Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title mol­ecule, C15H9BrClFO, the dihedral angle between the two benzene rings is 22.7 (1)°. The crystal structure is stabilized by inter­molecular C—H...F inter­actions and short Br...Cl contacts [Br...Cl = 3.579 (1) Å]. The compound can potentially exhibit second-order nonlinear optical properties as it crystallizes in a noncentrosymmetric space group.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807027365/lh2409sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807027365/lh2409Isup2.hkl
Contains datablock I

CCDC reference: 654978

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.032
  • wR factor = 0.081
  • Data-to-parameter ratio = 39.4

checkCIF/PLATON results

No syntax errors found



Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR) is > 1.10 Tmin and Tmax reported: 0.338 0.507 Tmin and Tmax expected: 0.257 0.462 RR = 1.197 Please check that your absorption correction is appropriate. PLAT060_ALERT_3_C Ratio Tmax/Tmin (Exp-to-Rep) (too) Large ....... 1.21 PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.91 PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.30 PLAT431_ALERT_2_C Short Inter HL..A Contact Br1 .. Cl1 .. 3.58 Ang.
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.911 Tmax scaled 0.462 Tmin scaled 0.308 REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 37.50 From the CIF: _reflns_number_total 6780 Count of symmetry unique reflns 3572 Completeness (_total/calc) 189.81% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 3208 Fraction of Friedel pairs measured 0.898 Are heavy atom types Z>Si present yes PLAT033_ALERT_2_G Flack Parameter Value Deviates 2 * su from zero. 0.06 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Chalcones with appropriate subtituents are a class of nonlinear optical materials (Patil et al., 2006; Patil, Dharmaprakash et al., 2007). As a part of our on-going work on the synthesis and structure determination of subtituted chalcones (Patil, Teh, Fun, Babu et al., 2007, Patil, Teh, Fun, Razak et al., 2007) the crystal structure of the title compound (I) was determined (Fig. 1). The title compound can potentially exhibit second-order NLO properties as it crystallizes in a non-centrosymmetric space group.

All bond lengths and angles in (I) show normal values (Allen et al., 1987) and are comparable to those of a related structure (Patil, Teh, Fun, Babu et al.,2007; Patil, Teh, Fun, Razak et al., 2007). The dihedral angle between the benzene rings is 22.7 (1)°. The least-squares plane through the enone group (O1/C7–C9) makes dihedral angles of 13.6 (1) and 9.4 (1)° with the C1–C6 and C10–C15 benzene rings, respectively.

Three intramolecular hydrogen bonds are observed in the molecular structure (Table 1). The intramolecular structure generates S(5) ring motifs for the C9—H9A···O1 and C9—H9A···Cl1 interactions and an S(6) ring motif for an C8—H8A···F1 interaction (Bernstein et al., 1995). The molecules are stacked along the b axis and the structure is stabilized by C4—H4A···F1i intermolecular interactions. Short Br1···Cl1(1 - x, 2 - y, -1/2 + z) contacts [3.579 (1) Å] also contribute to the stabilization of the crystal structure.

Related literature top

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For general background and related literature, see: Uchida et al. (1998); Watson et al. (1993); Patil, Dharmaprakash et al. (2006). For our previous work on related compounds, see: Patil, Teh, Fun, Babu et al. (2007); Patil, Teh, Fun, Razak et al. (2007).

Experimental top

The experimental procedure is comparable with that reported previously (Patil, Teh, Fun, Babu et al.,2007; Patil, Teh, Fun, Razak et al., 2007). The actual quantities used for preparation of (I) were: 2-chloro-6-fluorobenzaldehyde (0.01 mol), 4-bromoacetophenone (0.01 mol), methanol 960 ml) and 5 ml of 10% of NaOH aqueous solution. Crystal suitable for X-ray analysis were grown by slow evaporation of an acetone solution at room temperature.

Refinement top

All H atoms were refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

Chalcones with appropriate subtituents are a class of nonlinear optical materials (Patil et al., 2006; Patil, Dharmaprakash et al., 2007). As a part of our on-going work on the synthesis and structure determination of subtituted chalcones (Patil, Teh, Fun, Babu et al., 2007, Patil, Teh, Fun, Razak et al., 2007) the crystal structure of the title compound (I) was determined (Fig. 1). The title compound can potentially exhibit second-order NLO properties as it crystallizes in a non-centrosymmetric space group.

All bond lengths and angles in (I) show normal values (Allen et al., 1987) and are comparable to those of a related structure (Patil, Teh, Fun, Babu et al.,2007; Patil, Teh, Fun, Razak et al., 2007). The dihedral angle between the benzene rings is 22.7 (1)°. The least-squares plane through the enone group (O1/C7–C9) makes dihedral angles of 13.6 (1) and 9.4 (1)° with the C1–C6 and C10–C15 benzene rings, respectively.

Three intramolecular hydrogen bonds are observed in the molecular structure (Table 1). The intramolecular structure generates S(5) ring motifs for the C9—H9A···O1 and C9—H9A···Cl1 interactions and an S(6) ring motif for an C8—H8A···F1 interaction (Bernstein et al., 1995). The molecules are stacked along the b axis and the structure is stabilized by C4—H4A···F1i intermolecular interactions. Short Br1···Cl1(1 - x, 2 - y, -1/2 + z) contacts [3.579 (1) Å] also contribute to the stabilization of the crystal structure.

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For general background and related literature, see: Uchida et al. (1998); Watson et al. (1993); Patil, Dharmaprakash et al. (2006). For our previous work on related compounds, see: Patil, Teh, Fun, Babu et al. (2007); Patil, Teh, Fun, Razak et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering. The dashed lines indicate a hydrogen bonds.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the b axis. Hydrogen bonds and short contacts are shown as dashed lines.
1-(4-bromophenyl)-3-(2-chloro-6-fluorophenyl)prop-2-en-1-one top
Crystal data top
C15H9BrClFOF(000) = 672
Mr = 339.58Dx = 1.729 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 8121 reflections
a = 27.8814 (4) Åθ = 2.3–37.5°
b = 3.9300 (1) ŵ = 3.35 mm1
c = 11.9065 (2) ÅT = 100 K
V = 1304.64 (4) Å3Block, colourless
Z = 40.59 × 0.35 × 0.23 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6780 independent reflections
Radiation source: fine-focus sealed tube5407 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 8.33 pixels mm-1θmax = 37.5°, θmin = 1.5°
ω scansh = 4746
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 66
Tmin = 0.338, Tmax = 0.507l = 2019
31202 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0227P)2 + 0.4581P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
6780 reflectionsΔρmax = 0.69 e Å3
172 parametersΔρmin = 0.30 e Å3
1 restraintAbsolute structure: Flack (1983), with 3224 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.057 (6)
Crystal data top
C15H9BrClFOV = 1304.64 (4) Å3
Mr = 339.58Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 27.8814 (4) ŵ = 3.35 mm1
b = 3.9300 (1) ÅT = 100 K
c = 11.9065 (2) Å0.59 × 0.35 × 0.23 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6780 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5407 reflections with I > 2σ(I)
Tmin = 0.338, Tmax = 0.507Rint = 0.047
31202 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.081Δρmax = 0.69 e Å3
S = 1.05Δρmin = 0.30 e Å3
6780 reflectionsAbsolute structure: Flack (1983), with 3224 Friedel pairs
172 parametersAbsolute structure parameter: 0.057 (6)
1 restraint
Special details top

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.338269 (6)1.70184 (5)0.72708 (2)0.02248 (5)
Cl10.684369 (18)0.41618 (14)0.93374 (4)0.02392 (10)
F10.62050 (5)0.9222 (4)0.57020 (10)0.0244 (3)
O10.54265 (6)1.0720 (5)0.95820 (13)0.0264 (3)
C10.47189 (7)1.2413 (5)0.70906 (16)0.0180 (4)
H1A0.49091.13940.65440.022*
C20.42735 (7)1.3755 (5)0.67974 (18)0.0197 (3)
H2A0.41631.36420.60610.024*
C30.39995 (7)1.5256 (5)0.76281 (17)0.0178 (3)
C40.41570 (7)1.5506 (5)0.87334 (17)0.0196 (4)
H4A0.39681.65580.92750.024*
C50.45975 (7)1.4168 (5)0.90101 (17)0.0190 (3)
H5A0.47071.43200.97460.023*
C60.48825 (7)1.2585 (5)0.82009 (16)0.0160 (3)
C70.53423 (7)1.1020 (5)0.85802 (16)0.0174 (3)
C80.56942 (7)0.9878 (5)0.77217 (17)0.0188 (3)
H8A0.56451.03340.69640.023*
C90.60856 (7)0.8172 (5)0.80645 (16)0.0168 (3)
H9A0.61000.77200.88300.020*
C100.64912 (6)0.6927 (5)0.74095 (18)0.0167 (3)
C110.68697 (7)0.5114 (5)0.79113 (17)0.0190 (3)
C120.72672 (6)0.3974 (5)0.7325 (2)0.0236 (3)
H12A0.75090.27910.76940.028*
C130.73008 (8)0.4611 (6)0.6183 (2)0.0259 (4)
H13A0.75670.38600.57840.031*
C140.69366 (8)0.6376 (6)0.56320 (19)0.0238 (4)
H14A0.69540.68030.48650.029*
C150.65495 (7)0.7471 (5)0.62546 (19)0.0198 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01427 (7)0.02028 (8)0.03290 (9)0.00260 (6)0.00130 (9)0.00051 (11)
Cl10.0223 (2)0.0247 (2)0.0248 (2)0.00264 (17)0.00752 (18)0.00313 (18)
F10.0225 (6)0.0322 (7)0.0186 (5)0.0032 (5)0.0009 (4)0.0036 (5)
O10.0253 (7)0.0362 (9)0.0177 (7)0.0073 (7)0.0018 (5)0.0010 (6)
C10.0159 (7)0.0196 (9)0.0186 (10)0.0026 (5)0.0006 (6)0.0008 (6)
C20.0165 (8)0.0233 (10)0.0194 (8)0.0013 (6)0.0011 (6)0.0007 (7)
C30.0141 (7)0.0163 (8)0.0230 (8)0.0004 (6)0.0002 (6)0.0014 (6)
C40.0184 (8)0.0197 (9)0.0206 (9)0.0012 (6)0.0044 (6)0.0028 (7)
C50.0191 (8)0.0205 (9)0.0173 (8)0.0003 (7)0.0008 (6)0.0020 (6)
C60.0152 (7)0.0160 (9)0.0167 (8)0.0003 (6)0.0014 (6)0.0002 (6)
C70.0158 (7)0.0188 (9)0.0175 (8)0.0009 (6)0.0014 (6)0.0003 (6)
C80.0166 (8)0.0222 (9)0.0175 (8)0.0025 (6)0.0002 (6)0.0013 (6)
C90.0155 (8)0.0169 (8)0.0181 (8)0.0005 (6)0.0000 (6)0.0007 (6)
C100.0126 (6)0.0164 (7)0.0212 (10)0.0017 (5)0.0015 (6)0.0002 (6)
C110.0159 (8)0.0160 (8)0.0252 (9)0.0013 (6)0.0025 (6)0.0004 (6)
C120.0139 (7)0.0184 (7)0.0384 (10)0.0005 (5)0.0014 (9)0.0013 (10)
C130.0170 (8)0.0227 (10)0.0380 (11)0.0037 (7)0.0069 (8)0.0069 (8)
C140.0230 (9)0.0231 (11)0.0252 (10)0.0023 (7)0.0059 (8)0.0040 (7)
C150.0176 (8)0.0189 (10)0.0229 (9)0.0012 (6)0.0001 (6)0.0007 (6)
Geometric parameters (Å, º) top
Br1—C31.9021 (19)C7—C81.486 (3)
Cl1—C111.740 (2)C8—C91.344 (3)
F1—C151.353 (3)C8—H8A0.9300
O1—C71.221 (2)C9—C101.458 (3)
C1—C21.394 (3)C9—H9A0.9300
C1—C61.400 (3)C10—C151.401 (3)
C1—H1A0.9300C10—C111.407 (3)
C2—C31.382 (3)C11—C121.384 (3)
C2—H2A0.9300C12—C131.385 (4)
C3—C41.391 (3)C12—H12A0.9300
C4—C51.376 (3)C13—C141.394 (3)
C4—H4A0.9300C13—H13A0.9300
C5—C61.395 (3)C14—C151.378 (3)
C5—H5A0.9300C14—H14A0.9300
C6—C71.492 (3)
C2—C1—C6120.57 (18)C7—C8—H8A120.7
C2—C1—H1A119.7C8—C9—C10129.38 (19)
C6—C1—H1A119.7C8—C9—H9A115.3
C3—C2—C1118.35 (19)C10—C9—H9A115.3
C3—C2—H2A120.8C15—C10—C11114.03 (18)
C1—C2—H2A120.8C15—C10—C9124.31 (18)
C2—C3—C4122.19 (18)C11—C10—C9121.64 (19)
C2—C3—Br1119.68 (15)C12—C11—C10123.4 (2)
C4—C3—Br1118.12 (15)C12—C11—Cl1117.14 (17)
C5—C4—C3118.77 (18)C10—C11—Cl1119.48 (16)
C5—C4—H4A120.6C11—C12—C13119.4 (2)
C3—C4—H4A120.6C11—C12—H12A120.3
C4—C5—C6120.89 (18)C13—C12—H12A120.3
C4—C5—H5A119.6C12—C13—C14120.18 (19)
C6—C5—H5A119.6C12—C13—H13A119.9
C5—C6—C1119.21 (18)C14—C13—H13A119.9
C5—C6—C7117.66 (17)C15—C14—C13118.2 (2)
C1—C6—C7123.08 (17)C15—C14—H14A120.9
O1—C7—C8121.04 (18)C13—C14—H14A120.9
O1—C7—C6120.04 (18)F1—C15—C14117.0 (2)
C8—C7—C6118.92 (16)F1—C15—C10118.21 (18)
C9—C8—C7118.54 (18)C14—C15—C10124.8 (2)
C9—C8—H8A120.7
C6—C1—C2—C30.1 (3)C8—C9—C10—C152.9 (3)
C1—C2—C3—C40.9 (3)C8—C9—C10—C11178.8 (2)
C1—C2—C3—Br1178.45 (15)C15—C10—C11—C120.3 (3)
C2—C3—C4—C51.0 (3)C9—C10—C11—C12178.12 (18)
Br1—C3—C4—C5178.43 (15)C15—C10—C11—Cl1178.71 (15)
C3—C4—C5—C60.0 (3)C9—C10—C11—Cl12.8 (3)
C4—C5—C6—C11.0 (3)C10—C11—C12—C130.2 (3)
C4—C5—C6—C7176.51 (19)Cl1—C11—C12—C13178.82 (16)
C2—C1—C6—C51.0 (3)C11—C12—C13—C140.2 (3)
C2—C1—C6—C7176.34 (19)C12—C13—C14—C150.5 (3)
C5—C6—C7—O110.4 (3)C13—C14—C15—F1179.01 (19)
C1—C6—C7—O1167.0 (2)C13—C14—C15—C100.4 (3)
C5—C6—C7—C8169.02 (18)C11—C10—C15—F1179.39 (18)
C1—C6—C7—C813.6 (3)C9—C10—C15—F11.0 (3)
O1—C7—C8—C97.1 (3)C11—C10—C15—C140.0 (3)
C6—C7—C8—C9173.55 (18)C9—C10—C15—C14178.4 (2)
C7—C8—C9—C10176.82 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···F1i0.932.423.287 (2)155
C8—H8A···F10.932.212.807 (2)121
C9—H9A···Cl10.932.573.041 (2)112
C9—H9A···O10.932.392.765 (3)104
Symmetry code: (i) x+1, y+3, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H9BrClFO
Mr339.58
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)27.8814 (4), 3.9300 (1), 11.9065 (2)
V3)1304.64 (4)
Z4
Radiation typeMo Kα
µ (mm1)3.35
Crystal size (mm)0.59 × 0.35 × 0.23
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.338, 0.507
No. of measured, independent and
observed [I > 2σ(I)] reflections
31202, 6780, 5407
Rint0.047
(sin θ/λ)max1)0.857
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.081, 1.05
No. of reflections6780
No. of parameters172
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 0.30
Absolute structureFlack (1983), with 3224 Friedel pairs
Absolute structure parameter0.057 (6)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SAINT, SHELXTL (Sheldrick, 1998), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···F1i0.932.4233.287 (2)155
C8—H8A···F10.932.2112.807 (2)121
C9—H9A···Cl10.932.5733.041 (2)112
C9—H9A···O10.932.3912.765 (3)104
Symmetry code: (i) x+1, y+3, z+1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds