Download citation
Download citation
link to html
In the title compound, (C8H20N)[Co(C26H16N4O2)Cl2], the four N atoms of the N,N′-(o-phenyl­ene)bis­(isoquinoline-2-carboxamidate) (biqb2−) ligand form the equatorial plane of a distorted octa­hedral coordination environment around the CoIII ion, while two chloride ligands are axially coordinated. The Co—Namide distances are significantly shorter than the Co—Npyrid­yl distances. The dihedral angle between the two isoquinoline fused-ring systems is 25.72 (7)°. The crystal structure is stabilized, in part, by inter­molecular Ccation—H...Cl and Cisoquinoline—H...Cl hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807029091/lh2427sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807029091/lh2427Isup2.hkl
Contains datablock I

CCDC reference: 654791

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.050
  • wR factor = 0.102
  • Data-to-parameter ratio = 14.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Co1 - Cl2 .. 8.57 su
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Co1 (3) 3.70
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Selective hydroxylation of hydrocarbons is an important but still very difficult chemical transformation process. A great deal of effort has been made to develop efficient catalysts for the hydrocarbon oxidation in synthetic organic chemistry and industrial chemistry (Barton & Doller, 1992, Sawyer et al., 1996). While much attention has been paid to heme and nonheme iron complexes due to their high catalytic activity and biological relevance (Nam et al., 2000, Kaizer et al., 2004), cobalt complexes have attracted less attention in the oxidation chemistry (Jain & Sain, 2003). In order to study the catalytic oxidation reactions of hydrocarbons with new cobalt complexes, we have synthesized the title complex by the reaction of cobalt(II) chloride with 1,2-bis(isoquinoline-2-carboxamido)benzene (H2biqb).

The four N atoms of the biqb2- ligand form the equatorial plane of the distorted octahedral coordination geometry of the CoIII ion, and two chloro ligands are axially coordinated to the CoIII ion (Fig. 1). The two Co—Namide distances are significantly shorter than the Co—Npyridyl distances. The anion is not planar with a dihedral angle of 25.72 (7)° between two isoqunoline rings. In the crystal structure, there are inter-molecular C(cation)-H···Cl and C(isoquinoline)-H···Cl hydrogen bonds as shown in Fig. 2.

Related literature top

The corresponding [Et4N][Co(bpb)Cl2] (H2bpb = 1,2–bis(2–pyridine–2–carboxamido)benzene) complex has distorted octahedral geometry (Seo et al., 2004) with chloro axial ligands having long Co—Cl bonds.

For related literature, see: Barton & Doller (1992); Jain & Sain (2003); Kaizer et al. (2004); Nam et al. (2000, 2006); Sawyer et al. (1996).

Experimental top

For the preparation of the ligand H2biqb, a slightly modified method by Nam et al. was used (Nam et al., 2006). To a stirred solution of 1–isoquinolinecarboxylic acid (1.73 g, 10 mmol) in pyridine (10 ml), a solution of 1,2–phenylenediamine (0.54 g, 5 mmol) in pyridine (5 ml) was added drop by drop. The solution was stirred for 15 min and triphenyl phosphite (2.70 ml, 10 mmol) was slowly added. The reaction mixture was warmed up to 393 K, and the mixture was stirred for 4 h. The volume of the solution was then reduced to 2 ml and kept in air. Crystallization from an aqueous solution afforded a pale–yellow powder, which was washed with ethanol. For the preparation of the title complex, equimolar quantities of CoCl2.6H2O (0.12 g, 0.5 mmol) and H2biqb (0.21 g, 0.5 mmol) were dissolved in DMF, and triethylamine (0.14 ml, 1 mmol) and tetraethylammonium chloride hydrate (0.17 g, 1 mmol) were added to the reaction solution. After the solution was refluxed for 4 h, brown precipitate was obtained. Dark brown crystals were obtained from an acetonitrile–diethyl ether solution at room temperature by slow evaporation for X–ray experiments.

Refinement top

H atoms were placed in calculated positions with C—H distances of 0.95Å (isoquinoline and benzene), 0.99Å (methylene) and 0.98Å (methyl).They were included in the refinement in riding–motion approximation with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Structure description top

Selective hydroxylation of hydrocarbons is an important but still very difficult chemical transformation process. A great deal of effort has been made to develop efficient catalysts for the hydrocarbon oxidation in synthetic organic chemistry and industrial chemistry (Barton & Doller, 1992, Sawyer et al., 1996). While much attention has been paid to heme and nonheme iron complexes due to their high catalytic activity and biological relevance (Nam et al., 2000, Kaizer et al., 2004), cobalt complexes have attracted less attention in the oxidation chemistry (Jain & Sain, 2003). In order to study the catalytic oxidation reactions of hydrocarbons with new cobalt complexes, we have synthesized the title complex by the reaction of cobalt(II) chloride with 1,2-bis(isoquinoline-2-carboxamido)benzene (H2biqb).

The four N atoms of the biqb2- ligand form the equatorial plane of the distorted octahedral coordination geometry of the CoIII ion, and two chloro ligands are axially coordinated to the CoIII ion (Fig. 1). The two Co—Namide distances are significantly shorter than the Co—Npyridyl distances. The anion is not planar with a dihedral angle of 25.72 (7)° between two isoqunoline rings. In the crystal structure, there are inter-molecular C(cation)-H···Cl and C(isoquinoline)-H···Cl hydrogen bonds as shown in Fig. 2.

The corresponding [Et4N][Co(bpb)Cl2] (H2bpb = 1,2–bis(2–pyridine–2–carboxamido)benzene) complex has distorted octahedral geometry (Seo et al., 2004) with chloro axial ligands having long Co—Cl bonds.

For related literature, see: Barton & Doller (1992); Jain & Sain (2003); Kaizer et al. (2004); Nam et al. (2000, 2006); Sawyer et al. (1996).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure showing hydrogen bonds as dashed lines.
Tetraethylammonium dichlorido[N,N'-(o-phenylene)bis(isoquinoline-2-carboxamidato)- κ4N]cobaltate(III) top
Crystal data top
(C8H20N)[Co(C26H16N4O2)Cl2]F(000) = 1408
Mr = 676.51Dx = 1.490 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 813 reflections
a = 12.921 (2) Åθ = 2.2–17.4°
b = 16.646 (3) ŵ = 0.79 mm1
c = 14.022 (2) ÅT = 100 K
β = 90.625 (4)°Block, dark brown
V = 3015.7 (9) Å30.15 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
5913 independent reflections
Radiation source: fine-focus sealed tube3440 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.085
φ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1514
Tmin = 0.910, Tmax = 0.924k = 2020
16659 measured reflectionsl = 1217
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 0.89 w = 1/[σ2(Fo2) + (0.0407P)2]
where P = (Fo2 + 2Fc2)/3
5913 reflections(Δ/σ)max = 0.001
401 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
(C8H20N)[Co(C26H16N4O2)Cl2]V = 3015.7 (9) Å3
Mr = 676.51Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.921 (2) ŵ = 0.79 mm1
b = 16.646 (3) ÅT = 100 K
c = 14.022 (2) Å0.15 × 0.10 × 0.10 mm
β = 90.625 (4)°
Data collection top
Bruker SMART CCD
diffractometer
5913 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
3440 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.924Rint = 0.085
16659 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 0.89Δρmax = 0.42 e Å3
5913 reflectionsΔρmin = 0.43 e Å3
401 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.36201 (4)0.65718 (3)0.46734 (4)0.01553 (14)
Cl10.31747 (7)0.52714 (5)0.44809 (7)0.0203 (2)
Cl20.42351 (7)0.78286 (5)0.49397 (7)0.0235 (2)
N10.4901 (2)0.63953 (16)0.3961 (2)0.0167 (7)
N20.3095 (2)0.67995 (16)0.3450 (2)0.0138 (7)
N30.2300 (2)0.68338 (16)0.5085 (2)0.0160 (7)
N40.3827 (2)0.63030 (16)0.6027 (2)0.0153 (7)
O10.33359 (18)0.64480 (15)0.18733 (17)0.0247 (6)
O20.12527 (18)0.69526 (14)0.64086 (17)0.0204 (6)
C10.5880 (3)0.6354 (2)0.4333 (3)0.0194 (9)
H10.59770.63890.50040.023*
C20.6715 (3)0.6266 (2)0.3770 (3)0.0209 (9)
H20.73840.62250.40530.025*
C30.6608 (3)0.6233 (2)0.2774 (3)0.0191 (9)
C40.7456 (3)0.6157 (2)0.2165 (3)0.0229 (9)
H40.81340.61140.24290.027*
C50.7324 (3)0.6146 (2)0.1204 (3)0.0241 (9)
H50.79080.60950.08030.029*
C60.6330 (3)0.6208 (2)0.0800 (3)0.0238 (9)
H60.62470.62000.01260.029*
C70.5475 (3)0.6281 (2)0.1367 (3)0.0193 (9)
H70.48060.63230.10830.023*
C80.5586 (3)0.6295 (2)0.2369 (3)0.0162 (8)
C90.4755 (3)0.6390 (2)0.3014 (3)0.0170 (9)
C100.3649 (3)0.6539 (2)0.2705 (3)0.0170 (8)
C110.2027 (3)0.6964 (2)0.3431 (3)0.0162 (8)
C120.1406 (3)0.70987 (19)0.2625 (3)0.0178 (9)
H120.17050.70970.20090.021*
C130.0357 (3)0.7234 (2)0.2724 (3)0.0195 (9)
H130.00650.73230.21740.023*
C140.0084 (3)0.7241 (2)0.3624 (3)0.0178 (9)
H140.08070.73270.36850.021*
C150.0525 (3)0.7121 (2)0.4438 (3)0.0205 (9)
H150.02200.71330.50510.025*
C160.1581 (3)0.69848 (19)0.4351 (3)0.0153 (8)
C170.2091 (3)0.6808 (2)0.6022 (3)0.0156 (8)
C180.3032 (3)0.6515 (2)0.6576 (2)0.0136 (8)
C190.3040 (3)0.63931 (19)0.7576 (3)0.0157 (8)
C200.2256 (3)0.6671 (2)0.8204 (3)0.0197 (9)
H200.16760.69530.79500.024*
C210.2325 (3)0.6540 (2)0.9165 (3)0.0241 (9)
H210.17980.67360.95720.029*
C220.3169 (3)0.6118 (2)0.9555 (3)0.0248 (10)
H220.32040.60221.02230.030*
C230.3939 (3)0.5843 (2)0.8982 (3)0.0206 (9)
H230.45080.55600.92550.025*
C240.3900 (3)0.5975 (2)0.7989 (3)0.0168 (9)
C250.4678 (3)0.5711 (2)0.7364 (3)0.0195 (9)
H250.52440.54070.76080.023*
C260.4627 (3)0.58839 (19)0.6426 (3)0.0172 (9)
H260.51710.57060.60270.021*
N50.9072 (2)0.54941 (17)0.7444 (2)0.0207 (8)
C510.9003 (3)0.6357 (2)0.7087 (3)0.0259 (10)
H51A0.87800.67020.76220.031*
H51B0.97050.65340.69040.031*
C520.8280 (3)0.6497 (2)0.6252 (3)0.0344 (11)
H52A0.84980.61680.57110.052*
H52B0.82980.70660.60730.052*
H52C0.75740.63490.64310.052*
C530.9412 (3)0.4925 (2)0.6655 (3)0.0220 (9)
H53A0.94250.43720.69140.026*
H53B0.88840.49390.61380.026*
C541.0459 (3)0.5102 (2)0.6225 (3)0.0240 (10)
H54A1.04430.56320.59210.036*
H54B1.06210.46920.57480.036*
H54C1.09910.50980.67290.036*
C550.9856 (3)0.5497 (2)0.8262 (3)0.0290 (10)
H55A1.05350.56690.80120.035*
H55B0.96390.59010.87380.035*
C560.9994 (3)0.4697 (2)0.8761 (3)0.0363 (11)
H56A0.93440.45440.90660.055*
H56B1.05420.47420.92460.055*
H56C1.01840.42860.82940.055*
C570.8029 (3)0.5188 (2)0.7762 (3)0.0215 (9)
H57A0.75590.51700.72000.026*
H57B0.81150.46310.79950.026*
C580.7518 (3)0.5675 (2)0.8531 (3)0.0283 (10)
H58A0.79950.57340.90750.042*
H58B0.68880.53990.87390.042*
H58C0.73370.62060.82810.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0159 (3)0.0166 (3)0.0141 (3)0.0011 (2)0.0008 (2)0.0001 (2)
Cl10.0210 (5)0.0199 (5)0.0200 (5)0.0001 (4)0.0003 (4)0.0000 (4)
Cl20.0269 (6)0.0211 (5)0.0226 (6)0.0003 (4)0.0024 (4)0.0002 (4)
N10.0166 (17)0.0153 (17)0.0182 (18)0.0005 (13)0.0015 (13)0.0003 (14)
N20.0152 (17)0.0142 (16)0.0122 (17)0.0006 (13)0.0028 (13)0.0046 (13)
N30.0162 (17)0.0181 (17)0.0137 (18)0.0010 (13)0.0032 (13)0.0008 (14)
N40.0165 (17)0.0105 (16)0.0189 (18)0.0012 (13)0.0007 (14)0.0002 (13)
O10.0240 (15)0.0355 (17)0.0145 (15)0.0012 (13)0.0005 (12)0.0026 (13)
O20.0184 (15)0.0237 (15)0.0192 (15)0.0001 (12)0.0050 (12)0.0008 (12)
C10.019 (2)0.025 (2)0.014 (2)0.0001 (17)0.0027 (17)0.0014 (17)
C20.017 (2)0.024 (2)0.022 (2)0.0020 (17)0.0023 (18)0.0044 (18)
C30.021 (2)0.016 (2)0.020 (2)0.0001 (17)0.0050 (17)0.0026 (17)
C40.015 (2)0.025 (2)0.028 (3)0.0023 (18)0.0026 (18)0.0024 (19)
C50.020 (2)0.022 (2)0.031 (3)0.0033 (18)0.0093 (19)0.0036 (19)
C60.030 (2)0.020 (2)0.021 (2)0.0023 (19)0.0082 (19)0.0003 (18)
C70.026 (2)0.015 (2)0.017 (2)0.0027 (17)0.0004 (18)0.0037 (17)
C80.014 (2)0.0089 (18)0.025 (2)0.0007 (15)0.0062 (17)0.0038 (17)
C90.021 (2)0.014 (2)0.016 (2)0.0003 (16)0.0020 (17)0.0005 (16)
C100.018 (2)0.0136 (19)0.019 (2)0.0051 (17)0.0004 (17)0.0055 (18)
C110.018 (2)0.017 (2)0.014 (2)0.0006 (16)0.0006 (16)0.0053 (17)
C120.024 (2)0.014 (2)0.015 (2)0.0007 (17)0.0026 (17)0.0017 (16)
C130.017 (2)0.019 (2)0.022 (2)0.0026 (17)0.0056 (17)0.0016 (18)
C140.015 (2)0.014 (2)0.024 (2)0.0019 (16)0.0040 (17)0.0001 (17)
C150.027 (2)0.018 (2)0.017 (2)0.0034 (17)0.0029 (17)0.0009 (17)
C160.017 (2)0.0096 (19)0.020 (2)0.0019 (16)0.0010 (16)0.0007 (17)
C170.021 (2)0.0092 (19)0.017 (2)0.0023 (16)0.0022 (17)0.0031 (16)
C180.015 (2)0.0093 (18)0.016 (2)0.0007 (16)0.0002 (16)0.0012 (16)
C190.024 (2)0.0096 (19)0.014 (2)0.0057 (16)0.0017 (16)0.0010 (16)
C200.023 (2)0.020 (2)0.016 (2)0.0042 (18)0.0033 (17)0.0008 (18)
C210.031 (2)0.023 (2)0.018 (2)0.0042 (19)0.0071 (18)0.0033 (19)
C220.037 (3)0.024 (2)0.014 (2)0.0088 (19)0.0039 (19)0.0001 (18)
C230.020 (2)0.021 (2)0.021 (2)0.0058 (17)0.0048 (18)0.0065 (19)
C240.024 (2)0.0086 (19)0.018 (2)0.0074 (16)0.0007 (17)0.0012 (16)
C250.019 (2)0.020 (2)0.019 (2)0.0008 (17)0.0052 (17)0.0016 (18)
C260.020 (2)0.0109 (19)0.021 (2)0.0004 (16)0.0017 (17)0.0008 (17)
N50.0215 (18)0.0186 (17)0.0219 (19)0.0028 (14)0.0034 (14)0.0076 (15)
C510.024 (2)0.019 (2)0.036 (3)0.0016 (18)0.0102 (19)0.0051 (19)
C520.037 (3)0.021 (2)0.045 (3)0.004 (2)0.007 (2)0.003 (2)
C530.027 (2)0.017 (2)0.022 (2)0.0025 (17)0.0027 (18)0.0064 (18)
C540.025 (2)0.019 (2)0.027 (2)0.0052 (18)0.0011 (18)0.0072 (19)
C550.017 (2)0.040 (3)0.030 (3)0.0039 (19)0.0034 (18)0.020 (2)
C560.034 (3)0.047 (3)0.028 (3)0.013 (2)0.008 (2)0.013 (2)
C570.017 (2)0.025 (2)0.022 (2)0.0045 (17)0.0036 (17)0.0028 (18)
C580.020 (2)0.039 (3)0.025 (3)0.0012 (19)0.0027 (18)0.010 (2)
Geometric parameters (Å, º) top
Co1—N31.859 (3)C18—C191.417 (5)
Co1—N21.877 (3)C19—C241.428 (5)
Co1—N11.965 (3)C19—C201.428 (5)
Co1—N41.965 (3)C20—C211.367 (5)
Co1—Cl12.2552 (11)C20—H200.9500
Co1—Cl22.2674 (11)C21—C221.404 (5)
N1—C91.340 (4)C21—H210.9500
N1—C11.363 (4)C22—C231.365 (5)
N2—C101.345 (4)C22—H220.9500
N2—C111.407 (4)C23—C241.410 (5)
N3—C171.344 (4)C23—H230.9500
N3—C161.402 (4)C24—C251.410 (5)
N4—C181.338 (4)C25—C261.348 (5)
N4—C261.362 (4)C25—H250.9500
O1—C101.239 (4)C26—H260.9500
O2—C171.241 (4)N5—C571.512 (4)
C1—C21.352 (5)N5—C551.522 (4)
C1—H10.9500N5—C511.523 (4)
C2—C31.403 (5)N5—C531.524 (4)
C2—H20.9500C51—C521.508 (5)
C3—C41.402 (5)C51—H51A0.9900
C3—C81.435 (5)C51—H51B0.9900
C4—C51.355 (5)C52—H52A0.9800
C4—H40.9500C52—H52B0.9800
C5—C61.401 (5)C52—H52C0.9800
C5—H50.9500C53—C541.516 (5)
C6—C71.373 (5)C53—H53A0.9900
C6—H60.9500C53—H53B0.9900
C7—C81.412 (5)C54—H54A0.9800
C7—H70.9500C54—H54B0.9800
C8—C91.420 (5)C54—H54C0.9800
C9—C101.509 (5)C55—C561.515 (5)
C11—C121.397 (5)C55—H55A0.9900
C11—C161.418 (5)C55—H55B0.9900
C12—C131.383 (5)C56—H56A0.9800
C12—H120.9500C56—H56B0.9800
C13—C141.391 (5)C56—H56C0.9800
C13—H130.9500C57—C581.507 (5)
C14—C151.393 (4)C57—H57A0.9900
C14—H140.9500C57—H57B0.9900
C15—C161.389 (5)C58—H58A0.9800
C15—H150.9500C58—H58B0.9800
C17—C181.516 (5)C58—H58C0.9800
N3—Co1—N285.00 (12)C19—C18—C17123.4 (3)
N3—Co1—N1166.97 (12)C18—C19—C24118.0 (3)
N2—Co1—N182.18 (12)C18—C19—C20124.5 (3)
N3—Co1—N482.49 (12)C24—C19—C20117.5 (3)
N2—Co1—N4166.62 (12)C21—C20—C19121.2 (3)
N1—Co1—N4110.48 (12)C21—C20—H20119.4
N3—Co1—Cl191.63 (9)C19—C20—H20119.4
N2—Co1—Cl189.73 (9)C20—C21—C22120.4 (4)
N1—Co1—Cl190.64 (8)C20—C21—H21119.8
N4—Co1—Cl185.93 (8)C22—C21—H21119.8
N3—Co1—Cl293.07 (9)C23—C22—C21120.5 (4)
N2—Co1—Cl294.97 (9)C23—C22—H22119.8
N1—Co1—Cl285.75 (8)C21—C22—H22119.8
N4—Co1—Cl290.41 (8)C22—C23—C24120.7 (3)
Cl1—Co1—Cl2173.62 (4)C22—C23—H23119.6
C9—N1—C1119.9 (3)C24—C23—H23119.6
C9—N1—Co1113.2 (2)C25—C24—C23123.1 (3)
C1—N1—Co1126.6 (3)C25—C24—C19117.1 (3)
C10—N2—C11125.4 (3)C23—C24—C19119.7 (3)
C10—N2—Co1117.0 (2)C26—C25—C24120.8 (3)
C11—N2—Co1113.6 (2)C26—C25—H25119.6
C17—N3—C16125.8 (3)C24—C25—H25119.6
C17—N3—Co1119.4 (2)C25—C26—N4122.6 (3)
C16—N3—Co1114.6 (2)C25—C26—H26118.7
C18—N4—C26118.9 (3)N4—C26—H26118.7
C18—N4—Co1113.5 (2)C57—N5—C55111.5 (3)
C26—N4—Co1127.5 (3)C57—N5—C51111.4 (3)
C2—C1—N1121.7 (3)C55—N5—C51106.3 (3)
C2—C1—H1119.2C57—N5—C53105.6 (3)
N1—C1—H1119.2C55—N5—C53110.7 (3)
C1—C2—C3121.0 (3)C51—N5—C53111.3 (3)
C1—C2—H2119.5C52—C51—N5115.8 (3)
C3—C2—H2119.5C52—C51—H51A108.3
C4—C3—C2122.7 (3)N5—C51—H51A108.3
C4—C3—C8119.2 (3)C52—C51—H51B108.3
C2—C3—C8118.1 (3)N5—C51—H51B108.3
C5—C4—C3121.0 (3)H51A—C51—H51B107.4
C5—C4—H4119.5C51—C52—H52A109.5
C3—C4—H4119.5C51—C52—H52B109.5
C4—C5—C6120.4 (4)H52A—C52—H52B109.5
C4—C5—H5119.8C51—C52—H52C109.5
C6—C5—H5119.8H52A—C52—H52C109.5
C7—C6—C5120.8 (4)H52B—C52—H52C109.5
C7—C6—H6119.6C54—C53—N5115.7 (3)
C5—C6—H6119.6C54—C53—H53A108.4
C6—C7—C8120.2 (3)N5—C53—H53A108.4
C6—C7—H7119.9C54—C53—H53B108.4
C8—C7—H7119.9N5—C53—H53B108.4
C7—C8—C9124.5 (3)H53A—C53—H53B107.4
C7—C8—C3118.4 (3)C53—C54—H54A109.5
C9—C8—C3117.1 (3)C53—C54—H54B109.5
N1—C9—C8122.2 (3)H54A—C54—H54B109.5
N1—C9—C10114.0 (3)C53—C54—H54C109.5
C8—C9—C10123.7 (3)H54A—C54—H54C109.5
O1—C10—N2126.8 (3)H54B—C54—H54C109.5
O1—C10—C9123.3 (3)C56—C55—N5114.8 (3)
N2—C10—C9109.9 (3)C56—C55—H55A108.6
C12—C11—N2126.9 (3)N5—C55—H55A108.6
C12—C11—C16119.8 (3)C56—C55—H55B108.6
N2—C11—C16113.3 (3)N5—C55—H55B108.6
C13—C12—C11120.0 (3)H55A—C55—H55B107.6
C13—C12—H12120.0C55—C56—H56A109.5
C11—C12—H12120.0C55—C56—H56B109.5
C12—C13—C14120.2 (3)H56A—C56—H56B109.5
C12—C13—H13119.9C55—C56—H56C109.5
C14—C13—H13119.9H56A—C56—H56C109.5
C13—C14—C15120.6 (3)H56B—C56—H56C109.5
C13—C14—H14119.7C58—C57—N5115.4 (3)
C15—C14—H14119.7C58—C57—H57A108.4
C16—C15—C14119.8 (4)N5—C57—H57A108.4
C16—C15—H15120.1C58—C57—H57B108.4
C14—C15—H15120.1N5—C57—H57B108.4
C15—C16—N3127.4 (3)H57A—C57—H57B107.5
C15—C16—C11119.5 (3)C57—C58—H58A109.5
N3—C16—C11113.0 (3)C57—C58—H58B109.5
O2—C17—N3127.3 (3)H58A—C58—H58B109.5
O2—C17—C18122.5 (3)C57—C58—H58C109.5
N3—C17—C18110.0 (3)H58A—C58—H58C109.5
N4—C18—C19122.3 (3)H58B—C58—H58C109.5
N4—C18—C17114.0 (3)
N3—Co1—N1—C920.2 (6)N1—C9—C10—O1169.8 (3)
N2—Co1—N1—C99.8 (2)C8—C9—C10—O113.5 (5)
N4—Co1—N1—C9165.7 (2)N1—C9—C10—N212.1 (4)
Cl1—Co1—N1—C979.8 (2)C8—C9—C10—N2164.6 (3)
Cl2—Co1—N1—C9105.4 (2)C10—N2—C11—C1218.5 (5)
N3—Co1—N1—C1153.6 (5)Co1—N2—C11—C12175.3 (3)
N2—Co1—N1—C1164.1 (3)C10—N2—C11—C16161.4 (3)
N4—Co1—N1—C120.4 (3)Co1—N2—C11—C164.6 (4)
Cl1—Co1—N1—C1106.3 (3)N2—C11—C12—C13178.4 (3)
Cl2—Co1—N1—C168.4 (3)C16—C11—C12—C131.5 (5)
N3—Co1—N2—C10164.5 (3)C11—C12—C13—C140.3 (5)
N1—Co1—N2—C1017.9 (2)C12—C13—C14—C150.8 (5)
N4—Co1—N2—C10143.7 (5)C13—C14—C15—C160.8 (5)
Cl1—Co1—N2—C1072.8 (2)C14—C15—C16—N3178.2 (3)
Cl2—Co1—N2—C10102.9 (2)C14—C15—C16—C110.4 (5)
N3—Co1—N2—C115.6 (2)C17—N3—C16—C151.2 (5)
N1—Co1—N2—C11176.7 (2)Co1—N3—C16—C15173.7 (3)
N4—Co1—N2—C1115.2 (6)C17—N3—C16—C11179.2 (3)
Cl1—Co1—N2—C1186.1 (2)Co1—N3—C16—C114.3 (4)
Cl2—Co1—N2—C1198.3 (2)C12—C11—C16—C151.5 (5)
N2—Co1—N3—C17179.2 (3)N2—C11—C16—C15178.4 (3)
N1—Co1—N3—C17168.8 (4)C12—C11—C16—N3179.7 (3)
N4—Co1—N3—C175.5 (2)N2—C11—C16—N30.3 (4)
Cl1—Co1—N3—C1791.2 (2)C16—N3—C17—O24.2 (6)
Cl2—Co1—N3—C1784.5 (2)Co1—N3—C17—O2178.9 (3)
N2—Co1—N3—C165.5 (2)C16—N3—C17—C18172.1 (3)
N1—Co1—N3—C1615.9 (7)Co1—N3—C17—C182.6 (4)
N4—Co1—N3—C16169.7 (2)C26—N4—C18—C196.7 (5)
Cl1—Co1—N3—C1684.1 (2)Co1—N4—C18—C19178.3 (2)
Cl2—Co1—N3—C16100.2 (2)C26—N4—C18—C17167.0 (3)
N3—Co1—N4—C187.5 (2)Co1—N4—C18—C178.0 (3)
N2—Co1—N4—C1828.3 (6)O2—C17—C18—N4172.7 (3)
N1—Co1—N4—C18171.2 (2)N3—C17—C18—N43.8 (4)
Cl1—Co1—N4—C1899.7 (2)O2—C17—C18—C190.9 (5)
Cl2—Co1—N4—C1885.6 (2)N3—C17—C18—C19177.4 (3)
N3—Co1—N4—C26167.0 (3)N4—C18—C19—C244.7 (5)
N2—Co1—N4—C26146.1 (5)C17—C18—C19—C24168.4 (3)
N1—Co1—N4—C2614.4 (3)N4—C18—C19—C20174.2 (3)
Cl1—Co1—N4—C2674.8 (3)C17—C18—C19—C2012.7 (5)
Cl2—Co1—N4—C26100.0 (3)C18—C19—C20—C21179.1 (3)
C9—N1—C1—C23.5 (5)C24—C19—C20—C210.2 (5)
Co1—N1—C1—C2177.0 (3)C19—C20—C21—C220.7 (5)
N1—C1—C2—C31.7 (5)C20—C21—C22—C231.0 (6)
C1—C2—C3—C4178.8 (3)C21—C22—C23—C240.3 (5)
C1—C2—C3—C80.1 (5)C22—C23—C24—C25179.5 (3)
C2—C3—C4—C5178.6 (3)C22—C23—C24—C190.7 (5)
C8—C3—C4—C50.3 (5)C18—C19—C24—C250.3 (5)
C3—C4—C5—C60.1 (5)C20—C19—C24—C25179.3 (3)
C4—C5—C6—C70.1 (5)C18—C19—C24—C23179.9 (3)
C5—C6—C7—C80.0 (5)C20—C19—C24—C230.9 (5)
C6—C7—C8—C9178.3 (3)C23—C24—C25—C26177.0 (3)
C6—C7—C8—C30.2 (5)C19—C24—C25—C263.2 (5)
C4—C3—C8—C70.3 (5)C24—C25—C26—N41.3 (5)
C2—C3—C8—C7178.6 (3)C18—N4—C26—C253.7 (5)
C4—C3—C8—C9178.6 (3)Co1—N4—C26—C25177.9 (2)
C2—C3—C8—C90.3 (5)C57—N5—C51—C5259.6 (4)
C1—N1—C9—C83.8 (5)C55—N5—C51—C52178.7 (3)
Co1—N1—C9—C8178.1 (3)C53—N5—C51—C5258.0 (4)
C1—N1—C9—C10173.0 (3)C57—N5—C53—C54179.1 (3)
Co1—N1—C9—C101.3 (3)C55—N5—C53—C5458.2 (4)
C7—C8—C9—N1179.7 (3)C51—N5—C53—C5459.8 (4)
C3—C8—C9—N12.2 (5)C57—N5—C55—C5654.9 (4)
C7—C8—C9—C103.9 (5)C51—N5—C55—C56176.5 (3)
C3—C8—C9—C10174.3 (3)C53—N5—C55—C5662.4 (4)
C11—N2—C10—O14.9 (6)C55—N5—C57—C5861.2 (4)
Co1—N2—C10—O1161.0 (3)C51—N5—C57—C5857.4 (4)
C11—N2—C10—C9177.1 (3)C53—N5—C57—C58178.5 (3)
Co1—N2—C10—C921.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C53—H53B···Cl1i0.992.813.701 (4)150
C57—H57A···Cl1i0.992.643.576 (4)159
C55—H55B···Cl2ii0.992.763.740 (4)172
C5—H5···Cl2iii0.952.773.501 (4)135
C26—H26···Cl1i0.952.793.669 (4)155
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+3/2, z+1/2; (iii) x+1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula(C8H20N)[Co(C26H16N4O2)Cl2]
Mr676.51
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)12.921 (2), 16.646 (3), 14.022 (2)
β (°) 90.625 (4)
V3)3015.7 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.15 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.910, 0.924
No. of measured, independent and
observed [I > 2σ(I)] reflections
16659, 5913, 3440
Rint0.085
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.102, 0.89
No. of reflections5913
No. of parameters401
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.43

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998), SHELXTL.

Selected bond lengths (Å) top
Co1—N31.859 (3)Co1—N11.965 (3)
Co1—N21.877 (3)Co1—N41.965 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C53—H53B···Cl1i0.992.813.701 (4)149.9
C57—H57A···Cl1i0.992.643.576 (4)158.7
C55—H55B···Cl2ii0.992.763.740 (4)171.7
C5—H5···Cl2iii0.952.773.501 (4)134.5
C26—H26···Cl1i0.952.793.669 (4)155.1
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+3/2, z+1/2; (iii) x+1/2, y+3/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds