Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title complex, [Zn(C10H12NO3)2], the ZnII ion is coordinated by two N,O-bidentate ligands in a distorted tetra­hedral geometry. The crystal packing is stabilized by inter­molecular O—H...O hydrogen bonds and C—H...Cg inter­actions (Cg is an aromatic ring centroid). The hydr­oxy substituent of one ethano­lamine group is disordered over two sites with the ratio of refined occupancies being 0.844 (4): 0.156 (4).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807030206/lh2415sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807030206/lh2415Isup2.hkl
Contains datablock I

CCDC reference: 654819

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.011 Å
  • Disorder in main residue
  • R factor = 0.078
  • wR factor = 0.170
  • Data-to-parameter ratio = 14.7

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT601_ALERT_2_B Structure Contains Solvent Accessible VOIDS of . 121.00 A   3
Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.99 PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.52 Ratio PLAT301_ALERT_3_C Main Residue Disorder ......................... 3.00 Perc. PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 11 PLAT432_ALERT_2_C Short Inter X...Y Contact C8 .. O6' .. 2.98 Ang.
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 6
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

As part of our ongoing studies of Schiff bases, we reported here the synthesis and crystal structure of the title compound (Fig. 1), a new zinc(II) complex with a bidentate Schiff base ligand derived from the condensation of o-vanillin and ethanolamine.

The coordination around zinc is a distored tetrahedral involving two O and N atoms of the ligands. These bond lengths and angles values are similar to the reported values for related structures (Hokelek et al., 2000, Tatar et al., 1999, Dong et al., 2007).

In the crystal structure, the intermolecular hydrogen bonds of O3—H3···O1i and O3—H3···O2i(symmetry code: (i) x, y - 1, Z) (Fig. 2) and the relatively short intermolecular distances H18a···Cgii of 2.962Å (symmetry code: 0.5 - x, 1/2 + y, Z; Cg is the centroid of the C12—17 ring) indicating the prescence of weak C—H···π interaction, stabilize the crystal packing along with van der Waals forces.

Related literature top

The bond lengths and angles in the title structure are similar to those in related structures (Hokelek et al., 2000; Tatar et al., 1999; Dong, et al., 2007).

Experimental top

Ethanolamine(1 mmol, 0.059 ml) was dissolved in hot methanol (10 ml) and added in portions to a methanol solution(3 ml) of o-vanillin (1 mmol, 152.14 mg). The mixture was then stirred at 323 K for 2 h. Subsequently, an aqueous solution(2 ml) of zinc acetate dihydrate(1 mmol, 219.5 mg) was added dropwise and stirred for another 5 h. The solution was held at room temperature for ten days, where upon yellow blocks were obtained.

Refinement top

Difference Fourier maps revealed that the hydroxy substituent of one ethanolamine group is disordered over two sites. The subsequent refinement of their occupancies gave the values of 0.844 (4) and 0.156 (4), respectively. All the H atoms were placed in geometrically calculated positions (C—H = 0.93 - 0.97Å and O—H = 0.82 Å) and allowed to ride on their respective parent atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).

In the crystal structure, there are solvent accesible voids of 121.0 Å3. These voids may initially have contained solvent, but this has been lost without degradation of the structure. There is no significant residual electron density to suggest the presence of solvent of crystallization.

Structure description top

As part of our ongoing studies of Schiff bases, we reported here the synthesis and crystal structure of the title compound (Fig. 1), a new zinc(II) complex with a bidentate Schiff base ligand derived from the condensation of o-vanillin and ethanolamine.

The coordination around zinc is a distored tetrahedral involving two O and N atoms of the ligands. These bond lengths and angles values are similar to the reported values for related structures (Hokelek et al., 2000, Tatar et al., 1999, Dong et al., 2007).

In the crystal structure, the intermolecular hydrogen bonds of O3—H3···O1i and O3—H3···O2i(symmetry code: (i) x, y - 1, Z) (Fig. 2) and the relatively short intermolecular distances H18a···Cgii of 2.962Å (symmetry code: 0.5 - x, 1/2 + y, Z; Cg is the centroid of the C12—17 ring) indicating the prescence of weak C—H···π interaction, stabilize the crystal packing along with van der Waals forces.

The bond lengths and angles in the title structure are similar to those in related structures (Hokelek et al., 2000; Tatar et al., 1999; Dong, et al., 2007).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. Open bonds indicate the minor component of disorder.
[Figure 2] Fig. 2. The packing of the title compound. Hydrogen bond are shown as dashed lines.
Bis[2-(2-hydroxyethyliminomethyl)-6-methoxyphenolato-κ2N2,O1]zinc(II) top
Crystal data top
[Zn(C10H12NO3)2]F(000) = 1888
Mr = 453.78Dx = 1.363 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3930 reflections
a = 17.624 (2) Åθ = 2.3–23.2°
b = 7.2013 (14) ŵ = 1.15 mm1
c = 34.853 (3) ÅT = 298 K
V = 4423.3 (11) Å3Block, yellow
Z = 80.59 × 0.26 × 0.24 mm
Data collection top
Bruker SMART CCD
diffractometer
3904 independent reflections
Radiation source: fine-focus sealed tube2485 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
φ and ω scansθmax = 25.0°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1520
Tmin = 0.551, Tmax = 0.770k = 86
20138 measured reflectionsl = 4041
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0382P)2 + 21.0111P]
where P = (Fo2 + 2Fc2)/3
3904 reflections(Δ/σ)max = 0.002
266 parametersΔρmax = 0.58 e Å3
6 restraintsΔρmin = 1.04 e Å3
Crystal data top
[Zn(C10H12NO3)2]V = 4423.3 (11) Å3
Mr = 453.78Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 17.624 (2) ŵ = 1.15 mm1
b = 7.2013 (14) ÅT = 298 K
c = 34.853 (3) Å0.59 × 0.26 × 0.24 mm
Data collection top
Bruker SMART CCD
diffractometer
3904 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2485 reflections with I > 2σ(I)
Tmin = 0.551, Tmax = 0.770Rint = 0.059
20138 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0786 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0382P)2 + 21.0111P]
where P = (Fo2 + 2Fc2)/3
3904 reflectionsΔρmax = 0.58 e Å3
266 parametersΔρmin = 1.04 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.50272 (4)0.33878 (10)0.12373 (2)0.0460 (3)
N10.4934 (3)0.1249 (6)0.15934 (15)0.0429 (13)
N20.5700 (3)0.3369 (8)0.07788 (17)0.0514 (14)
O10.5436 (3)0.5126 (6)0.16004 (13)0.0561 (13)
O20.6315 (3)0.7510 (7)0.19242 (18)0.0809 (19)
O30.5677 (3)0.1683 (7)0.11585 (15)0.0645 (14)
H30.57210.23840.13430.097*
O40.4108 (2)0.3744 (6)0.09550 (13)0.0514 (12)
O50.2730 (3)0.3516 (8)0.07015 (18)0.0788 (17)
O60.6846 (4)0.0466 (11)0.0930 (3)0.112 (3)0.844 (10)
H60.64370.00270.09770.168*0.844 (10)
O6'0.658 (2)0.109 (5)0.1366 (9)0.112 (3)0.156 (10)
H6'0.63770.01790.12720.168*0.156 (10)
C10.5196 (3)0.1339 (10)0.1936 (2)0.0490 (18)
H10.51100.03110.20910.059*
C20.5610 (4)0.2867 (10)0.21073 (19)0.0481 (17)
C30.5730 (4)0.4594 (10)0.1931 (2)0.0490 (17)
C40.6204 (4)0.5901 (11)0.2130 (2)0.057 (2)
C50.6516 (4)0.5473 (14)0.2473 (2)0.069 (2)
H50.68260.63400.25940.083*
C60.6389 (5)0.3790 (15)0.2649 (2)0.070 (2)
H6A0.66110.35250.28850.084*
C70.5936 (4)0.2518 (12)0.2473 (2)0.058 (2)
H7A0.58360.13960.25950.070*
C80.6948 (5)0.8650 (12)0.2030 (3)0.090 (3)
H8A0.68810.90910.22870.135*
H8B0.69810.96890.18580.135*
H8C0.74070.79340.20150.135*
C90.4568 (4)0.0470 (9)0.14736 (19)0.0507 (18)
H9A0.40310.02450.14320.061*
H9B0.46170.13900.16750.061*
C100.4916 (4)0.1202 (8)0.11123 (18)0.0482 (18)
H10A0.46350.22870.10290.058*
H10B0.48750.02670.09130.058*
C110.5428 (4)0.3142 (10)0.0441 (2)0.0559 (19)
H110.57790.30980.02410.067*
C120.4643 (4)0.2946 (9)0.03341 (18)0.0465 (17)
C130.4036 (4)0.3298 (8)0.05885 (19)0.0421 (15)
C140.3285 (4)0.3176 (10)0.0440 (2)0.0535 (19)
C150.3167 (6)0.2739 (12)0.0058 (3)0.077 (3)
H150.26740.26740.00360.093*
C160.3767 (6)0.2399 (13)0.0186 (2)0.082 (3)
H160.36770.20880.04410.099*
C170.4493 (5)0.2520 (12)0.0053 (2)0.074 (2)
H170.48950.23170.02200.088*
C180.1962 (4)0.3283 (14)0.0591 (3)0.107 (4)
H18A0.18130.42910.04270.160*
H18B0.16470.32690.08150.160*
H18C0.19070.21300.04550.160*
C190.6518 (3)0.3659 (11)0.0824 (2)0.068 (2)
H19A0.66090.48770.09330.081*
H19B0.67610.36130.05740.081*
C200.6857 (5)0.2195 (11)0.1080 (3)0.091 (3)
H20A0.73780.25310.11370.109*0.844 (10)
H20B0.65800.21840.13210.109*0.844 (10)
H20C0.70240.12110.09100.109*0.156 (10)
H20D0.73170.27510.11810.109*0.156 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0508 (4)0.0403 (4)0.0471 (4)0.0061 (4)0.0087 (4)0.0018 (4)
N10.045 (3)0.031 (3)0.053 (3)0.009 (3)0.007 (3)0.000 (2)
N20.041 (3)0.053 (4)0.060 (4)0.009 (3)0.003 (3)0.011 (3)
O10.071 (3)0.034 (3)0.063 (3)0.000 (2)0.025 (3)0.002 (2)
O20.083 (4)0.048 (3)0.112 (5)0.007 (3)0.060 (4)0.005 (3)
O30.062 (3)0.052 (3)0.079 (4)0.002 (3)0.010 (3)0.002 (3)
O40.043 (3)0.059 (3)0.052 (3)0.002 (2)0.001 (2)0.006 (2)
O50.038 (3)0.085 (4)0.113 (5)0.004 (3)0.009 (3)0.003 (4)
O60.056 (4)0.081 (6)0.200 (10)0.003 (4)0.010 (5)0.025 (6)
O6'0.056 (4)0.081 (6)0.200 (10)0.003 (4)0.010 (5)0.025 (6)
C10.043 (4)0.049 (4)0.056 (4)0.005 (3)0.010 (3)0.007 (4)
C20.041 (4)0.058 (5)0.046 (4)0.005 (3)0.006 (3)0.001 (4)
C30.047 (4)0.050 (4)0.050 (4)0.013 (3)0.009 (3)0.014 (4)
C40.049 (4)0.067 (5)0.055 (5)0.015 (4)0.013 (4)0.022 (4)
C50.050 (5)0.100 (7)0.056 (5)0.015 (5)0.014 (4)0.037 (5)
C60.057 (5)0.108 (8)0.045 (4)0.014 (5)0.002 (4)0.013 (5)
C70.055 (4)0.081 (6)0.038 (4)0.009 (4)0.009 (4)0.007 (4)
C80.077 (6)0.054 (5)0.139 (9)0.013 (5)0.042 (6)0.015 (6)
C90.051 (4)0.036 (4)0.065 (5)0.010 (3)0.006 (4)0.001 (4)
C100.073 (5)0.026 (3)0.046 (4)0.009 (3)0.009 (4)0.008 (3)
C110.055 (5)0.057 (5)0.056 (5)0.007 (4)0.018 (4)0.009 (4)
C120.059 (4)0.044 (4)0.037 (4)0.003 (3)0.001 (3)0.002 (3)
C130.049 (4)0.029 (3)0.049 (4)0.007 (3)0.008 (3)0.001 (3)
C140.051 (4)0.038 (4)0.072 (5)0.004 (4)0.020 (4)0.003 (4)
C150.090 (7)0.069 (6)0.073 (6)0.011 (5)0.044 (5)0.000 (5)
C160.119 (8)0.084 (7)0.044 (5)0.015 (6)0.025 (5)0.009 (5)
C170.090 (6)0.085 (7)0.046 (5)0.007 (5)0.004 (5)0.002 (4)
C180.040 (5)0.090 (7)0.189 (11)0.007 (5)0.026 (6)0.020 (8)
C190.042 (4)0.063 (5)0.098 (6)0.007 (4)0.009 (4)0.018 (5)
C200.044 (5)0.070 (6)0.157 (10)0.006 (4)0.031 (6)0.003 (7)
Geometric parameters (Å, º) top
Zn1—O41.913 (4)C7—H7A0.9300
Zn1—O11.921 (4)C8—H8A0.9600
Zn1—N11.985 (5)C8—H8B0.9600
Zn1—N21.990 (6)C8—H8C0.9600
N1—C11.281 (8)C9—C101.497 (8)
N1—C91.458 (7)C9—H9A0.9700
N2—C111.283 (9)C9—H9B0.9700
N2—C191.465 (7)C10—H10A0.9700
O1—C31.319 (8)C10—H10B0.9700
O2—C41.378 (9)C11—C121.440 (10)
O2—C81.433 (8)C11—H110.9300
O3—C101.394 (7)C12—C171.408 (10)
O3—H30.8200C12—C131.412 (9)
O4—C131.323 (7)C13—C141.425 (9)
O5—C141.358 (9)C14—C151.383 (11)
O5—C181.417 (8)C15—C161.379 (12)
O6—C201.352 (8)C15—H150.9300
O6—H60.8200C16—C171.362 (12)
O6—H20C0.6256C16—H160.9300
O6'—C201.361 (11)C17—H170.9300
O6'—H6'0.8200C18—H18A0.9600
C1—C21.450 (10)C18—H18B0.9600
C1—H10.9300C18—H18C0.9600
C2—C31.404 (10)C19—C201.506 (9)
C2—C71.421 (9)C19—H19A0.9700
C3—C41.437 (9)C19—H19B0.9700
C4—C51.351 (10)C20—H20A0.9700
C5—C61.376 (11)C20—H20B0.9700
C5—H50.9300C20—H20C0.9700
C6—C71.362 (11)C20—H20D0.9700
C6—H6A0.9300
O4—Zn1—O1124.7 (2)C9—C10—H10A109.1
O4—Zn1—N1110.8 (2)O3—C10—H10B109.1
O1—Zn1—N197.2 (2)C9—C10—H10B109.1
O4—Zn1—N295.3 (2)H10A—C10—H10B107.8
O1—Zn1—N2108.1 (2)N2—C11—C12127.4 (6)
N1—Zn1—N2123.1 (2)N2—C11—H11116.3
C1—N1—C9118.0 (6)C12—C11—H11116.3
C1—N1—Zn1120.9 (4)C17—C12—C13119.9 (7)
C9—N1—Zn1121.1 (4)C17—C12—C11116.7 (7)
C11—N2—C19118.9 (6)C13—C12—C11123.3 (6)
C11—N2—Zn1121.1 (5)O4—C13—C12125.3 (6)
C19—N2—Zn1120.0 (5)O4—C13—C14117.0 (6)
C3—O1—Zn1122.2 (4)C12—C13—C14117.7 (6)
C4—O2—C8117.4 (6)O5—C14—C15125.3 (7)
C10—O3—H3109.5O5—C14—C13114.5 (6)
C13—O4—Zn1123.0 (4)C15—C14—C13120.2 (8)
C14—O5—C18118.9 (7)C16—C15—C14121.3 (8)
C20—O6—H6109.5C16—C15—H15119.4
H6—O6—H20C146.5C14—C15—H15119.4
C20—O6'—H6'109.5C17—C16—C15119.9 (8)
N1—C1—C2127.2 (6)C17—C16—H16120.1
N1—C1—H1116.4C15—C16—H16120.1
C2—C1—H1116.4C16—C17—C12121.1 (8)
C3—C2—C7119.3 (7)C16—C17—H17119.4
C3—C2—C1124.6 (6)C12—C17—H17119.4
C7—C2—C1116.1 (7)O5—C18—H18A109.5
O1—C3—C2125.5 (6)O5—C18—H18B109.5
O1—C3—C4117.4 (7)H18A—C18—H18B109.5
C2—C3—C4117.1 (7)O5—C18—H18C109.5
C5—C4—O2126.5 (8)H18A—C18—H18C109.5
C5—C4—C3121.0 (8)H18B—C18—H18C109.5
O2—C4—C3112.4 (6)N2—C19—C20110.7 (6)
C4—C5—C6121.9 (8)N2—C19—H19A109.5
C4—C5—H5119.1C20—C19—H19A109.5
C6—C5—H5119.1N2—C19—H19B109.5
C7—C6—C5119.2 (8)C20—C19—H19B109.5
C7—C6—H6A120.4H19A—C19—H19B108.1
C5—C6—H6A120.4O6—C20—O6'75.0 (19)
C6—C7—C2121.5 (8)O6—C20—C19114.2 (9)
C6—C7—H7A119.3O6'—C20—C19134.6 (18)
C2—C7—H7A119.3O6—C20—H20A108.7
O2—C8—H8A109.5O6'—C20—H20A109.4
O2—C8—H8B109.5C19—C20—H20A108.7
H8A—C8—H8B109.5O6—C20—H20B108.7
O2—C8—H8C109.5C19—C20—H20B108.7
H8A—C8—H8C109.5H20A—C20—H20B107.6
H8B—C8—H8C109.5O6'—C20—H20C97.4
N1—C9—C10111.0 (5)C19—C20—H20C105.6
N1—C9—H9A109.4H20A—C20—H20C91.0
C10—C9—H9A109.4H20B—C20—H20C132.5
N1—C9—H9B109.4O6—C20—H20D122.1
C10—C9—H9B109.4O6'—C20—H20D105.8
H9A—C9—H9B108.0C19—C20—H20D104.9
O3—C10—C9112.7 (5)H20B—C20—H20D96.3
O3—C10—H10A109.1H20C—C20—H20D105.5
O4—Zn1—N1—C1137.9 (5)C3—C4—C5—C60.9 (11)
O1—Zn1—N1—C16.4 (5)C4—C5—C6—C70.0 (12)
N2—Zn1—N1—C1110.7 (5)C5—C6—C7—C22.0 (11)
O4—Zn1—N1—C942.2 (5)C3—C2—C7—C63.0 (10)
O1—Zn1—N1—C9173.7 (5)C1—C2—C7—C6174.5 (6)
N2—Zn1—N1—C969.3 (5)C1—N1—C9—C10126.1 (6)
O4—Zn1—N2—C1116.0 (6)Zn1—N1—C9—C1053.9 (7)
O1—Zn1—N2—C11145.2 (6)N1—C9—C10—O363.3 (7)
N1—Zn1—N2—C11103.1 (6)C19—N2—C11—C12176.1 (7)
O4—Zn1—N2—C19162.6 (5)Zn1—N2—C11—C122.5 (11)
O1—Zn1—N2—C1933.4 (6)N2—C11—C12—C17173.6 (8)
N1—Zn1—N2—C1978.3 (6)N2—C11—C12—C1311.3 (12)
O4—Zn1—O1—C3138.0 (5)Zn1—O4—C13—C1216.3 (9)
N1—Zn1—O1—C316.4 (5)Zn1—O4—C13—C14164.1 (4)
N2—Zn1—O1—C3111.9 (5)C17—C12—C13—O4178.7 (7)
O1—Zn1—O4—C13139.0 (5)C11—C12—C13—O43.8 (11)
N1—Zn1—O4—C13105.8 (5)C17—C12—C13—C140.9 (10)
N2—Zn1—O4—C1322.6 (5)C11—C12—C13—C14175.8 (7)
C9—N1—C1—C2176.8 (6)C18—O5—C14—C155.0 (12)
Zn1—N1—C1—C23.1 (9)C18—O5—C14—C13174.9 (7)
N1—C1—C2—C36.4 (11)O4—C13—C14—O50.9 (9)
N1—C1—C2—C7171.1 (6)C12—C13—C14—O5179.5 (6)
Zn1—O1—C3—C218.0 (9)O4—C13—C14—C15179.2 (7)
Zn1—O1—C3—C4163.0 (5)C12—C13—C14—C150.5 (10)
C7—C2—C3—O1177.0 (6)O5—C14—C15—C16179.4 (8)
C1—C2—C3—O15.6 (11)C13—C14—C15—C160.5 (12)
C7—C2—C3—C42.0 (9)C14—C15—C16—C171.0 (14)
C1—C2—C3—C4175.3 (6)C15—C16—C17—C121.5 (14)
C8—O2—C4—C515.9 (11)C13—C12—C17—C161.4 (12)
C8—O2—C4—C3161.0 (7)C11—C12—C17—C16176.7 (8)
O1—C3—C4—C5179.0 (6)C11—N2—C19—C20122.0 (8)
C2—C3—C4—C50.1 (10)Zn1—N2—C19—C2059.4 (9)
O1—C3—C4—O24.0 (9)N2—C19—C20—O667.2 (11)
C2—C3—C4—O2176.9 (6)N2—C19—C20—O6'25 (3)
O2—C4—C5—C6177.5 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.822.072.799 (7)148
O3—H3···O2i0.822.282.954 (8)139
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formula[Zn(C10H12NO3)2]
Mr453.78
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)17.624 (2), 7.2013 (14), 34.853 (3)
V3)4423.3 (11)
Z8
Radiation typeMo Kα
µ (mm1)1.15
Crystal size (mm)0.59 × 0.26 × 0.24
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.551, 0.770
No. of measured, independent and
observed [I > 2σ(I)] reflections
20138, 3904, 2485
Rint0.059
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.078, 0.170, 1.08
No. of reflections3904
No. of parameters266
No. of restraints6
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0382P)2 + 21.0111P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.58, 1.04

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL.

Selected geometric parameters (Å, º) top
Zn1—O41.913 (4)Zn1—N11.985 (5)
Zn1—O11.921 (4)Zn1—N21.990 (6)
O4—Zn1—O1124.7 (2)O4—Zn1—N295.3 (2)
O4—Zn1—N1110.8 (2)O1—Zn1—N2108.1 (2)
O1—Zn1—N197.2 (2)N1—Zn1—N2123.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.822.072.799 (7)148.3
O3—H3···O2i0.822.282.954 (8)139.3
Symmetry code: (i) x, y1, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds