Download citation
Download citation
link to html
The anion of the title compound, 2C6H13N4+·C6Cl2O42-·4H2O, is centrosymmetric. The crystal structure is stabilized by a network of inter­molecular hydrogen bonds. The solvent water mol­ecules are disordered, each with approximate 2:1 occupancy of two positions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807018569/lh2362sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807018569/lh2362Isup2.hkl
Contains datablock I

CCDC reference: 647611

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.003 Å
  • Disorder in main residue
  • R factor = 0.049
  • wR factor = 0.133
  • Data-to-parameter ratio = 13.0

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT420_ALERT_2_B D-H Without Acceptor >O3 - >H3A ... ?
Alert level C PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT045_ALERT_1_C Calculated and Reported Z Differ by ............ 2.00 Ratio PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.97 PLAT301_ALERT_3_C Main Residue Disorder ......................... 8.00 Perc. PLAT333_ALERT_2_C Large Average Benzene C-C Dist. C1 -C3_a 1.45 Ang. PLAT369_ALERT_2_C Long C(sp2)-C(sp2) Bond C2 - C3 ... 1.54 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H4D .. CL1 .. 3.03 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H4C .. O3 .. 2.62 Ang.
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 9 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

As part of our continuing studies on co-crystals involving chloranilic acid (Yang & Qu, 2006), we report herein the crystal structure of the title compound, (I).

In (I), the H atoms have been transferred from the hydroxyl group of the chloranilic acid molecule to the amine group N atom of hexamethylenetetramine molecule, forming a 1:2 organic salt. In addition, there are two solvent water molecules in the asymmetric unit (Fig.1). The protonated amine atom N3 acts as hydrogen bond donor, via H3, to two adjacent O atoms, forming the inter-ion three-centre hydrogen bond. In addition, the C–N bond distances involved the protonated atom N3 are slightly longer than for the unprotonated ones N atoms. On the contrary, the deprotonated CO(hydroxyl) bond distances of 1.251 (5) and 1.237 (5)Å are shorter than the CO(hydroxyl) value of 1.362 (15) Å in phenol, but longer than the standard bond distance of a C=O double bond (in benzoquinones), 1.222 (13) Å. (Allen et al., 1987).

A combination of N (or O)–H···O, C–H···O(or N) and C–H···Cl hydrogen bonds (Table 1) stabilizes the crystal structure (Fig. 2).

Related literature top

For related literature, see: Allen et al. (1987); Yang & Qu (2006).

Experimental top

All the reagents and solvents were used as obtained without further purification. Equivalent molar amount of Chloranilic acid and hexamethylenetetramine were dissolved in methanol (20 ml). The mixture was stirred for half an hour at ambient temperature and then filtered. The resulting red solution was kept in air for one week. Crystals of (I) suitable for single-crystal X-ray diffraction analysis were grown by slow evaporation of the solution at the bottom of the vessel.

Refinement top

H atoms bonded to C atoms were included in calculated positions with C–H=0.97 Å and Uiso(H) = 1.2Ueq(C). Atom H3 was located in a difference map its positional parameters were refined and its Uiso value was set 1.2 times of the Ueq of N3 atom. The water H atoms were located from the difference maps and their Uiso values were set 1.5 times of their carrier atoms. The O(water)-H distances were refined by using the DFIX command in SHELXL (Sheldrick, 1997). Both water molecules containing atoms O3 and O4 atoms were disordered over two positions with a ratio of refined occupacies of 0.68 (6):0.32 (6) and 0.63 (3):0.36 (3), respectively, for the major and minor components. The disorder with respect to the solvent water molecules made it difficult to interpret all the hydrogen bond interactions in which they are involved. Table 1 lists only seclected hydrogen bond involving the water molecules.

Structure description top

As part of our continuing studies on co-crystals involving chloranilic acid (Yang & Qu, 2006), we report herein the crystal structure of the title compound, (I).

In (I), the H atoms have been transferred from the hydroxyl group of the chloranilic acid molecule to the amine group N atom of hexamethylenetetramine molecule, forming a 1:2 organic salt. In addition, there are two solvent water molecules in the asymmetric unit (Fig.1). The protonated amine atom N3 acts as hydrogen bond donor, via H3, to two adjacent O atoms, forming the inter-ion three-centre hydrogen bond. In addition, the C–N bond distances involved the protonated atom N3 are slightly longer than for the unprotonated ones N atoms. On the contrary, the deprotonated CO(hydroxyl) bond distances of 1.251 (5) and 1.237 (5)Å are shorter than the CO(hydroxyl) value of 1.362 (15) Å in phenol, but longer than the standard bond distance of a C=O double bond (in benzoquinones), 1.222 (13) Å. (Allen et al., 1987).

A combination of N (or O)–H···O, C–H···O(or N) and C–H···Cl hydrogen bonds (Table 1) stabilizes the crystal structure (Fig. 2).

For related literature, see: Allen et al. (1987); Yang & Qu (2006).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. hydrogen bonds are shown as dashed lines. Atoms marked with suffix 'a' are realted by the symmetry operator (1 - x, 1 - y, 1 - z).
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of the three-dimensional network. Hydrogen bonding are shown as dashed lines. For the sake of clarity, H atoms not involved in the motif have been omitted.
Bis(hexamethylenetetraminium) chloranilate tetrahydrate top
Crystal data top
2C6H13N4+·C6Cl2O42·4H2OF(000) = 592
Mr = 561.44Dx = 1.479 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1255 reflections
a = 6.1794 (4) Åθ = 2.4–25.4°
b = 16.8362 (12) ŵ = 0.32 mm1
c = 12.2627 (9) ÅT = 298 K
β = 98.791 (1)°Block, red
V = 1260.79 (15) Å30.20 × 0.16 × 0.15 mm
Z = 2
Data collection top
Bruker SMART APEX CCD
diffractometer
2737 independent reflections
Radiation source: fine focus sealed Siemens Mo tube2185 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
0.3° wide ω exposures scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 77
Tmin = 0.939, Tmax = 0.981k = 2121
10757 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0705P)2 + 0.2943P]
where P = (Fo2 + 2Fc2)/3
2737 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.31 e Å3
37 restraintsΔρmin = 0.23 e Å3
Crystal data top
2C6H13N4+·C6Cl2O42·4H2OV = 1260.79 (15) Å3
Mr = 561.44Z = 2
Monoclinic, P21/nMo Kα radiation
a = 6.1794 (4) ŵ = 0.32 mm1
b = 16.8362 (12) ÅT = 298 K
c = 12.2627 (9) Å0.20 × 0.16 × 0.15 mm
β = 98.791 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2737 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
2185 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.981Rint = 0.031
10757 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04937 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.31 e Å3
2737 reflectionsΔρmin = 0.23 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.89623 (9)0.50143 (3)0.69782 (5)0.0446 (2)
C10.6796 (3)0.50143 (10)0.58940 (16)0.0314 (4)
C20.6864 (3)0.44703 (10)0.50282 (15)0.0302 (4)
C30.4961 (3)0.44760 (10)0.40595 (15)0.0307 (4)
C40.8090 (4)0.29530 (14)0.2118 (2)0.0515 (6)
H4A0.65210.30070.19000.062*
H4B0.87900.34210.18710.062*
C50.7769 (5)0.15608 (15)0.1997 (2)0.0588 (7)
H5A0.82410.10880.16460.071*
H5B0.61980.16110.17810.071*
C61.1214 (4)0.21767 (15)0.1967 (2)0.0564 (7)
H6A1.17370.17110.16220.068*
H6B1.19500.26370.17210.068*
C70.7510 (4)0.21626 (14)0.3717 (2)0.0513 (6)
H7A0.78420.21100.45130.062*
H7B0.59360.22130.35160.062*
C81.0649 (4)0.14114 (14)0.3518 (3)0.0595 (7)
H8A1.09900.13610.43140.071*
H8B1.11730.09370.31930.071*
C91.1054 (4)0.28014 (14)0.3675 (2)0.0476 (6)
H9A1.17870.32660.34400.057*
H9B1.14180.27580.44700.057*
N10.8852 (3)0.22567 (12)0.16102 (16)0.0503 (5)
N20.8262 (3)0.14696 (11)0.31982 (18)0.0524 (5)
N30.8615 (3)0.28880 (10)0.33541 (15)0.0409 (4)
H30.816 (4)0.3304 (14)0.366 (2)0.049*
N41.1781 (3)0.21049 (12)0.31625 (18)0.0502 (5)
O10.8326 (2)0.39727 (8)0.49978 (12)0.0423 (4)
O20.5122 (2)0.40054 (9)0.32866 (12)0.0454 (4)
O30.339 (3)0.3923 (6)0.1059 (5)0.105 (3)0.68 (3)
H3A0.251 (12)0.425 (3)0.075 (6)0.157*0.68 (3)
H3B0.392 (13)0.405 (4)0.169 (3)0.157*0.68 (3)
O40.7867 (13)0.4992 (3)0.0620 (5)0.137 (3)0.642 (11)
H4C0.676 (9)0.471 (5)0.055 (9)0.206*0.642 (11)
H4D0.776 (9)0.539 (4)0.100 (7)0.206*0.642 (11)
O3'0.453 (5)0.4187 (15)0.1031 (11)0.104 (6)0.32 (3)
H3C0.334 (14)0.439 (8)0.079 (16)0.156*0.32 (3)
H3D0.556 (17)0.450 (7)0.116 (15)0.156*0.32 (3)
O4'0.943 (5)0.5497 (18)0.021 (2)0.260 (10)0.358 (11)
H4E1.06 (3)0.54 (2)0.01 (4)0.390*0.358 (11)
H4F0.90 (6)0.595 (9)0.00 (3)0.390*0.358 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0437 (3)0.0419 (3)0.0436 (3)0.0050 (2)0.0080 (2)0.0038 (2)
C10.0325 (10)0.0295 (9)0.0309 (10)0.0002 (7)0.0007 (8)0.0003 (7)
C20.0326 (10)0.0266 (9)0.0326 (10)0.0005 (7)0.0094 (8)0.0034 (7)
C30.0348 (10)0.0260 (9)0.0320 (10)0.0008 (7)0.0071 (8)0.0000 (7)
C40.0582 (15)0.0463 (13)0.0477 (14)0.0078 (11)0.0008 (11)0.0004 (10)
C50.0600 (16)0.0520 (14)0.0635 (17)0.0149 (12)0.0066 (12)0.0202 (12)
C60.0503 (14)0.0611 (15)0.0633 (17)0.0018 (11)0.0259 (12)0.0168 (12)
C70.0402 (12)0.0630 (15)0.0539 (15)0.0022 (11)0.0173 (11)0.0025 (11)
C80.0620 (17)0.0454 (14)0.0707 (18)0.0168 (12)0.0088 (13)0.0034 (12)
C90.0384 (12)0.0527 (13)0.0505 (13)0.0056 (10)0.0031 (10)0.0151 (10)
N10.0590 (13)0.0508 (11)0.0414 (11)0.0029 (9)0.0082 (9)0.0117 (8)
N20.0557 (13)0.0402 (10)0.0628 (13)0.0086 (9)0.0134 (10)0.0015 (9)
N30.0414 (10)0.0374 (9)0.0447 (11)0.0088 (8)0.0092 (8)0.0118 (8)
N40.0331 (10)0.0567 (12)0.0615 (13)0.0057 (8)0.0097 (9)0.0114 (10)
O10.0414 (8)0.0420 (8)0.0428 (9)0.0139 (6)0.0040 (6)0.0058 (6)
O20.0495 (9)0.0470 (9)0.0384 (8)0.0105 (7)0.0031 (7)0.0140 (7)
O30.139 (7)0.121 (4)0.049 (2)0.008 (4)0.004 (3)0.024 (2)
O40.195 (7)0.098 (4)0.100 (4)0.042 (3)0.041 (4)0.028 (3)
O3'0.119 (10)0.116 (9)0.075 (6)0.028 (7)0.008 (6)0.002 (6)
O4'0.256 (13)0.278 (13)0.245 (13)0.004 (10)0.036 (9)0.023 (10)
Geometric parameters (Å, º) top
C1—C21.408 (3)C5—H5A0.9700
C1—C3i1.392 (3)C5—H5B0.9700
C2—O11.237 (2)C6—H6A0.9700
C2—C31.539 (3)C6—H6B0.9700
C3—O21.251 (2)C7—H7A0.9700
C4—N11.440 (3)C7—H7B0.9700
C5—N11.464 (3)C8—H8A0.9700
C6—N11.465 (3)C8—H8B0.9700
C5—N21.466 (3)C9—H9A0.9700
C7—N21.440 (3)C9—H9B0.9700
C8—N21.471 (3)N3—H30.86 (2)
C4—N31.505 (3)O3—H3A0.825 (11)
C7—N31.499 (3)O3—H3B0.827 (11)
C9—N31.506 (3)O3—H3C0.85 (14)
C6—N41.459 (3)O4—H4C0.828 (11)
C8—N41.461 (3)O4—H4D0.828 (10)
C9—N41.434 (3)O3'—H3B0.98 (7)
Cl1—C11.737 (2)O3'—H3C0.824 (11)
C3—C1i1.392 (3)O3'—H3D0.824 (11)
C4—H4A0.9700O4'—H4E0.825 (11)
C4—H4B0.9700O4'—H4F0.826 (11)
C3i—C1—C2123.07 (18)N4—C8—N2111.90 (19)
C3i—C1—Cl1118.91 (15)N4—C8—H8A109.2
C2—C1—Cl1117.97 (14)N2—C8—H8A109.2
O1—C2—C1124.72 (19)N4—C8—H8B109.2
O1—C2—C3117.17 (16)N2—C8—H8B109.2
C1—C2—C3118.08 (16)H8A—C8—H8B107.9
O2—C3—C1i125.08 (19)N4—C9—N3109.44 (17)
O2—C3—C2116.15 (16)N4—C9—H9A109.8
C1i—C3—C2118.76 (16)N3—C9—H9A109.8
N1—C4—N3110.01 (18)N4—C9—H9B109.8
N1—C4—H4A109.7N3—C9—H9B109.8
N3—C4—H4A109.7H9A—C9—H9B108.2
N1—C4—H4B109.7C4—N1—C5108.42 (19)
N3—C4—H4B109.7C4—N1—C6108.79 (19)
H4A—C4—H4B108.2C5—N1—C6108.3 (2)
N1—C5—N2111.97 (19)C7—N2—C5109.1 (2)
N1—C5—H5A109.2C7—N2—C8108.31 (19)
N2—C5—H5A109.2C5—N2—C8108.8 (2)
N1—C5—H5B109.2C7—N3—C4108.70 (18)
N2—C5—H5B109.2C7—N3—C9109.06 (18)
H5A—C5—H5B107.9C4—N3—C9108.83 (18)
N4—C6—N1112.53 (18)C7—N3—H3109.8 (16)
N4—C6—H6A109.1C4—N3—H3110.0 (16)
N1—C6—H6A109.1C9—N3—H3110.4 (16)
N4—C6—H6B109.1C9—N4—C6109.21 (19)
N1—C6—H6B109.1C9—N4—C8109.05 (18)
H6A—C6—H6B107.8C6—N4—C8108.3 (2)
N2—C7—N3109.67 (17)H3A—O3—H3B113 (2)
N2—C7—H7A109.7H4C—O4—H4D113 (2)
N3—C7—H7A109.7H3A—O3'—H3D135 (10)
N2—C7—H7B109.7H3B—O3'—H3D112 (10)
N3—C7—H7B109.7H3C—O3'—H3D115 (2)
H7A—C7—H7B108.2H4E—O4'—H4F115 (2)
C3i—C1—C2—O1174.85 (18)N1—C5—N2—C760.3 (3)
Cl1—C1—C2—O12.4 (3)N1—C5—N2—C857.6 (3)
C3i—C1—C2—C33.5 (3)N4—C8—N2—C760.7 (3)
Cl1—C1—C2—C3179.25 (12)N4—C8—N2—C557.8 (3)
O1—C2—C3—O24.2 (2)N2—C7—N3—C459.0 (2)
C1—C2—C3—O2177.33 (17)N2—C7—N3—C959.6 (2)
O1—C2—C3—C1i175.12 (17)N1—C4—N3—C759.6 (2)
C1—C2—C3—C1i3.4 (3)N1—C4—N3—C959.1 (2)
N3—C4—N1—C559.4 (3)N4—C9—N3—C759.1 (2)
N3—C4—N1—C658.2 (2)N4—C9—N3—C459.3 (2)
N2—C5—N1—C460.3 (3)N3—C9—N4—C659.1 (2)
N2—C5—N1—C657.6 (2)N3—C9—N4—C859.0 (3)
N4—C6—N1—C459.3 (3)N1—C6—N4—C960.1 (2)
N4—C6—N1—C558.3 (2)N1—C6—N4—C858.5 (2)
N3—C7—N2—C558.9 (3)N2—C8—N4—C960.8 (3)
N3—C7—N2—C859.4 (3)N2—C8—N4—C657.9 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O2ii0.972.443.320 (3)151
C7—H7B···N4iii0.972.543.503 (3)170
C7—H7A···O3iv0.972.563.378 (6)142
C6—H6B···O3ii0.972.523.485 (16)173
O4—H4D···Cl1v0.83 (1)3.03 (8)3.278 (5)100 (6)
C4—H4A···O30.972.573.413 (10)146
O4—H4C···O30.83 (1)2.62 (4)3.41 (2)160 (10)
O3—H3B···O20.83 (1)1.98 (2)2.781 (6)162 (8)
N3—H3···O20.86 (2)2.20 (2)2.854 (2)132 (2)
N3—H3···O10.86 (2)1.98 (2)2.746 (2)147 (2)
Symmetry codes: (ii) x+1, y, z; (iii) x1, y, z; (iv) x+1/2, y+1/2, z+1/2; (v) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula2C6H13N4+·C6Cl2O42·4H2O
Mr561.44
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)6.1794 (4), 16.8362 (12), 12.2627 (9)
β (°) 98.791 (1)
V3)1260.79 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.20 × 0.16 × 0.15
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.939, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
10757, 2737, 2185
Rint0.031
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.133, 1.06
No. of reflections2737
No. of parameters210
No. of restraints37
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.23

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SAINT-Plus, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), PLATON.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O2i0.972.443.320 (3)150.8
C7—H7B···N4ii0.972.543.503 (3)169.7
C7—H7A···O3iii0.972.563.378 (6)142.4
C6—H6B···O3i0.972.523.485 (16)172.5
O4—H4D···Cl1iv0.828 (10)3.03 (8)3.278 (5)100 (6)
C4—H4A···O30.972.573.413 (10)146.0
O4—H4C···O30.828 (11)2.62 (4)3.41 (2)160 (10)
O3—H3B···O20.827 (11)1.98 (2)2.781 (6)162 (8)
N3—H3···O20.86 (2)2.20 (2)2.854 (2)132 (2)
N3—H3···O10.86 (2)1.98 (2)2.746 (2)147 (2)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1/2, y+1/2, z+1/2; (iv) x+2, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds