Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C11H8O3, displays catemeric aggregation, involving hydrogen bonds progressing from the carboxyl of one mol­ecule to the ketone of a glide-related neighbor [O...O = 2.6952 (12) Å and O—H...O = 177.7 (16)°]. The mol­ecule is highly planar and inherently achiral, but a slight conformational enanti­omerism generated by the packing creates alternating conformational chirality in the chain units. Hydrogen-bonding chains, all aligned in the a-axis direction, occur in parallel counter-directional pairs related by centrosymmetry. Significant overlap of the aromatic rings occurs in the mol­ecular stacking, at an average distance of 3.354 Å. Two C—H...O=C close contacts exist.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807013700/lh2345sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807013700/lh2345Isup2.hkl
Contains datablock I

CCDC reference: 647271

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.033
  • wR factor = 0.091
  • Data-to-parameter ratio = 11.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT230_ALERT_2_C Hirshfeld Test Diff for O1 - C1 .. 5.20 su
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2004); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

(E)-(1-Oxoindan-2-ylidene)acetic acid top
Crystal data top
C11H8O3Dx = 1.460 Mg m3
Mr = 188.17Melting point: 483 K
Orthorhombic, PbcnCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2n 2abCell parameters from 9727 reflections
a = 14.9634 (2) Åθ = 5.6–67.9°
b = 7.1821 (1) ŵ = 0.89 mm1
c = 15.9359 (2) ÅT = 100 K
V = 1712.61 (4) Å3Block, light yellow
Z = 80.26 × 0.26 × 0.16 mm
F(000) = 784
Data collection top
Bruker SMART CCD APEXII area-detector
diffractometer
1548 independent reflections
Radiation source: fine-focus sealed tube1473 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 67.9°, θmin = 5.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1717
Tmin = 0.802, Tmax = 0.871k = 88
9720 measured reflectionsl = 1918
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0473P)2 + 0.6492P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1548 reflectionsΔρmax = 0.26 e Å3
131 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXTL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0017 (3)
Special details top

Experimental. crystal mounted on cryoloop using Paratone-N

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.69765 (6)0.22077 (12)0.55161 (5)0.0212 (2)
C10.74819 (8)0.16486 (15)0.60691 (7)0.0172 (3)
C20.84824 (8)0.16378 (15)0.60089 (7)0.0172 (3)
O21.03870 (6)0.16788 (13)0.57946 (5)0.0258 (3)
O31.01774 (6)0.29483 (13)0.45257 (5)0.0236 (2)
H3C1.0787 (13)0.289 (2)0.4526 (10)0.035*
C3A0.80285 (8)0.04851 (15)0.73346 (7)0.0178 (3)
C30.88559 (8)0.08512 (16)0.68159 (7)0.0188 (3)
H3A0.92540.17590.70960.023*
H3B0.91920.03140.67120.023*
C40.79747 (8)0.01894 (16)0.81539 (7)0.0205 (3)
H4A0.85010.04630.84640.025*
C50.71367 (9)0.04506 (17)0.85047 (8)0.0226 (3)
H5A0.70910.09290.90590.027*
C60.63548 (9)0.00242 (17)0.80602 (8)0.0225 (3)
H6A0.57890.02110.83170.027*
C7A0.72490 (8)0.09073 (15)0.68958 (7)0.0174 (3)
C70.64006 (8)0.06651 (16)0.72522 (7)0.0196 (3)
H7A0.58740.09650.69480.024*
C80.89050 (8)0.22630 (16)0.53244 (7)0.0185 (3)
H8A0.85610.27280.48690.022*
C90.98920 (8)0.22526 (15)0.52537 (7)0.0187 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0159 (5)0.0298 (5)0.0179 (4)0.0013 (3)0.0019 (3)0.0022 (3)
C10.0171 (6)0.0170 (5)0.0175 (5)0.0003 (4)0.0000 (4)0.0030 (4)
C20.0160 (6)0.0176 (5)0.0180 (6)0.0003 (4)0.0013 (4)0.0025 (4)
O20.0159 (4)0.0374 (5)0.0240 (5)0.0006 (4)0.0015 (3)0.0062 (4)
O30.0158 (5)0.0344 (5)0.0207 (5)0.0002 (4)0.0022 (3)0.0039 (4)
C3A0.0198 (6)0.0152 (5)0.0186 (6)0.0007 (4)0.0007 (4)0.0037 (4)
C30.0168 (6)0.0209 (6)0.0186 (6)0.0001 (5)0.0014 (4)0.0005 (4)
C40.0242 (6)0.0189 (6)0.0185 (6)0.0003 (5)0.0040 (5)0.0015 (4)
C50.0316 (7)0.0201 (6)0.0162 (6)0.0016 (5)0.0024 (5)0.0004 (4)
C60.0236 (6)0.0216 (6)0.0222 (6)0.0023 (5)0.0057 (5)0.0013 (5)
C7A0.0191 (6)0.0158 (5)0.0172 (6)0.0001 (4)0.0004 (4)0.0025 (4)
C70.0181 (6)0.0198 (6)0.0210 (6)0.0005 (4)0.0008 (5)0.0015 (4)
C80.0172 (6)0.0204 (6)0.0178 (6)0.0012 (4)0.0021 (4)0.0010 (4)
C90.0191 (6)0.0184 (6)0.0188 (6)0.0010 (4)0.0006 (5)0.0015 (4)
Geometric parameters (Å, º) top
O1—C11.2288 (15)C3—H3B0.9900
C1—C7A1.4630 (16)C4—C51.3857 (18)
C1—C21.5003 (16)C4—H4A0.9500
C2—C81.3384 (17)C5—C61.4016 (18)
C2—C31.5117 (16)C5—H5A0.9500
O2—C91.2089 (15)C6—C71.3812 (17)
O3—C91.3333 (14)C6—H6A0.9500
O3—H3C0.91 (2)C7A—C71.4016 (17)
C3A—C7A1.3934 (17)C7—H7A0.9500
C3A—C41.3949 (17)C8—C91.4812 (17)
C3A—C31.5118 (16)C8—H8A0.9500
C3—H3A0.9900
O1—C1—C7A128.18 (11)C4—C5—C6121.46 (11)
O1—C1—C2124.75 (10)C4—C5—H5A119.3
C7A—C1—C2107.06 (10)C6—C5—H5A119.3
C8—C2—C1121.46 (10)C7—C6—C5120.54 (12)
C8—C2—C3130.09 (11)C7—C6—H6A119.7
C1—C2—C3108.45 (9)C5—C6—H6A119.7
C9—O3—H3C107.6 (10)C3A—C7A—C7121.85 (11)
C7A—C3A—C4119.81 (11)C3A—C7A—C1109.38 (11)
C7A—C3A—C3111.92 (10)C7—C7A—C1128.74 (11)
C4—C3A—C3128.27 (11)C6—C7—C7A117.85 (12)
C2—C3—C3A103.14 (9)C6—C7—H7A121.1
C2—C3—H3A111.1C7A—C7—H7A121.1
C3A—C3—H3A111.1C2—C8—C9122.10 (11)
C2—C3—H3B111.1C2—C8—H8A118.9
C3A—C3—H3B111.1C9—C8—H8A118.9
H3A—C3—H3B109.1O2—C9—O3123.49 (12)
C5—C4—C3A118.47 (11)O2—C9—C8123.94 (11)
C5—C4—H4A120.8O3—C9—C8112.56 (10)
C3A—C4—H4A120.8
O1—C1—C2—C80.14 (17)C4—C3A—C7A—C1177.93 (10)
C7A—C1—C2—C8179.12 (10)C3—C3A—C7A—C12.11 (13)
O1—C1—C2—C3179.88 (11)O1—C1—C7A—C3A178.34 (11)
C7A—C1—C2—C30.62 (12)C2—C1—C7A—C3A0.89 (12)
C8—C2—C3—C3A177.97 (12)O1—C1—C7A—C70.2 (2)
C1—C2—C3—C3A1.73 (11)C2—C1—C7A—C7179.02 (11)
C7A—C3A—C3—C22.38 (13)C5—C6—C7—C7A0.42 (17)
C4—C3A—C3—C2177.65 (11)C3A—C7A—C7—C60.40 (17)
C7A—C3A—C4—C51.07 (17)C1—C7A—C7—C6178.32 (11)
C3—C3A—C4—C5178.89 (11)C1—C2—C8—C9179.68 (10)
C3A—C4—C5—C61.06 (18)C3—C2—C8—C90.64 (19)
C4—C5—C6—C70.31 (18)C2—C8—C9—O20.52 (18)
C4—C3A—C7A—C70.36 (17)C2—C8—C9—O3179.45 (10)
C3—C3A—C7A—C7179.61 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3C···O1i0.91 (2)1.78 (2)2.6952 (12)177.7 (16)
C4—H4A···O2ii0.952.563.2584 (15)131
C5—H5A···O1iii0.952.503.4531 (15)180
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+2, y, z+3/2; (iii) x, y, z+1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds