Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the asymmetric unit of the title structure, C13H14N2O2S, there are two independent mol­ecules. All bond lengths and angles show normal values. The dihedral angles between the phenyl and pyrimidine rings in each mol­ecule are 58.66 (9) and 57.88 (8)°, but these rings are rotated in opposite directions with respect to the S—C bond of the methyl­sulfanyl substituent. In the absence of hydrogen bonds, the crystal structure is stabilized by van der Waals forces and one weak C—H...π(arene) inter­action, with H...Cg = 2.91 Å (Cg is the centroid of the pyrimidine ring).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680702908X/lh2421sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680702908X/lh2421Isup2.hkl
Contains datablock I

CCDC reference: 655005

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.060
  • wR factor = 0.176
  • Data-to-parameter ratio = 17.4

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT230_ALERT_2_B Hirshfeld Test Diff for O2 - C7 .. 18.26 su
Alert level C PLAT230_ALERT_2_C Hirshfeld Test Diff for O1 - C3 .. 5.81 su PLAT230_ALERT_2_C Hirshfeld Test Diff for O1 - C6 .. 6.58 su
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Pyrimidine derivates are important intermediates for some pesticides. Many new pyrimidine derivates have been intensively studied due to their biological properties (Koppel et al., 1961; Zhang et al., 1988; Nezu et al., 1996). We report here the synthesis and crystal structure of the title compound (Fig. 1).

There are two independent molecules in the asymmetric unit of the title structure (Fig. 1). The molecules differ from each other in that the dihedral angles between the phenyl ring and pyrimidine ring in each molecule are 58.66 (9)° and 57.88 (8)° but these are in the opposite sense with respect to the S—C bond of methylthio substituent. In the crystal structure, no hydrogen bonds are found, and the crystal packing is stabilized by van der Waals forces and one very weak C—H···π(arene) interaction with H7A···Cg = 2.91 Å, C7···Cg = 3.373 (3) Å and C7—H7A···Cg = 128° (Fig. 2). Cg is the centroid defined by the atoms of the pyrimidine ring.

Related literature top

Pyrimidine derivatives have been studied because of their biological properties (see Koppel et al., 1961; Zhang & Wang, 1988; Nezu & Miyazaki, 1996).

Experimental top

To a solution of 4,6-dichloro-2-(methylthio)-5-phenylpyrimidine (10 mmol) in absolute Methanol (20 ml), a solution of sodium methoxide (20 mmol) in absolute methanol (20 ml) was added dropwise and refluxed for 6 h. After this time the reaction mixture was concentrated to a residual solid. The solid was dissolved in 50 ml of ethyl acetate, washed with water, dried and evaporated under reduced pressure to give a white solid. The solid was recrystallized from CH2Cl2. Colourless block-shaped crystals were obtained by evaporation of the solvent over a period of one week.

Refinement top

After their location in the difference map, all H-atoms were fixed geometrically at ideal positions and allowed to ride on the parent C atoms with Caromatic—H = 0.93 Å and Cmethyl—H = 0.96 Å, Uiso(H)= 1.2Ueq(C of aromatic) or Uiso(H)= 1.5Ueq(C of methine).

Structure description top

Pyrimidine derivates are important intermediates for some pesticides. Many new pyrimidine derivates have been intensively studied due to their biological properties (Koppel et al., 1961; Zhang et al., 1988; Nezu et al., 1996). We report here the synthesis and crystal structure of the title compound (Fig. 1).

There are two independent molecules in the asymmetric unit of the title structure (Fig. 1). The molecules differ from each other in that the dihedral angles between the phenyl ring and pyrimidine ring in each molecule are 58.66 (9)° and 57.88 (8)° but these are in the opposite sense with respect to the S—C bond of methylthio substituent. In the crystal structure, no hydrogen bonds are found, and the crystal packing is stabilized by van der Waals forces and one very weak C—H···π(arene) interaction with H7A···Cg = 2.91 Å, C7···Cg = 3.373 (3) Å and C7—H7A···Cg = 128° (Fig. 2). Cg is the centroid defined by the atoms of the pyrimidine ring.

Pyrimidine derivatives have been studied because of their biological properties (see Koppel et al., 1961; Zhang & Wang, 1988; Nezu & Miyazaki, 1996).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Partial packing plot of (I) with dashed lines indicating C—H···π) interactions.
4,6-Dimethoxy-2-(methylsulfanyl)-5-phenylpyrimidine top
Crystal data top
C13H14N2O2SZ = 8
Mr = 262.32F(000) = 1104
Monoclinic, P21/cDx = 1.319 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.4346 (5) ŵ = 0.24 mm1
b = 35.193 (2) ÅT = 296 K
c = 9.4327 (6) ÅBlock, colorless
β = 109.356 (1)°0.30 × 0.20 × 0.20 mm
V = 2641.7 (3) Å3
Data collection top
Bruker SMART CCD
diffractometer
3710 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.062
Graphite monochromatorθmax = 27.0°, θmin = 1.2°
φ and ω scansh = 1010
18638 measured reflectionsk = 3744
5743 independent reflectionsl = 1012
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0932P)2]
where P = (Fo2 + 2Fc2)/3
5743 reflections(Δ/σ)max < 0.001
331 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C13H14N2O2SV = 2641.7 (3) Å3
Mr = 262.32Z = 8
Monoclinic, P21/cMo Kα radiation
a = 8.4346 (5) ŵ = 0.24 mm1
b = 35.193 (2) ÅT = 296 K
c = 9.4327 (6) Å0.30 × 0.20 × 0.20 mm
β = 109.356 (1)°
Data collection top
Bruker SMART CCD
diffractometer
3710 reflections with I > 2σ(I)
18638 measured reflectionsRint = 0.062
5743 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.177H-atom parameters constrained
S = 1.01Δρmax = 0.38 e Å3
5743 reflectionsΔρmin = 0.24 e Å3
331 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5206 (4)0.01414 (8)0.2874 (4)0.0781 (10)
H1A0.47820.00300.36050.117*
H1B0.54250.00550.22570.117*
H1C0.43890.03150.22550.117*
C20.6413 (3)0.07590 (7)0.4721 (3)0.0467 (6)
C30.4358 (3)0.10674 (7)0.5265 (3)0.0462 (6)
C40.5431 (3)0.13661 (6)0.5940 (3)0.0432 (6)
C50.7097 (3)0.13073 (7)0.6023 (3)0.0442 (6)
C60.1651 (4)0.07707 (8)0.4594 (4)0.0683 (8)
H6A0.16120.07410.35710.102*
H6B0.05370.08150.46180.102*
H6C0.20970.05440.51470.102*
C70.9994 (4)0.15082 (8)0.6860 (3)0.0660 (8)
H7A1.03270.12620.72930.099*
H7B1.07330.16980.74630.099*
H7C1.00530.15140.58610.099*
C80.4815 (3)0.17163 (6)0.6455 (3)0.0440 (6)
C90.3554 (3)0.19274 (7)0.5434 (3)0.0512 (6)
H90.30950.18440.44460.061*
C100.2978 (4)0.22587 (7)0.5873 (3)0.0600 (7)
H100.21500.24000.51720.072*
C110.3608 (4)0.23809 (7)0.7319 (3)0.0602 (8)
H110.32100.26040.76060.072*
C120.4838 (4)0.21730 (8)0.8360 (3)0.0617 (7)
H120.52590.22540.93530.074*
C130.5447 (3)0.18427 (7)0.7929 (3)0.0529 (7)
H130.62860.17050.86330.063*
C140.9765 (4)0.00837 (8)0.2144 (3)0.0736 (9)
H14A0.92930.00060.14080.110*
H14B1.00170.01290.26690.110*
H14C0.89720.02470.28460.110*
C151.0923 (3)0.07136 (7)0.0362 (3)0.0453 (6)
C160.8881 (3)0.10212 (6)0.0210 (3)0.0402 (5)
C170.9962 (3)0.13147 (6)0.0897 (2)0.0384 (5)
C181.1608 (3)0.12611 (7)0.0919 (3)0.0432 (6)
C190.6142 (3)0.07471 (8)0.0560 (3)0.0650 (8)
H19A0.61730.07150.15620.097*
H19B0.50210.08110.06030.097*
H19C0.64780.05150.00110.097*
C201.4415 (3)0.14925 (9)0.1545 (4)0.0789 (10)
H20A1.49140.12640.20570.118*
H20B1.50770.17080.20240.118*
H20C1.43710.14800.05160.118*
C210.9432 (3)0.16609 (6)0.1519 (2)0.0384 (5)
C220.8676 (3)0.16418 (7)0.2617 (3)0.0466 (6)
H220.85070.14070.29970.056*
C230.8170 (3)0.19721 (7)0.3150 (3)0.0535 (7)
H230.76820.19570.39000.064*
C240.8379 (3)0.23174 (7)0.2590 (3)0.0554 (7)
H240.80080.25360.29370.066*
C250.9141 (3)0.23431 (7)0.1506 (3)0.0564 (7)
H250.93050.25790.11340.068*
C260.9659 (3)0.20179 (7)0.0979 (3)0.0506 (6)
H261.01720.20370.02480.061*
N10.4813 (3)0.07636 (5)0.4644 (2)0.0476 (5)
N20.7612 (3)0.10095 (6)0.5409 (2)0.0478 (5)
N30.9330 (2)0.07204 (5)0.0438 (2)0.0434 (5)
N41.2120 (3)0.09663 (6)0.0305 (2)0.0473 (5)
O10.2716 (2)0.10897 (5)0.5267 (2)0.0556 (5)
O20.8297 (2)0.15852 (4)0.68017 (19)0.0481 (4)
O30.7269 (2)0.10457 (4)0.0178 (2)0.0515 (5)
O41.2743 (2)0.15312 (5)0.1602 (2)0.0578 (5)
S10.70988 (10)0.03907 (2)0.38070 (9)0.0662 (3)
S21.16403 (10)0.03415 (2)0.12325 (9)0.0657 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.082 (2)0.066 (2)0.089 (2)0.0102 (17)0.0320 (19)0.0344 (17)
C20.0509 (15)0.0433 (14)0.0479 (14)0.0042 (12)0.0190 (12)0.0002 (11)
C30.0505 (15)0.0394 (14)0.0518 (14)0.0011 (12)0.0211 (12)0.0007 (11)
C40.0492 (15)0.0383 (13)0.0452 (13)0.0035 (11)0.0197 (12)0.0004 (10)
C50.0517 (15)0.0397 (14)0.0446 (13)0.0019 (12)0.0205 (12)0.0020 (10)
C60.0492 (17)0.0609 (19)0.095 (2)0.0102 (14)0.0240 (17)0.0060 (16)
C70.066 (2)0.0651 (19)0.0609 (18)0.0120 (15)0.0129 (15)0.0033 (14)
C80.0504 (15)0.0369 (13)0.0489 (14)0.0032 (11)0.0222 (12)0.0008 (10)
C90.0633 (17)0.0485 (15)0.0421 (14)0.0081 (13)0.0179 (13)0.0008 (11)
C100.0705 (19)0.0507 (17)0.0607 (17)0.0192 (14)0.0242 (15)0.0048 (13)
C110.071 (2)0.0450 (16)0.073 (2)0.0071 (14)0.0353 (17)0.0080 (14)
C120.0702 (19)0.0600 (18)0.0557 (17)0.0004 (16)0.0221 (15)0.0166 (14)
C130.0517 (15)0.0550 (16)0.0488 (15)0.0045 (13)0.0125 (13)0.0004 (12)
C140.084 (2)0.063 (2)0.074 (2)0.0017 (17)0.0248 (18)0.0201 (15)
C150.0503 (15)0.0411 (14)0.0475 (14)0.0045 (12)0.0203 (12)0.0009 (11)
C160.0379 (13)0.0365 (13)0.0462 (13)0.0027 (10)0.0141 (11)0.0041 (10)
C170.0391 (13)0.0379 (13)0.0399 (12)0.0017 (10)0.0152 (11)0.0004 (10)
C180.0404 (14)0.0470 (14)0.0436 (13)0.0018 (11)0.0156 (11)0.0013 (11)
C190.0462 (16)0.0584 (18)0.087 (2)0.0138 (14)0.0181 (15)0.0114 (15)
C200.0435 (17)0.085 (2)0.112 (3)0.0153 (16)0.0311 (18)0.0227 (19)
C210.0311 (12)0.0418 (13)0.0382 (12)0.0020 (10)0.0061 (10)0.0048 (10)
C220.0455 (15)0.0495 (15)0.0462 (14)0.0041 (12)0.0169 (12)0.0004 (11)
C230.0527 (16)0.0595 (17)0.0529 (15)0.0054 (13)0.0237 (13)0.0145 (13)
C240.0505 (16)0.0483 (16)0.0625 (17)0.0052 (13)0.0120 (14)0.0179 (13)
C250.0703 (19)0.0385 (15)0.0580 (16)0.0031 (13)0.0178 (15)0.0024 (12)
C260.0593 (16)0.0464 (15)0.0494 (15)0.0027 (13)0.0225 (13)0.0008 (11)
N10.0507 (13)0.0362 (11)0.0597 (13)0.0018 (10)0.0235 (11)0.0034 (9)
N20.0481 (12)0.0454 (12)0.0516 (12)0.0038 (10)0.0186 (10)0.0031 (10)
N30.0457 (12)0.0346 (11)0.0512 (12)0.0005 (9)0.0178 (10)0.0027 (9)
N40.0427 (12)0.0467 (12)0.0561 (13)0.0002 (10)0.0211 (10)0.0064 (10)
O10.0406 (10)0.0425 (10)0.0877 (14)0.0076 (8)0.0268 (10)0.0151 (9)
O20.0437 (10)0.0442 (10)0.0645 (11)0.0033 (8)0.0289 (9)0.0021 (8)
O30.0379 (9)0.0402 (10)0.0764 (12)0.0042 (8)0.0190 (9)0.0122 (8)
O40.0366 (10)0.0630 (12)0.0756 (13)0.0105 (9)0.0211 (9)0.0242 (9)
S10.0610 (5)0.0613 (5)0.0785 (5)0.0068 (4)0.0261 (4)0.0220 (4)
S20.0670 (5)0.0558 (5)0.0830 (5)0.0042 (4)0.0364 (4)0.0186 (4)
Geometric parameters (Å, º) top
C1—S11.778 (3)C14—S21.779 (3)
C1—H1A0.9600C14—H14A0.9600
C1—H1B0.9600C14—H14B0.9600
C1—H1C0.9600C14—H14C0.9600
C2—N11.328 (3)C15—N31.322 (3)
C2—N21.336 (3)C15—N41.336 (3)
C2—S11.757 (2)C15—S21.756 (2)
C3—N11.335 (3)C16—N31.338 (3)
C3—O11.387 (3)C16—O31.353 (3)
C3—C41.395 (3)C16—C171.388 (3)
C4—C51.397 (3)C17—C181.394 (3)
C4—C81.481 (3)C17—C211.484 (3)
C5—N21.338 (3)C18—N41.328 (3)
C5—O21.425 (3)C18—O41.352 (3)
C6—O11.447 (3)C19—O31.433 (3)
C6—H6A0.9600C19—H19A0.9600
C6—H6B0.9600C19—H19B0.9600
C6—H6C0.9600C19—H19C0.9600
C7—O21.439 (3)C20—O41.435 (3)
C7—H7A0.9600C20—H20A0.9600
C7—H7B0.9600C20—H20B0.9600
C7—H7C0.9600C20—H20C0.9600
C8—C131.387 (3)C21—C221.386 (3)
C8—C91.390 (3)C21—C261.392 (3)
C9—C101.378 (3)C22—C231.389 (3)
C9—H90.9300C22—H220.9300
C10—C111.360 (4)C23—C241.360 (3)
C10—H100.9300C23—H230.9300
C11—C121.379 (4)C24—C251.379 (4)
C11—H110.9300C24—H240.9300
C12—C131.385 (3)C25—C261.376 (3)
C12—H120.9300C25—H250.9300
C13—H130.9300C26—H260.9300
S1—C1—H1A109.5H14B—C14—H14C109.5
S1—C1—H1B109.5N3—C15—N4127.6 (2)
H1A—C1—H1B109.5N3—C15—S2119.31 (19)
S1—C1—H1C109.5N4—C15—S2113.13 (17)
H1A—C1—H1C109.5N3—C16—O3118.3 (2)
H1B—C1—H1C109.5N3—C16—C17124.1 (2)
N1—C2—N2127.6 (2)O3—C16—C17117.5 (2)
N1—C2—S1118.43 (19)C16—C17—C18113.7 (2)
N2—C2—S1113.94 (18)C16—C17—C21124.0 (2)
N1—C3—O1118.6 (2)C18—C17—C21122.2 (2)
N1—C3—C4124.5 (2)N4—C18—O4118.4 (2)
O1—C3—C4117.0 (2)N4—C18—C17124.4 (2)
C3—C4—C5113.7 (2)O4—C18—C17117.2 (2)
C3—C4—C8122.1 (2)O3—C19—H19A109.5
C5—C4—C8124.1 (2)O3—C19—H19B109.5
N2—C5—C4123.9 (2)H19A—C19—H19B109.5
N2—C5—O2118.9 (2)O3—C19—H19C109.5
C4—C5—O2117.2 (2)H19A—C19—H19C109.5
O1—C6—H6A109.5H19B—C19—H19C109.5
O1—C6—H6B109.5O4—C20—H20A109.5
H6A—C6—H6B109.5O4—C20—H20B109.5
O1—C6—H6C109.5H20A—C20—H20B109.5
H6A—C6—H6C109.5O4—C20—H20C109.5
H6B—C6—H6C109.5H20A—C20—H20C109.5
O2—C7—H7A109.5H20B—C20—H20C109.5
O2—C7—H7B109.5C22—C21—C26118.0 (2)
H7A—C7—H7B109.5C22—C21—C17121.9 (2)
O2—C7—H7C109.5C26—C21—C17120.0 (2)
H7A—C7—H7C109.5C21—C22—C23120.2 (2)
H7B—C7—H7C109.5C21—C22—H22119.9
C13—C8—C9118.4 (2)C23—C22—H22119.9
C13—C8—C4122.4 (2)C24—C23—C22120.8 (2)
C9—C8—C4119.2 (2)C24—C23—H23119.6
C10—C9—C8120.6 (2)C22—C23—H23119.6
C10—C9—H9119.7C23—C24—C25119.9 (2)
C8—C9—H9119.7C23—C24—H24120.0
C11—C10—C9120.6 (3)C25—C24—H24120.0
C11—C10—H10119.7C26—C25—C24119.7 (2)
C9—C10—H10119.7C26—C25—H25120.2
C10—C11—C12119.9 (2)C24—C25—H25120.2
C10—C11—H11120.1C25—C26—C21121.3 (2)
C12—C11—H11120.1C25—C26—H26119.3
C11—C12—C13120.1 (3)C21—C26—H26119.3
C11—C12—H12120.0C2—N1—C3114.9 (2)
C13—C12—H12120.0C2—N2—C5115.1 (2)
C12—C13—C8120.4 (2)C15—N3—C16115.2 (2)
C12—C13—H13119.8C18—N4—C15114.9 (2)
C8—C13—H13119.8C3—O1—C6115.49 (19)
S2—C14—H14A109.5C5—O2—C7114.72 (18)
S2—C14—H14B109.5C16—O3—C19117.65 (19)
H14A—C14—H14B109.5C18—O4—C20117.71 (19)
S2—C14—H14C109.5C2—S1—C1102.66 (13)
H14A—C14—H14C109.5C15—S2—C14102.54 (13)
N1—C3—C4—C54.9 (4)C21—C22—C23—C241.1 (4)
O1—C3—C4—C5174.3 (2)C22—C23—C24—C251.7 (4)
N1—C3—C4—C8172.8 (2)C23—C24—C25—C261.2 (4)
O1—C3—C4—C88.0 (3)C24—C25—C26—C210.1 (4)
C3—C4—C5—N25.2 (3)C22—C21—C26—C250.5 (4)
C8—C4—C5—N2172.4 (2)C17—C21—C26—C25178.3 (2)
C3—C4—C5—O2175.19 (19)N2—C2—N1—C33.9 (4)
C8—C4—C5—O27.2 (3)S1—C2—N1—C3175.03 (18)
C3—C4—C8—C13123.0 (3)O1—C3—N1—C2178.4 (2)
C5—C4—C8—C1359.5 (3)C4—C3—N1—C20.7 (4)
C3—C4—C8—C956.8 (3)N1—C2—N2—C53.5 (4)
C5—C4—C8—C9120.7 (3)S1—C2—N2—C5175.44 (17)
C13—C8—C9—C101.5 (4)C4—C5—N2—C21.5 (3)
C4—C8—C9—C10178.7 (2)O2—C5—N2—C2178.9 (2)
C8—C9—C10—C111.3 (4)N4—C15—N3—C161.4 (4)
C9—C10—C11—C120.2 (4)S2—C15—N3—C16177.72 (17)
C10—C11—C12—C130.9 (4)O3—C16—N3—C15179.8 (2)
C11—C12—C13—C80.7 (4)C17—C16—N3—C151.3 (3)
C9—C8—C13—C120.4 (4)O4—C18—N4—C15179.4 (2)
C4—C8—C13—C12179.7 (2)C17—C18—N4—C150.0 (4)
N3—C16—C17—C182.9 (3)N3—C15—N4—C182.0 (4)
O3—C16—C17—C18178.2 (2)S2—C15—N4—C18177.13 (17)
N3—C16—C17—C21175.5 (2)N1—C3—O1—C60.8 (3)
O3—C16—C17—C213.5 (3)C4—C3—O1—C6178.4 (2)
C16—C17—C18—N42.2 (3)N2—C5—O2—C70.8 (3)
C21—C17—C18—N4176.2 (2)C4—C5—O2—C7179.6 (2)
C16—C17—C18—O4178.4 (2)N3—C16—O3—C190.3 (3)
C21—C17—C18—O43.2 (3)C17—C16—O3—C19178.7 (2)
C16—C17—C21—C2257.7 (3)N4—C18—O4—C203.5 (3)
C18—C17—C21—C22124.1 (3)C17—C18—O4—C20175.9 (2)
C16—C17—C21—C26121.0 (3)N1—C2—S1—C14.6 (2)
C18—C17—C21—C2657.2 (3)N2—C2—S1—C1174.5 (2)
C26—C21—C22—C230.1 (3)N3—C15—S2—C144.3 (2)
C17—C21—C22—C23178.8 (2)N4—C15—S2—C14174.90 (19)

Experimental details

Crystal data
Chemical formulaC13H14N2O2S
Mr262.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.4346 (5), 35.193 (2), 9.4327 (6)
β (°) 109.356 (1)
V3)2641.7 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18638, 5743, 3710
Rint0.062
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.177, 1.01
No. of reflections5743
No. of parameters331
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.24

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT, SHELXTL (Bruker, 2001), SHELXTL, PLATON (Spek, 2003).

 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds