Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the synthesis of (1R,2R)-1-carb­oxy-2-[(3R)-4,4-dimethyl-2-oxotetra­hydro­furan-3-yloxycarbon­yl]ethane-1,2-diyl diacetate from diacetyl­tartaric acid anhydride and pantolactone, two enantio­meric pairs were obtained and the structure of the R,R,R enanti­omer is presented here. The compound crystallizes as a monohydrate, C14H18O10·H2O. The main mol­ecule consists of a hydrogentartrate fragment in which the carboxyl group and the lactone ester group are in an anti conformation. In the crystal structure, mol­ecules are linked via O—H...O hydrogen bonds, involving water mol­ecules, to form a layered structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807027328/lh2408sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807027328/lh2408Isup2.hkl
Contains datablock I

CCDC reference: 654954

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.031
  • wR factor = 0.085
  • Data-to-parameter ratio = 7.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT089_ALERT_3_C Poor Data / Parameter Ratio (Zmax .LT. 18) ..... 7.74 PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.94 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.66 Ratio PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C8 PLAT432_ALERT_2_C Short Inter X...Y Contact O2 .. C6 .. 3.01 Ang.
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 25.07 From the CIF: _reflns_number_total 1804 Count of symmetry unique reflns 1810 Completeness (_total/calc) 99.67% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT791_ALERT_1_G Confirm the Absolute Configuration of C2 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C3 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C5 = . R
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 6 ALERT level G = General alerts; check 5 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The syntheses of diacetyl hydrogentartrate esters of pantolactone gave two enantiomeric pairs. The structural characterization of (R,R,S) diastereoisomer is presented in the preceding paper (Zachara et al., 2007). The title (R,R,R) isomer crystallizes as monohydrate.

Similarly to (R,R,S) the diastereoisomer (Zachara et al., 2007) and (S)-tetrahydrofurfuryl-O,O'-diacetyl-(R,R)-hydrogentartrate (Mravik et al., 1996) the molecule (Fig. 1) posseses the hydrogentartrate fragment in which the carboxyl group and the ester group are in anti conformation with the torsion angle C1—C2—C3—C4 equal to 167.0 (2)°. The gauche conformation is observed in (S)-timolol-O,O'-diacetyl-(R,R)-hydrogentartrate (Kivikoski et al., 1993) where the corresponding torsion angle equals to 37.0 (5)°. To the best of our knowledge there are no other structurally characterized (R,R)-hydrogentartrate esters. The (R)-pantalactone heterocycle in (I) shows the open envelope conformation with the C8 atom displaced by 0.600 (3) Å out of the l.s. plane defined by C5, C6, O6 and C7 atoms.

Strong hydrogen bonds are observed between the O1—H1 donor of a carboxyl group and atom O11 of a water molecule. The water molecule acts as a double donor to O5i and O10ii carbonyl atoms [symmetry codes: (i) 3/2 - x, 1 - y, 1/2 + z; (ii) 1/2 - x, 1 - y, z + 1/2]. As a result of those interactions the molecules of (I) are linked via water molecules to form a layer structure on (010) plane (Fig. 2). In the layer, weaker C—H···O intermolecular H-bonds are observed between the chiral C5—H5 group of the heterocycle and O2iii atom [symmetry code: (iii) 3/2 - x, 1 - y, z - 1/2] of a carboxylic group. Additionally, the short, 3.012 (4) Å, intermolecular distance between C6 and O2iii indicates that non-covalent interactions between carbonyl groups cooperate with H-bonds (Allen et al., 1998). Further, the adjacent layers are connected via weak intermolecular C—H···O bridges between carbonyl O4 and O10 atoms and the C10 and C14 methyl groups acting as donors to form a 3-D structure.

Related literature top

The corresponding R,R,S diastereoisomer forms anhydrous crystals (Zachara et al., 2007). There are only two other structurally characterized (R,R)-hydrogentartrate esters (Kivikoski et al., 1993; Mravik et al., 1996).

For related literature, see: Allen et al. (1998).

Experimental top

A (1:1 mol/mol) mixture of diacetyl-(R,R)-tartaric anhydride and (R)-pantolactone in toluene was heated up to boiling temperature in a nitrogen atmpsphere under reflux for 18 h. The mixture was then cooled to the room temperature and filtered. The resulting white solid product was recrystallized from saturated 2-propanol solution to give pure title compound with mp. 461–462 K and crystals suitable for X-ray diffraction measurement. [α]20D = +1.0% (c 2, ethyl acetate). IR (KBr): ν = 1088, 1208 cm-1, (C—O), ν = 1752 cm-1 (C=O), ν = 2824 cm-1 (CH3), 2880, 2946, 2972 cm-1 (CH3), ν = 3440 (OH).

Refinement top

Due to the absence of significant anomalous scattering effects, the measured Friedel pairs have been merged. The absolute structure was assigned on the basis of the known configuration of the starting materials. H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93–0.98 Å and Uiso(H) = 1.2 (1.5 for methyl carbons)×Ueq(C). The methyl group (C12) was modelled as idealized disordered rotating groups with refined occupancy factor 0.67 (3) for major conformer. The position of the H atom attached to O1 atom was freely refined with Uiso(H) = 1.5×Ueq(O). The water molecule was refined as a rigid group with O—H = 0.82 Å and Uiso(H) = 1.5×Ueq(O).

Structure description top

The syntheses of diacetyl hydrogentartrate esters of pantolactone gave two enantiomeric pairs. The structural characterization of (R,R,S) diastereoisomer is presented in the preceding paper (Zachara et al., 2007). The title (R,R,R) isomer crystallizes as monohydrate.

Similarly to (R,R,S) the diastereoisomer (Zachara et al., 2007) and (S)-tetrahydrofurfuryl-O,O'-diacetyl-(R,R)-hydrogentartrate (Mravik et al., 1996) the molecule (Fig. 1) posseses the hydrogentartrate fragment in which the carboxyl group and the ester group are in anti conformation with the torsion angle C1—C2—C3—C4 equal to 167.0 (2)°. The gauche conformation is observed in (S)-timolol-O,O'-diacetyl-(R,R)-hydrogentartrate (Kivikoski et al., 1993) where the corresponding torsion angle equals to 37.0 (5)°. To the best of our knowledge there are no other structurally characterized (R,R)-hydrogentartrate esters. The (R)-pantalactone heterocycle in (I) shows the open envelope conformation with the C8 atom displaced by 0.600 (3) Å out of the l.s. plane defined by C5, C6, O6 and C7 atoms.

Strong hydrogen bonds are observed between the O1—H1 donor of a carboxyl group and atom O11 of a water molecule. The water molecule acts as a double donor to O5i and O10ii carbonyl atoms [symmetry codes: (i) 3/2 - x, 1 - y, 1/2 + z; (ii) 1/2 - x, 1 - y, z + 1/2]. As a result of those interactions the molecules of (I) are linked via water molecules to form a layer structure on (010) plane (Fig. 2). In the layer, weaker C—H···O intermolecular H-bonds are observed between the chiral C5—H5 group of the heterocycle and O2iii atom [symmetry code: (iii) 3/2 - x, 1 - y, z - 1/2] of a carboxylic group. Additionally, the short, 3.012 (4) Å, intermolecular distance between C6 and O2iii indicates that non-covalent interactions between carbonyl groups cooperate with H-bonds (Allen et al., 1998). Further, the adjacent layers are connected via weak intermolecular C—H···O bridges between carbonyl O4 and O10 atoms and the C10 and C14 methyl groups acting as donors to form a 3-D structure.

The corresponding R,R,S diastereoisomer forms anhydrous crystals (Zachara et al., 2007). There are only two other structurally characterized (R,R)-hydrogentartrate esters (Kivikoski et al., 1993; Mravik et al., 1996).

For related literature, see: Allen et al. (1998).

Computing details top

Data collection: P3/P4-PC Software (Siemens, 1991); cell refinement: P3/P4-PC Software; data reduction: XDISK (Siemens, 1991); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms not bonded to chiral carbons or O atoms are omitted for clarity
[Figure 2] Fig. 2. A b axis projection showing layers of molecules linked by O—H···O bonds (dashed lines). Symmetry codes: (i) 3/2 - x, 1 - y, 1/2 + z; (ii) 1/2 - x, 1 - y, z + 1/2.
(1R,2R)-1-carboxy-2-[(3R)-4,4-dimethyl-2-oxotetrahydrofuran-3- yloxycarbonyl]ethane-1,2-diyl diacetate monohydrate top
Crystal data top
C14H18O10·H2ODx = 1.367 Mg m3
Mr = 364.30Melting point: 188.0 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 32 reflections
a = 8.2882 (15) Åθ = 14–33°
b = 12.905 (3) ŵ = 0.12 mm1
c = 16.544 (4) ÅT = 293 K
V = 1769.5 (7) Å3Prism, white
Z = 40.55 × 0.50 × 0.40 mm
F(000) = 768
Data collection top
Siemens P3
diffractometer
Rint = 0.020
Radiation source: fine-focus sealed tubeθmax = 25.1°, θmin = 2.5°
Graphite monochromatorh = 99
profile data from ω–2θ scansk = 1515
4027 measured reflectionsl = 1919
1804 independent reflections2 standard reflections every 70 reflections
1602 reflections with I > 2σ(I) intensity decay: 4.6%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.1825P]
where P = (Fo2 + 2Fc2)/3
1804 reflections(Δ/σ)max < 0.001
233 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.12 e Å3
Crystal data top
C14H18O10·H2OV = 1769.5 (7) Å3
Mr = 364.30Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.2882 (15) ŵ = 0.12 mm1
b = 12.905 (3) ÅT = 293 K
c = 16.544 (4) Å0.55 × 0.50 × 0.40 mm
Data collection top
Siemens P3
diffractometer
Rint = 0.020
4027 measured reflections2 standard reflections every 70 reflections
1804 independent reflections intensity decay: 4.6%
1602 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.12 e Å3
1804 reflectionsΔρmin = 0.12 e Å3
233 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of I > 2σ(I) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.4135 (2)0.40210 (19)0.64862 (11)0.0635 (5)
H10.392 (5)0.401 (3)0.701 (2)0.095*
O20.6718 (2)0.41764 (18)0.68431 (11)0.0653 (6)
O30.5667 (2)0.41482 (12)0.37263 (9)0.0460 (4)
O40.5964 (3)0.58696 (13)0.38505 (10)0.0582 (5)
O50.9050 (3)0.4119 (3)0.33816 (14)0.0983 (9)
O60.8368 (3)0.3414 (2)0.22103 (13)0.0846 (7)
O70.76978 (18)0.44152 (11)0.53189 (9)0.0399 (4)
O80.8423 (2)0.27519 (13)0.52033 (13)0.0653 (6)
O90.50341 (18)0.58436 (12)0.53907 (9)0.0404 (4)
O100.2776 (2)0.62970 (15)0.47394 (13)0.0634 (5)
O110.3488 (4)0.4401 (3)0.80616 (14)0.1023 (9)
H11A0.42560.47720.81790.153*
H11B0.31300.41990.84960.153*
C10.5697 (3)0.41106 (19)0.63381 (14)0.0446 (5)
C20.6042 (3)0.41135 (17)0.54372 (13)0.0364 (5)
H20.58770.34150.52200.044*
C30.4996 (3)0.48740 (17)0.49778 (12)0.0364 (5)
H30.38840.46160.49600.044*
C40.5606 (3)0.50471 (17)0.41201 (12)0.0384 (5)
C50.6269 (3)0.4182 (2)0.29114 (13)0.0476 (6)
H50.60960.48740.26830.057*
C60.8043 (4)0.3918 (3)0.28876 (17)0.0673 (8)
C70.6883 (4)0.3302 (3)0.17520 (16)0.0718 (9)
H7A0.68560.26380.14780.086*
H7B0.67900.38480.13520.086*
C80.5516 (4)0.3378 (2)0.23704 (14)0.0548 (7)
C90.3956 (6)0.3711 (4)0.1981 (2)0.1072 (15)
H9A0.31000.36770.23710.161*
H9B0.37140.32580.15360.161*
H9C0.40590.44090.17870.161*
C100.5331 (5)0.2352 (2)0.28152 (18)0.0862 (11)
H10A0.63410.21660.30590.129*
H10B0.50130.18230.24400.129*
H10C0.45230.24210.32270.129*
C110.8788 (3)0.36404 (18)0.52200 (14)0.0419 (5)
C121.0441 (3)0.4065 (2)0.51447 (17)0.0555 (7)
H12A1.09460.40770.56670.083*0.67 (3)
H12B1.03890.47580.49340.083*0.67 (3)
H12C1.10600.36380.47850.083*0.67 (3)
H12D1.06500.42380.45900.083*0.33 (3)
H12E1.12080.35570.53230.083*0.33 (3)
H12F1.05370.46770.54720.083*0.33 (3)
C130.3856 (3)0.65216 (17)0.51929 (14)0.0427 (5)
C140.4109 (3)0.75371 (19)0.55937 (18)0.0589 (7)
H14A0.50340.78730.53630.088*
H14B0.42820.74320.61620.088*
H14C0.31730.79640.55160.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0497 (11)0.0973 (15)0.0434 (9)0.0147 (11)0.0049 (9)0.0030 (10)
O20.0589 (12)0.0909 (15)0.0461 (9)0.0041 (12)0.0129 (9)0.0006 (10)
O30.0657 (11)0.0397 (8)0.0327 (7)0.0110 (9)0.0054 (8)0.0023 (6)
O40.0827 (14)0.0424 (9)0.0493 (9)0.0128 (10)0.0104 (10)0.0008 (8)
O50.0701 (15)0.159 (3)0.0659 (13)0.0302 (18)0.0102 (13)0.0110 (16)
O60.0761 (15)0.1177 (19)0.0598 (12)0.0158 (15)0.0146 (12)0.0072 (13)
O70.0303 (8)0.0379 (8)0.0514 (9)0.0011 (6)0.0028 (7)0.0017 (7)
O80.0502 (11)0.0432 (11)0.1025 (16)0.0062 (9)0.0019 (11)0.0060 (10)
O90.0376 (8)0.0413 (8)0.0424 (7)0.0072 (7)0.0048 (7)0.0069 (7)
O100.0451 (10)0.0586 (11)0.0865 (13)0.0046 (9)0.0213 (11)0.0036 (10)
O110.117 (2)0.127 (2)0.0637 (12)0.0471 (19)0.0178 (15)0.0035 (15)
C10.0461 (14)0.0449 (12)0.0428 (12)0.0013 (12)0.0038 (11)0.0018 (11)
C20.0310 (11)0.0367 (11)0.0417 (11)0.0029 (10)0.0015 (9)0.0021 (9)
C30.0309 (10)0.0401 (11)0.0383 (10)0.0035 (9)0.0018 (9)0.0042 (9)
C40.0355 (11)0.0399 (11)0.0398 (11)0.0046 (10)0.0034 (10)0.0025 (10)
C50.0653 (16)0.0445 (12)0.0329 (10)0.0063 (13)0.0026 (11)0.0021 (10)
C60.0679 (19)0.086 (2)0.0478 (14)0.0114 (17)0.0068 (16)0.0052 (15)
C70.108 (3)0.0647 (17)0.0428 (13)0.006 (2)0.0108 (17)0.0094 (13)
C80.0709 (18)0.0555 (15)0.0378 (12)0.0095 (15)0.0063 (12)0.0072 (11)
C90.091 (3)0.153 (4)0.077 (2)0.004 (3)0.029 (2)0.021 (3)
C100.137 (3)0.0586 (17)0.0628 (16)0.031 (2)0.010 (2)0.0091 (14)
C110.0377 (12)0.0428 (13)0.0453 (12)0.0049 (10)0.0046 (11)0.0021 (10)
C120.0350 (12)0.0644 (16)0.0670 (16)0.0032 (12)0.0037 (12)0.0018 (14)
C130.0333 (11)0.0451 (12)0.0496 (12)0.0016 (10)0.0043 (11)0.0047 (10)
C140.0467 (14)0.0466 (13)0.0835 (18)0.0071 (12)0.0075 (14)0.0053 (13)
Geometric parameters (Å, º) top
O1—C11.323 (3)C5—H50.9800
O1—H10.88 (4)C7—C81.530 (4)
O2—C11.192 (3)C7—H7A0.9700
O3—C41.332 (3)C7—H7B0.9700
O3—C51.438 (3)C8—C91.507 (5)
O4—C41.189 (3)C8—C101.522 (4)
O5—C61.197 (4)C9—H9A0.9600
O6—C61.323 (4)C9—H9B0.9600
O6—C71.453 (4)C9—H9C0.9600
O7—C111.357 (3)C10—H10A0.9600
O7—C21.440 (3)C10—H10B0.9600
O8—C111.186 (3)C10—H10C0.9600
O9—C131.351 (3)C11—C121.481 (4)
O9—C31.426 (3)C12—H12A0.9600
O10—C131.204 (3)C12—H12B0.9600
O11—H11A0.8200C12—H12C0.9600
O11—H11B0.8200C12—H12D0.9600
C1—C21.518 (3)C12—H12E0.9600
C2—C31.514 (3)C12—H12F0.9600
C2—H20.9800C13—C141.484 (3)
C3—C41.523 (3)C14—H14A0.9600
C3—H30.9800C14—H14B0.9600
C5—C81.505 (3)C14—H14C0.9600
C5—C61.510 (4)
C1—O1—H1112 (3)C8—C9—H9A109.5
C4—O3—C5116.45 (18)C8—C9—H9B109.5
C6—O6—C7108.5 (2)H9A—C9—H9B109.5
C11—O7—C2116.83 (17)C8—C9—H9C109.5
C13—O9—C3115.85 (17)H9A—C9—H9C109.5
H11A—O11—H11B105.0H9B—C9—H9C109.5
O2—C1—O1124.8 (2)C8—C10—H10A109.5
O2—C1—C2123.7 (2)C8—C10—H10B109.5
O1—C1—C2111.5 (2)H10A—C10—H10B109.5
O7—C2—C3107.61 (17)C8—C10—H10C109.5
O7—C2—C1108.28 (18)H10A—C10—H10C109.5
C3—C2—C1112.75 (19)H10B—C10—H10C109.5
O7—C2—H2109.4O8—C11—O7123.1 (2)
C3—C2—H2109.4O8—C11—C12126.3 (2)
C1—C2—H2109.4O7—C11—C12110.7 (2)
O9—C3—C2108.38 (16)C11—C12—H12A109.5
O9—C3—C4108.06 (18)C11—C12—H12B109.5
C2—C3—C4111.86 (18)H12A—C12—H12B109.5
O9—C3—H3109.5C11—C12—H12C109.5
C2—C3—H3109.5H12A—C12—H12C109.5
C4—C3—H3109.5H12B—C12—H12C109.5
O4—C4—O3125.79 (19)C11—C12—H12D109.5
O4—C4—C3124.3 (2)H12A—C12—H12D141.1
O3—C4—C3109.91 (19)H12B—C12—H12D56.3
O3—C5—C8113.1 (2)H12C—C12—H12D56.3
O3—C5—C6110.8 (2)C11—C12—H12E109.5
C8—C5—C6103.4 (2)H12A—C12—H12E56.3
O3—C5—H5109.8H12B—C12—H12E141.1
C8—C5—H5109.8H12C—C12—H12E56.3
C6—C5—H5109.8H12D—C12—H12E109.5
O5—C6—O6122.9 (3)C11—C12—H12F109.5
O5—C6—C5127.8 (3)H12A—C12—H12F56.3
O6—C6—C5109.4 (3)H12B—C12—H12F56.3
O6—C7—C8105.8 (2)H12C—C12—H12F141.1
O6—C7—H7A110.6H12D—C12—H12F109.5
C8—C7—H7A110.6H12E—C12—H12F109.5
O6—C7—H7B110.6O10—C13—O9122.2 (2)
C8—C7—H7B110.6O10—C13—C14126.6 (2)
H7A—C7—H7B108.7O9—C13—C14111.2 (2)
C5—C8—C9114.4 (3)C13—C14—H14A109.5
C5—C8—C10110.7 (2)C13—C14—H14B109.5
C9—C8—C10111.6 (3)H14A—C14—H14B109.5
C5—C8—C797.7 (2)C13—C14—H14C109.5
C9—C8—C7111.6 (3)H14A—C14—H14C109.5
C10—C8—C7110.0 (3)H14B—C14—H14C109.5
C11—O7—C2—C3141.06 (18)C7—O6—C6—O5180.0 (3)
C11—O7—C2—C196.8 (2)C7—O6—C6—C50.4 (3)
O2—C1—C2—O711.5 (3)O3—C5—C6—O534.4 (5)
O1—C1—C2—O7168.8 (2)C8—C5—C6—O5155.9 (3)
O2—C1—C2—C3130.4 (3)O3—C5—C6—O6146.1 (2)
O1—C1—C2—C349.9 (3)C8—C5—C6—O624.6 (3)
C13—O9—C3—C2163.21 (17)C6—O6—C7—C823.7 (3)
C13—O9—C3—C475.4 (2)O3—C5—C8—C986.5 (3)
O7—C2—C3—O971.4 (2)C6—C5—C8—C9153.5 (3)
C1—C2—C3—O948.0 (2)O3—C5—C8—C1040.6 (4)
O7—C2—C3—C447.7 (2)C6—C5—C8—C1079.4 (3)
C1—C2—C3—C4167.00 (19)O3—C5—C8—C7155.5 (2)
C5—O3—C4—O42.1 (4)C6—C5—C8—C735.5 (3)
C5—O3—C4—C3178.22 (19)O6—C7—C8—C536.5 (3)
O9—C3—C4—O43.5 (3)O6—C7—C8—C9156.7 (3)
C2—C3—C4—O4122.7 (3)O6—C7—C8—C1078.9 (3)
O9—C3—C4—O3176.85 (18)C2—O7—C11—O82.4 (3)
C2—C3—C4—O357.6 (2)C2—O7—C11—C12177.3 (2)
C4—O3—C5—C8148.3 (2)C3—O9—C13—O105.0 (3)
C4—O3—C5—C696.0 (3)C3—O9—C13—C14174.20 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O110.89 (3)1.85 (3)2.706 (3)163 (4)
O11—H11A···O5i0.822.032.845 (5)171
O11—H11B···O10ii0.822.283.101 (3)177
C2—H2···O80.982.282.671 (3)103
C5—H5···O40.982.322.687 (3)101
C5—H5···O2iii0.982.593.224 (3)122
C10—H10B···O4iv0.962.593.522 (4)163
C14—H14A···O10v0.962.523.436 (3)160
C14—H14C···O4vi0.962.593.445 (3)148
Symmetry codes: (i) x+3/2, y+1, z+1/2; (ii) x+1/2, y+1, z+1/2; (iii) x+3/2, y+1, z1/2; (iv) x+1, y1/2, z+1/2; (v) x+1/2, y+3/2, z+1; (vi) x1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC14H18O10·H2O
Mr364.30
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)8.2882 (15), 12.905 (3), 16.544 (4)
V3)1769.5 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.55 × 0.50 × 0.40
Data collection
DiffractometerSiemens P3
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4027, 1804, 1602
Rint0.020
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.085, 1.06
No. of reflections1804
No. of parameters233
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.12, 0.12

Computer programs: P3/P4-PC Software (Siemens, 1991), P3/P4-PC Software, XDISK (Siemens, 1991), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), SHELXL97 and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O110.89 (3)1.85 (3)2.706 (3)163 (4)
O11—H11A···O5i0.822.032.845 (5)171
O11—H11B···O10ii0.822.283.101 (3)177
C5—H5···O2iii0.982.593.224 (3)122
C10—H10B···O4iv0.962.593.522 (4)163
C14—H14A···O10v0.962.523.436 (3)160
C14—H14C···O4vi0.962.593.445 (3)148
Symmetry codes: (i) x+3/2, y+1, z+1/2; (ii) x+1/2, y+1, z+1/2; (iii) x+3/2, y+1, z1/2; (iv) x+1, y1/2, z+1/2; (v) x+1/2, y+3/2, z+1; (vi) x1/2, y+3/2, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds