Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title mol­ecule, C22H19Cl3O5S, the meth­oxy group is slightly twisted from the plane of the attached benzene ring by a torsion angle of 18.96 (14)°. In the crystal structure, mol­ecules are linked by inter­molecular C—H...O inter­actions and short Cl...O contacts of 3.0170 (8) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807027353/lh2396sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807027353/lh2396Isup2.hkl
Contains datablock I

CCDC reference: 654975

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.001 Å
  • R factor = 0.040
  • wR factor = 0.108
  • Data-to-parameter ratio = 48.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 3 PLAT431_ALERT_2_C Short Inter HL..A Contact Cl2 .. O4 .. 3.02 Ang.
Alert level G PLAT793_ALERT_1_G Check the Absolute Configuration of C14 = ... R
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

In our attempt to synthesize new benzimidazole derivatives (Al-Douh et al., 2006a,b), the crystal structure of the title compound, (I), was obtained and determined (Figure 1). Previously, the structure of a 2,2,2-trichloroethyl tosylsulfonate as a functional group has only been determined as an (S) derivative in tosylate (Begley et al., 1978) and as enantiomers in sulfonates (Gill et al., 1979). The research on the physical and chemical properties, including the reaction of the title compound to synthesize biologically important compounds is in progress. We present herein its crystal structure.

The bond lengths and angles in (I) have normal values (Allen et al., 1987) and are comparable with those in the related structures (Begley et al., 1978). The dihedral angle between the benzene rings [(C1—C6) and (C8—C13)] is 22.64 (5)° whereas the torsion angle of C8—O1—C7—C6 is -157.96 (7)°. The methoxy group at C9 is slightly twisted from the plane of the attached benzene ring with torsion angle of C22—O2—C9—C10 = -18.96 (14)°.

The intramolecular C7—H7B···O2 interaction generates an S(6) ring motif, while intramolecular C14—H14A···O1, C14—H14A···O3 and C21—H21A···O3 interaction (Table 1 and Figure 1) generate S(5) ring motifs (Bernstein et al., 1995). In the crystal structure, the molecules are linked by short inter Cl2···O4 ii contact of 3.0170 (8) Å (symmetry code: (ii) -x, -y, -z) into cyclic centrosymmetric R22(12) dimers. These dimers are interlinked by the C3—H3A···O2i (symmetry code: (i) -x, y + 1/2, -z + 1/2) intermolecular interactions.

Related literature top

For related literature on hydrogen-bond motifs, see: Bernstein et al. (1995). For related literature on values of bond lengths and angles, see: Allen et al. (1987). For related structures, see: Al-Douh et al. (2006a,b); Begley et al. (1978); Gill et al. (1979).

Experimental top

The title compound (I) was synthesized by adding sulfonyl chloride (535 mg, 3.027 mmol) dropwise to a stirred solution of 2-(2-(benzyloxy)-3-methoxyphenyl)-1H-benzimidazole (1000 mg, 3.027 mmol) in dry dichloromethane (50 ml) and dimethylaminopyridine (370 mg, 3.027 mmol). The resulting solution was stirred at room temperature for 2 hr, then at 320 K for 10 hr. Then, it was cooled to room temperature before removing the solvent by rotary evaporator. Crushed ice (25 g) and CHCl3 (50 ml) were added to the crude solution. The solution was shaken using separatory funnel and the organic layer was collected. The resulting solution was washed with 10% NaOH (3 × 25 ml) followed by water (3 × 25 ml), brine (3 × 25 ml) and water (3 × 25 ml) again. The organic layer was dried over MgSO4, filtered and the solvent was removed by rotary evaporator. The crude product was then purified by column chromatography with n-hexane:diethyl ether (1:4). The final product was dissolved in petroleum ether, and single crystals suitable for X-ray diffraction were obtained by evaporation the solvent at room temperature.

Refinement top

H atoms were placed in calculated positions and constrained to ride on their carrier atoms, with C—H distances in the range 0.93 - 0.98 Å. The Uiso values were constrained to be 1.5 Ueq of the carrier atom for methyl H atoms and 1.2 Ueq for the remaining H atoms.

Structure description top

In our attempt to synthesize new benzimidazole derivatives (Al-Douh et al., 2006a,b), the crystal structure of the title compound, (I), was obtained and determined (Figure 1). Previously, the structure of a 2,2,2-trichloroethyl tosylsulfonate as a functional group has only been determined as an (S) derivative in tosylate (Begley et al., 1978) and as enantiomers in sulfonates (Gill et al., 1979). The research on the physical and chemical properties, including the reaction of the title compound to synthesize biologically important compounds is in progress. We present herein its crystal structure.

The bond lengths and angles in (I) have normal values (Allen et al., 1987) and are comparable with those in the related structures (Begley et al., 1978). The dihedral angle between the benzene rings [(C1—C6) and (C8—C13)] is 22.64 (5)° whereas the torsion angle of C8—O1—C7—C6 is -157.96 (7)°. The methoxy group at C9 is slightly twisted from the plane of the attached benzene ring with torsion angle of C22—O2—C9—C10 = -18.96 (14)°.

The intramolecular C7—H7B···O2 interaction generates an S(6) ring motif, while intramolecular C14—H14A···O1, C14—H14A···O3 and C21—H21A···O3 interaction (Table 1 and Figure 1) generate S(5) ring motifs (Bernstein et al., 1995). In the crystal structure, the molecules are linked by short inter Cl2···O4 ii contact of 3.0170 (8) Å (symmetry code: (ii) -x, -y, -z) into cyclic centrosymmetric R22(12) dimers. These dimers are interlinked by the C3—H3A···O2i (symmetry code: (i) -x, y + 1/2, -z + 1/2) intermolecular interactions.

For related literature on hydrogen-bond motifs, see: Bernstein et al. (1995). For related literature on values of bond lengths and angles, see: Allen et al. (1987). For related structures, see: Al-Douh et al. (2006a,b); Begley et al. (1978); Gill et al. (1979).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering. The dashed lines indicate intramolecular hydrogen bonds.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the a axis. The intermolecular C—H···O hydrogen bonds and short inter Cl···O contacts are shown as dashed lines.
(RS)-1-[2-(Benzyloxy)-3-methoxyphenyl]-2,2,2-trichloroethyl benzenesulfonate top
Crystal data top
C22H19Cl3O5SF(000) = 1032
Mr = 501.78Dx = 1.501 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6905 reflections
a = 8.1638 (1) Åθ = 1.3–40.0°
b = 8.8536 (1) ŵ = 0.54 mm1
c = 30.7221 (5) ÅT = 100 K
β = 90.670 (1)°Block, brown
V = 2220.41 (5) Å30.48 × 0.30 × 0.29 mm
Z = 4
Data collection top
Bruker SMART APEX II CCD area-detector
diffractometer
13669 independent reflections
Radiation source: fine-focus sealed tube11428 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
Detector resolution: 8.33 pixels mm-1θmax = 40.0°, θmin = 1.3°
ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1616
Tmin = 0.779, Tmax = 0.858l = 5454
122837 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0515P)2 + 0.5813P]
where P = (Fo2 + 2Fc2)/3
13669 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
C22H19Cl3O5SV = 2220.41 (5) Å3
Mr = 501.78Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1638 (1) ŵ = 0.54 mm1
b = 8.8536 (1) ÅT = 100 K
c = 30.7221 (5) Å0.48 × 0.30 × 0.29 mm
β = 90.670 (1)°
Data collection top
Bruker SMART APEX II CCD area-detector
diffractometer
13669 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
11428 reflections with I > 2σ(I)
Tmin = 0.779, Tmax = 0.858Rint = 0.059
122837 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.08Δρmax = 0.57 e Å3
13669 reflectionsΔρmin = 0.55 e Å3
280 parameters
Special details top

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.11494 (3)0.07303 (2)0.165654 (7)0.01782 (4)
Cl20.00495 (3)0.10166 (3)0.076490 (8)0.02106 (5)
Cl30.31730 (3)0.22595 (2)0.103131 (9)0.02324 (5)
S10.29746 (3)0.21264 (2)0.024940 (7)0.01523 (4)
O10.22120 (8)0.28423 (7)0.17014 (2)0.01422 (10)
O20.46726 (9)0.36777 (8)0.22307 (2)0.01929 (12)
O30.17049 (9)0.30958 (8)0.04024 (3)0.02068 (13)
O40.28924 (10)0.14939 (9)0.01775 (2)0.02280 (14)
O50.30691 (8)0.06705 (7)0.05561 (2)0.01599 (11)
C10.07517 (13)0.55311 (13)0.15528 (4)0.02359 (18)
H1A0.08950.52190.12660.028*
C20.19809 (13)0.63606 (15)0.17555 (4)0.0284 (2)
H2A0.29390.66000.16040.034*
C30.17691 (13)0.68252 (12)0.21830 (4)0.02419 (18)
H3A0.25750.73970.23170.029*
C40.03532 (12)0.64364 (11)0.24112 (3)0.02053 (15)
H4A0.02210.67330.27000.025*
C50.08666 (12)0.56058 (10)0.22100 (3)0.01755 (14)
H5A0.18080.53400.23650.021*
C60.06841 (11)0.51685 (9)0.17762 (3)0.01539 (13)
C70.20611 (11)0.43904 (9)0.15479 (3)0.01698 (14)
H7A0.18530.43940.12360.020*
H7B0.30770.49280.16040.020*
C80.37519 (10)0.22610 (9)0.16305 (3)0.01354 (12)
C90.50575 (11)0.26899 (10)0.19070 (3)0.01604 (13)
C100.66156 (11)0.21106 (12)0.18355 (3)0.02081 (16)
H10A0.74870.23960.20150.025*
C110.68675 (12)0.11023 (13)0.14943 (4)0.02258 (17)
H11A0.79130.07250.14460.027*
C120.55826 (11)0.06541 (11)0.12253 (3)0.01892 (15)
H12A0.57650.00240.10000.023*
C130.40090 (10)0.12277 (9)0.12947 (3)0.01413 (12)
C140.25789 (10)0.07970 (9)0.10057 (3)0.01380 (12)
H14A0.17400.15850.10270.017*
C150.17828 (11)0.07436 (9)0.11099 (3)0.01580 (13)
C160.48763 (10)0.30045 (10)0.03280 (3)0.01484 (12)
C170.62592 (12)0.23099 (11)0.01579 (3)0.02071 (16)
H17A0.61740.13920.00120.025*
C180.77654 (12)0.30144 (14)0.02105 (4)0.02500 (19)
H18A0.87050.25630.01020.030*
C190.78741 (12)0.43929 (13)0.04253 (3)0.02332 (18)
H19A0.88860.48670.04560.028*
C200.64852 (13)0.50693 (11)0.05949 (3)0.02105 (16)
H20A0.65720.59870.07410.025*
C210.49626 (11)0.43739 (10)0.05464 (3)0.01730 (14)
H21A0.40250.48180.06580.021*
C220.58060 (14)0.37768 (13)0.25894 (4)0.02435 (18)
H22D0.53480.43960.28140.037*
H22A0.68120.42170.24920.037*
H22B0.60170.27840.27020.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01973 (9)0.02031 (9)0.01344 (8)0.00148 (6)0.00140 (6)0.00146 (6)
Cl20.02243 (9)0.02403 (10)0.01665 (9)0.00575 (7)0.00262 (7)0.00215 (7)
Cl30.02823 (11)0.01416 (8)0.02746 (12)0.00426 (7)0.00600 (8)0.00013 (7)
S10.01562 (8)0.01714 (8)0.01288 (8)0.00106 (6)0.00157 (6)0.00127 (6)
O10.0144 (2)0.0128 (2)0.0155 (3)0.00084 (18)0.00208 (19)0.00006 (18)
O20.0198 (3)0.0225 (3)0.0155 (3)0.0023 (2)0.0018 (2)0.0046 (2)
O30.0156 (3)0.0211 (3)0.0253 (3)0.0028 (2)0.0002 (2)0.0051 (2)
O40.0285 (3)0.0269 (3)0.0130 (3)0.0073 (3)0.0038 (2)0.0000 (2)
O50.0213 (3)0.0150 (2)0.0118 (2)0.0006 (2)0.0021 (2)0.00034 (19)
C10.0204 (4)0.0302 (4)0.0200 (4)0.0046 (3)0.0034 (3)0.0051 (3)
C20.0185 (4)0.0368 (5)0.0298 (5)0.0079 (4)0.0020 (3)0.0040 (4)
C30.0205 (4)0.0255 (4)0.0267 (5)0.0044 (3)0.0071 (3)0.0024 (4)
C40.0240 (4)0.0204 (4)0.0173 (4)0.0002 (3)0.0061 (3)0.0024 (3)
C50.0201 (3)0.0179 (3)0.0147 (3)0.0018 (3)0.0014 (3)0.0003 (3)
C60.0171 (3)0.0142 (3)0.0149 (3)0.0011 (2)0.0014 (2)0.0009 (2)
C70.0208 (3)0.0141 (3)0.0162 (3)0.0024 (2)0.0039 (3)0.0014 (2)
C80.0134 (3)0.0141 (3)0.0131 (3)0.0005 (2)0.0010 (2)0.0001 (2)
C90.0160 (3)0.0177 (3)0.0144 (3)0.0020 (2)0.0002 (2)0.0002 (3)
C100.0149 (3)0.0277 (4)0.0198 (4)0.0006 (3)0.0018 (3)0.0005 (3)
C110.0149 (3)0.0304 (4)0.0224 (4)0.0045 (3)0.0002 (3)0.0013 (3)
C120.0164 (3)0.0225 (4)0.0179 (4)0.0045 (3)0.0014 (3)0.0017 (3)
C130.0140 (3)0.0151 (3)0.0132 (3)0.0012 (2)0.0005 (2)0.0001 (2)
C140.0157 (3)0.0137 (3)0.0119 (3)0.0009 (2)0.0006 (2)0.0005 (2)
C150.0180 (3)0.0150 (3)0.0144 (3)0.0001 (2)0.0008 (2)0.0006 (2)
C160.0151 (3)0.0166 (3)0.0129 (3)0.0003 (2)0.0003 (2)0.0002 (2)
C170.0181 (3)0.0229 (4)0.0211 (4)0.0028 (3)0.0017 (3)0.0050 (3)
C180.0159 (4)0.0355 (5)0.0237 (5)0.0022 (3)0.0019 (3)0.0039 (4)
C190.0180 (4)0.0332 (5)0.0188 (4)0.0057 (3)0.0016 (3)0.0005 (3)
C200.0234 (4)0.0220 (4)0.0177 (4)0.0050 (3)0.0010 (3)0.0021 (3)
C210.0184 (3)0.0173 (3)0.0162 (3)0.0000 (3)0.0012 (3)0.0017 (3)
C220.0254 (4)0.0290 (4)0.0186 (4)0.0060 (3)0.0055 (3)0.0040 (3)
Geometric parameters (Å, º) top
Cl1—C151.7631 (9)C8—C131.3964 (12)
Cl2—C151.7745 (9)C8—C91.4074 (12)
Cl3—C151.7759 (9)C9—C101.3913 (13)
S1—O41.4270 (8)C10—C111.3940 (15)
S1—O31.4295 (8)C10—H10A0.9300
S1—O51.5981 (7)C11—C121.3857 (14)
S1—C161.7505 (9)C11—H11A0.9300
O1—C81.3781 (10)C12—C131.4001 (12)
O1—C71.4541 (10)C12—H12A0.9300
O2—C91.3638 (11)C13—C141.5075 (12)
O2—C221.4333 (12)C14—C151.5460 (12)
O5—C141.4469 (11)C14—H14A0.9800
C1—C61.3890 (13)C16—C211.3871 (12)
C1—C21.3961 (15)C16—C171.3928 (13)
C1—H1A0.9300C17—C181.3866 (15)
C2—C31.3851 (17)C17—H17A0.9300
C2—H2A0.9300C18—C191.3897 (16)
C3—C41.3882 (16)C18—H18A0.9300
C3—H3A0.9300C19—C201.3891 (15)
C4—C51.3887 (13)C19—H19A0.9300
C4—H4A0.9300C20—C211.3936 (13)
C5—C61.3942 (13)C20—H20A0.9300
C5—H5A0.9300C21—H21A0.9300
C6—C71.4996 (12)C22—H22D0.9600
C7—H7A0.9700C22—H22A0.9600
C7—H7B0.9700C22—H22B0.9600
O4—S1—O3120.76 (5)C10—C11—H11A119.5
O4—S1—O5103.11 (4)C11—C12—C13119.66 (9)
O3—S1—O5108.70 (4)C11—C12—H12A120.2
O4—S1—C16109.46 (4)C13—C12—H12A120.2
O3—S1—C16109.47 (4)C8—C13—C12119.76 (8)
O5—S1—C16103.90 (4)C8—C13—C14118.60 (7)
C8—O1—C7112.01 (7)C12—C13—C14121.61 (8)
C9—O2—C22116.60 (8)O5—C14—C13111.16 (7)
C14—O5—S1119.24 (5)O5—C14—C15104.53 (6)
C6—C1—C2120.53 (10)C13—C14—C15115.20 (7)
C6—C1—H1A119.7O5—C14—H14A108.6
C2—C1—H1A119.7C13—C14—H14A108.6
C3—C2—C1119.79 (10)C15—C14—H14A108.6
C3—C2—H2A120.1C14—C15—Cl1108.66 (6)
C1—C2—H2A120.1C14—C15—Cl2109.32 (6)
C2—C3—C4119.94 (9)Cl1—C15—Cl2109.21 (5)
C2—C3—H3A120.0C14—C15—Cl3111.58 (6)
C4—C3—H3A120.0Cl1—C15—Cl3109.24 (5)
C3—C4—C5120.25 (9)Cl2—C15—Cl3108.80 (5)
C3—C4—H4A119.9C21—C16—C17122.05 (8)
C5—C4—H4A119.9C21—C16—S1119.66 (7)
C4—C5—C6120.21 (9)C17—C16—S1118.27 (7)
C4—C5—H5A119.9C18—C17—C16118.63 (9)
C6—C5—H5A119.9C18—C17—H17A120.7
C1—C6—C5119.23 (8)C16—C17—H17A120.7
C1—C6—C7120.53 (8)C17—C18—C19120.14 (9)
C5—C6—C7120.16 (8)C17—C18—H18A119.9
O1—C7—C6110.03 (7)C19—C18—H18A119.9
O1—C7—H7A109.7C20—C19—C18120.58 (9)
C6—C7—H7A109.7C20—C19—H19A119.7
O1—C7—H7B109.7C18—C19—H19A119.7
C6—C7—H7B109.7C19—C20—C21120.03 (9)
H7A—C7—H7B108.2C19—C20—H20A120.0
O1—C8—C13120.44 (7)C21—C20—H20A120.0
O1—C8—C9119.32 (7)C16—C21—C20118.56 (8)
C13—C8—C9120.22 (8)C16—C21—H21A120.7
O2—C9—C10124.78 (8)C20—C21—H21A120.7
O2—C9—C8115.71 (8)O2—C22—H22D109.5
C10—C9—C8119.51 (8)O2—C22—H22A109.5
C9—C10—C11119.87 (9)H22D—C22—H22A109.5
C9—C10—H10A120.1O2—C22—H22B109.5
C11—C10—H10A120.1H22D—C22—H22B109.5
C12—C11—C10120.97 (9)H22A—C22—H22B109.5
C12—C11—H11A119.5
O4—S1—O5—C14157.73 (6)C9—C8—C13—C14179.98 (8)
O3—S1—O5—C1428.44 (7)C11—C12—C13—C80.85 (14)
C16—S1—O5—C1488.06 (7)C11—C12—C13—C14178.82 (9)
C6—C1—C2—C30.05 (19)S1—O5—C14—C1389.91 (7)
C1—C2—C3—C41.44 (18)S1—O5—C14—C15145.20 (6)
C2—C3—C4—C51.17 (16)C8—C13—C14—O5140.16 (8)
C3—C4—C5—C60.59 (15)C12—C13—C14—O537.83 (11)
C2—C1—C6—C51.79 (16)C8—C13—C14—C15101.19 (9)
C2—C1—C6—C7174.91 (10)C12—C13—C14—C1580.81 (11)
C4—C5—C6—C12.06 (14)O5—C14—C15—Cl1179.41 (5)
C4—C5—C6—C7174.65 (8)C13—C14—C15—Cl157.13 (8)
C8—O1—C7—C6157.96 (7)O5—C14—C15—Cl261.48 (7)
C1—C6—C7—O1109.63 (10)C13—C14—C15—Cl2176.24 (6)
C5—C6—C7—O173.71 (10)O5—C14—C15—Cl358.91 (7)
C7—O1—C8—C13104.57 (9)C13—C14—C15—Cl363.37 (9)
C7—O1—C8—C977.03 (10)O4—S1—C16—C21139.64 (8)
C22—O2—C9—C1018.96 (14)O3—S1—C16—C215.19 (9)
C22—O2—C9—C8161.48 (8)O5—S1—C16—C21110.77 (7)
O1—C8—C9—O20.15 (12)O4—S1—C16—C1738.88 (9)
C13—C8—C9—O2178.55 (8)O3—S1—C16—C17173.33 (8)
O1—C8—C9—C10179.73 (8)O5—S1—C16—C1770.71 (8)
C13—C8—C9—C101.86 (13)C21—C16—C17—C180.15 (15)
O2—C9—C10—C11179.85 (9)S1—C16—C17—C18178.62 (8)
C8—C9—C10—C110.61 (15)C16—C17—C18—C190.67 (16)
C9—C10—C11—C120.52 (16)C17—C18—C19—C200.96 (17)
C10—C11—C12—C130.41 (16)C18—C19—C20—C210.70 (16)
O1—C8—C13—C12179.63 (8)C17—C16—C21—C200.11 (14)
C9—C8—C13—C121.98 (13)S1—C16—C21—C20178.35 (7)
O1—C8—C13—C141.60 (12)C19—C20—C21—C160.17 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···O20.972.563.040 (1)110
C14—H14A···O10.982.382.820 (1)107
C14—H14A···O30.982.342.838 (1)111
C21—H21A···O30.932.552.919 (1)104
C3—H3A···O2i0.932.493.414 (1)172
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H19Cl3O5S
Mr501.78
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.1638 (1), 8.8536 (1), 30.7221 (5)
β (°) 90.670 (1)
V3)2220.41 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.54
Crystal size (mm)0.48 × 0.30 × 0.29
Data collection
DiffractometerBruker SMART APEX II CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.779, 0.858
No. of measured, independent and
observed [I > 2σ(I)] reflections
122837, 13669, 11428
Rint0.059
(sin θ/λ)max1)0.904
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.108, 1.08
No. of reflections13669
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.55

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SAINT, SHELXTL (Sheldrick, 1998), SHELXTL and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···O20.972.563.040 (1)110
C14—H14A···O10.982.382.820 (1)107
C14—H14A···O30.982.342.838 (1)111
C21—H21A···O30.932.552.919 (1)104
C3—H3A···O2i0.932.493.414 (1)172
Symmetry code: (i) x, y+1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds