Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C10H11NO2, was synthesized from 2′-amino­acetophenone in acetic anhydride. In the mol­ecular structure, an intra­molecular N—H...O hydrogen bond [H...O = 1.893 (18) Å] appears to affect the overall planar conformation of the mol­ecule.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536806013560/lh2034sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536806013560/lh2034Isup2.hkl
Contains datablock I

CCDC reference: 608445

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.048
  • wR factor = 0.118
  • Data-to-parameter ratio = 13.2

checkCIF/PLATON results

No syntax errors found



Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR') is < 0.90 Tmin and Tmax reported: 0.809 0.975 Tmin(prime) and Tmax expected: 0.962 0.976 RR(prime) = 0.842 Please check that your absorption correction is appropriate. PLAT061_ALERT_3_C Tmax/Tmin Range Test RR' too Large ............. 0.84
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis RED (Oxford Diffraction, 2005); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

N-(2-acetylphenyl)acetamide top
Crystal data top
C10H11NO2F(000) = 376
Mr = 177.20Dx = 1.265 Mg m3
Monoclinic, P21/cMelting point: 349 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.765 (7) ÅCell parameters from 5840 reflections
b = 8.699 (7) Åθ = 3.8–32.9°
c = 15.805 (13) ŵ = 0.09 mm1
β = 119.35 (7)°T = 298 K
V = 930.6 (14) Å3Needle, orange
Z = 40.43 × 0.31 × 0.27 mm
Data collection top
Oxford Diffraction Sapphire3
diffractometer
1639 independent reflections
Radiation source: Enhance (Mo) X-ray Source1019 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 16.1790 pixels mm-1θmax = 25.0°, θmin = 3.8°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2005)'
k = 1010
Tmin = 0.809, Tmax = 0.975l = 1818
19878 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 0.93 w = 1/[σ2(Fo2) + (0.0807P)2]
where P = (Fo2 + 2Fc2)/3
1639 reflections(Δ/σ)max < 0.001
124 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.26 e Å3
Special details top

Experimental. Spectroscopic analysis: Rf = 0.46 (Al2O3, 80% hexanes/20% ethyl acetate); m.p. 349 K; IR (nujol, ν, cm-1): 3222, 3065, 1687, 1652, 1584, 1529, 1454, 1251, 765, 723; 1H NMR (400 MHz, CDCl3, δ, p.p.m.): 11.706 (s, 1H), 8.735 (dd, 1H, J = 8.3 and 0.9 Hz), 7.888 (dd, 1H, J = 7.8 and 1.4 Hz), 7.546 (dt, 1H, J = 8.3 and 1.4 Hz), 7.104 (dt, 1H, J = 7.8 and 0.9 Hz), 2.661 (s, 3H), 2.222 (s, 3H); 13C NMR (400 MHz, CDCl3, δ, p.p.m.): 202.94, 169.96, 141.09, 135.26, 131.67, 122.39, 121.78, 120.83, 28.72, 25.69; UV–Vis (CH2Cl2; λmax, logε): 326 nm, 3.72; EI–MS calculated for C10H11NO2: M+ 177; found: 177.

During model refinement, H atoms bonded to C atoms were placed in calculated postions with C—H = 0.93 or C—H = 0.96 Å (for methyl groups) and included in the refinement in a riding-model approximation with Uiso(H) = either 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. The H atom bonded to N was refined independently with an isotropic displacement parameter.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.44758 (18)0.62062 (15)1.16119 (8)0.0760 (4)
C20.3075 (2)0.69817 (19)1.10181 (12)0.0564 (5)
C10.2635 (3)0.8482 (2)1.13399 (15)0.0837 (6)
H1A0.36480.87011.19920.126*
H1B0.13800.84181.13180.126*
H1C0.25960.92881.09160.126*
C30.1809 (2)0.64701 (18)0.99938 (10)0.0491 (4)
C40.0316 (2)0.7457 (2)0.93336 (11)0.0636 (5)
H40.01130.83910.95570.076*
C50.0850 (2)0.7088 (2)0.83715 (13)0.0733 (6)
H50.18310.77590.79530.088*
C60.0546 (3)0.5712 (3)0.80362 (12)0.0744 (6)
H60.13090.54680.73820.089*
C70.0878 (2)0.4684 (2)0.86553 (11)0.0629 (5)
H70.10500.37550.84150.075*
C80.2056 (2)0.50359 (18)0.96393 (10)0.0488 (4)
N10.35145 (18)0.40136 (16)1.02846 (10)0.0521 (4)
C90.3767 (2)0.2500 (2)1.01831 (12)0.0581 (4)
O20.2685 (2)0.17495 (16)0.94641 (10)0.1004 (5)
C100.5472 (3)0.1773 (2)1.10576 (12)0.0672 (5)
H10A0.50740.15281.15290.101*
H10B0.65620.24781.13360.101*
H10C0.58660.08501.08650.101*
H10.423 (2)0.443 (2)1.0867 (12)0.064 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0757 (8)0.0732 (9)0.0541 (7)0.0048 (6)0.0124 (6)0.0073 (6)
C20.0643 (11)0.0505 (10)0.0561 (10)0.0087 (8)0.0308 (9)0.0010 (8)
C10.1073 (16)0.0580 (12)0.0802 (13)0.0036 (11)0.0415 (12)0.0104 (10)
C30.0458 (9)0.0539 (10)0.0489 (9)0.0031 (7)0.0241 (7)0.0052 (7)
C40.0600 (10)0.0667 (12)0.0662 (11)0.0067 (9)0.0326 (9)0.0126 (9)
C50.0542 (11)0.0897 (15)0.0648 (12)0.0091 (10)0.0203 (9)0.0228 (11)
C60.0625 (12)0.0962 (16)0.0466 (9)0.0153 (11)0.0129 (9)0.0056 (10)
C70.0659 (11)0.0677 (12)0.0480 (9)0.0113 (9)0.0224 (8)0.0037 (8)
C80.0441 (8)0.0555 (10)0.0472 (8)0.0071 (7)0.0226 (7)0.0034 (7)
N10.0562 (8)0.0490 (9)0.0459 (8)0.0035 (6)0.0210 (7)0.0009 (6)
C90.0623 (10)0.0544 (11)0.0608 (10)0.0014 (8)0.0328 (9)0.0051 (9)
O20.1082 (11)0.0686 (9)0.0853 (10)0.0103 (8)0.0171 (8)0.0232 (8)
C100.0752 (12)0.0581 (11)0.0718 (11)0.0057 (9)0.0387 (10)0.0094 (9)
Geometric parameters (Å, º) top
O1—C21.232 (2)C6—C71.385 (3)
C2—C31.492 (3)C6—H60.9300
C2—C11.500 (3)C7—C81.398 (3)
C1—H1A0.9600C7—H70.9300
C1—H1B0.9600C8—N11.408 (2)
C1—H1C0.9600N1—C91.352 (2)
C3—C41.409 (2)N1—H10.888 (17)
C3—C81.419 (2)C9—O21.220 (2)
C4—C51.373 (3)C9—C101.506 (3)
C4—H40.9300C10—H10A0.9600
C5—C61.375 (3)C10—H10B0.9600
C5—H50.9300C10—H10C0.9600
O1—C2—C3121.95 (17)C7—C6—H6119.4
O1—C2—C1118.75 (17)C6—C7—C8120.34 (19)
C3—C2—C1119.29 (16)C6—C7—H7119.8
C2—C1—H1A109.5C8—C7—H7119.8
C2—C1—H1B109.5C7—C8—N1121.55 (17)
H1A—C1—H1B109.5C7—C8—C3119.36 (14)
C2—C1—H1C109.5N1—C8—C3119.08 (14)
H1A—C1—H1C109.5C9—N1—C8129.88 (15)
H1B—C1—H1C109.5C9—N1—H1118.0 (11)
C4—C3—C8117.71 (15)C8—N1—H1111.4 (11)
C4—C3—C2119.17 (17)O2—C9—N1123.91 (17)
C8—C3—C2123.11 (14)O2—C9—C10121.64 (18)
C5—C4—C3122.30 (19)N1—C9—C10114.40 (15)
C5—C4—H4118.8C9—C10—H10A109.5
C3—C4—H4118.8C9—C10—H10B109.5
C4—C5—C6119.05 (17)H10A—C10—H10B109.5
C4—C5—H5120.5C9—C10—H10C109.5
C6—C5—H5120.5H10A—C10—H10C109.5
C5—C6—C7121.19 (17)H10B—C10—H10C109.5
C5—C6—H6119.4
O1—C2—C3—C4175.63 (15)C6—C7—C8—C31.3 (2)
C1—C2—C3—C44.4 (2)C4—C3—C8—C72.4 (2)
O1—C2—C3—C83.1 (2)C2—C3—C8—C7176.39 (14)
C1—C2—C3—C8176.83 (14)C4—C3—C8—N1179.00 (13)
C8—C3—C4—C51.5 (2)C2—C3—C8—N12.3 (2)
C2—C3—C4—C5177.30 (14)C7—C8—N1—C916.6 (2)
C3—C4—C5—C60.5 (3)C3—C8—N1—C9164.75 (14)
C4—C5—C6—C71.6 (3)C8—N1—C9—O20.0 (3)
C5—C6—C7—C80.7 (3)C8—N1—C9—C10177.64 (14)
C6—C7—C8—N1179.94 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.888 (17)1.893 (18)2.657 (2)143.1 (15)
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds