C7—C8—C9—C100.4 (5)O1—C21—C26—N41.3 (4)
C8—C9—C10—C111.0 (6)C22—C21—C26—N4179.5 (3)
C9—C10—C11—C120.4 (6)C23—C22—N2—O31.9 (4)
C10—C11—C12—C70.8 (5)C21—C22—N2—O3177.9 (3)
C10—C11—C12—S1179.4 (3)C23—C22—N2—O2178.5 (3)
C8—C7—C12—C111.4 (4)C21—C22—N2—O21.7 (4)
N1—C7—C12—C11178.2 (3)C23—C24—N3—O5169.7 (2)
C8—C7—C12—S1178.9 (2)C25—C24—N3—O510.3 (4)
N1—C7—C12—S11.5 (4)C23—C24—N3—O49.4 (4)
C5—C6—N1—C7167.0 (3)C25—C24—N3—O4170.6 (2)
C1—C6—N1—C715.1 (5)C25—C26—N4—O7B155.5 (15)
C8—C7—N1—C6163.4 (3)C21—C26—N4—O7B24.2 (16)
C12—C7—N1—C617.0 (5)C25—C26—N4—O6B24.1 (14)
C11—C12—S1—C1169.1 (2)C21—C26—N4—O6B156.2 (14)
C7—C12—S1—C111.2 (3)C25—C26—N4—O6A33.6 (14)
C2—C1—S1—C12169.9 (2)C21—C26—N4—O6A146.0 (13)
C6—C1—S1—C1213.0 (3)C25—C26—N4—O7A141.9 (11)
O1—C21—C22—C23179.9 (3)C21—C26—N4—O7A38.5 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O6A0.81 (3)2.74 (4)3.520 (7)162 (3)
N1—H1···O6B0.81 (3)2.77 (3)3.533 (8)157 (3)
N1—H1···O7A0.81 (3)2.60 (3)3.339 (10)151 (3)
N1—H1···O7B0.81 (3)2.56 (3)3.311 (11)156 (3)
O1—H2···O20.95 (3)1.69 (3)2.550 (3)148 (3)

Experimental details

Crystal data
Chemical formulaC12H9NS·C6H3N3O7
Mr428.38
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)7.2723 (7), 8.9800 (9), 27.549 (3)
V3)1799.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART1000 CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11121, 4124, 2300
Rint0.044
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.097, 0.89
No. of reflections4124
No. of parameters296
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.17
Absolute structureFlack (1983), 1716 Friedel pairs
Absolute structure parameter0.12 (10)

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O6A0.81 (3)2.74 (4)3.520 (7)162 (3)
N1—H1···O6B0.81 (3)2.77 (3)3.533 (8)157 (3)
N1—H1···O7A0.81 (3)2.60 (3)3.339 (10)151 (3)
N1—H1···O7B0.81 (3)2.56 (3)3.311 (11)156 (3)
O1—H2···O20.95 (3)1.69 (3)2.550 (3)148 (3)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds