Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structures of three 5-alkenyl-2-aryl­thieno[3,2-b]thio­phenes, namely 3,6-di­bromo-5-(4-tert-butyl­styr­yl)-2-(naph­thalen-1-yl)thieno[3,2-b]thio­phene, C28H22Br2S2, (I), 3,6-di­bromo-5-(4-methyl­styr­yl)-2-(naphthalen-1-yl)thieno[3,2-b]thio­phene, C25H16Br2S2, (II), and 3,6-di­bromo-2-(4-tert-butyl­phen­yl)-5-(4-methyl­styr­yl)thieno[3,2-b]thio­phene, C25H22Br2S2, (III), have been determined in order to evaluate the geometry of the mol­ecules. The π-conjugated system containing the thieno[3,2-b]thio­phene skeleton, the ethyl­ene bridge and the phenyl rings is almost planar. The aromatic ring directly attached to the thieno[3,2-b]thio­phene moiety is not coplanar with the thieno[3,2-b]thio­phene moiety itself due to steric hindrance of the bromo substituent. The crystal packings are characterized by π–π stacking [only for (II)] and C—Br...π inter­actions. The long axes of the mol­ecules in (I) are oriented in two directions; for the two other structures the long axis is oriented in one direction only.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614018683/lg3143sup1.cif
Contains datablocks I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614018683/lg3143Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614018683/lg3143IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614018683/lg3143IIIsup4.hkl
Contains datablock III

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614018683/lg3143Isup5.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614018683/lg3143IIsup6.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614018683/lg3143IIIsup7.cml
Supplementary material

CCDC references: 1019785; 1019786; 1019787

Introduction top

In the last decade, scientists have been focusing on the development of organic π-conjugated molecules for application in electronic and photonic devices due to their ability to afford high operating speeds, large device densities, low manufacture cost and large-area flexible circuits. Fused thio­phenes are the core structures in many p-type organic semiconductors, low band-gap conjugated oligomers and polymers, photovoltaic devices, dye-sensitizer solar cells and optical materials (Deng et al., 2011; Ito et al., 2013; Kim et al., 2014; Li et al., 2013; Meager et al., 2013). In 2007, Tokiyoshi and co-workers have reported highly crystalline thin films of liquid-crystalline poly[2,5-bis­(3-tetra­decyl­thio­phene-2-yl)thieno[3,2-b]thio­phene] with mobility of up to 0.44 cm2 V-1 s-1 (Tokiyoshi et al., 2007). Very recently, new D-π-A organic dyes developed by incorporating a thieno[3,2-b]thio­phene moiety as a π-bridge for application in dye-sensitized solar cells (DSSCs) exhibited a remarkable long-term stability and high conversion efficiency (η = 7.00%) comparable to that of the conventional Ru-based dye N719 (η = 7.24%) under the same condition (Lee et al., 2014). Materials containing thieno[3,2-b]thio­phene may increase the electronic transport between neighbouring molecules due to inter­molecular S···S inter­actions. In addition, the introduction of substituents into the core structure of materials may change electronic properties, solubility as well as molecular packing. The high potential application of thieno[3,2-b]thio­phene in electronic materials prompted us to develop an efficient process for the functionalization of thieno[3,2-b]thio­phene via a site-selective palladium(0)-catalyzed Suzuki reaction (Miyaura & Suzuki, 1995; Nicolaou et al., 2005) of tetra­bromo­thieno[3,2-b]thio­phene (Nguyen et al., 2014). In this study, three 5-alkenyl-2-aryl­thieno[3,2-b]thio­phenes, namely 3,6-di­bromo-5-(4-tert-butyl­styryl)-2-(naphthalen-1-yl)thieno[3,2-b]thio­phene, (I), 3,6-di­bromo-5-(4-methyl­styryl)-2-(naphthalen-1-yl)thieno[3,2-b]thio­phene, (II), and 3,6-di­bromo-2-(4-tert-butyl­phenyl)-5-(4-methyl­styryl)thieno[3,2-b]thio­phene, (III), were synthesized by sequential Suzuki and Heck cross-coupling reactions (Baletskaya & Cheprakov, 2000; Nicolaou et al., 2005) and structurally investigated by NMR and single-crystal X-ray diffraction.

Experimental top

Synthesis and crystallization top

A general procedure for the synthesis of 2-aryl-3,5,6-tri­bromo­thieno[3,2-b]thio­phenes as given by Nguyen et al. (2014) was used to synthesize 2,3,6-tri­bromo-5-(naphthalen-1-yl)thieno[3,2-b]thio­phene, (1a), and 2,3,6-tri­bromo-5-(4-tert-butyl­phenyl)­thieno[3,2-b]thio­phene, (1b.

General procedure for the synthesis of 5-alkenyl-2-aryl-3,6-di­bromo­thieno[3,2-b]thio­phenes (I)–(III) top

Di­methyl­formamide (DMF, 4 ml) was deaerated and saturated with argon by exchanging between vacuum and a stream of argon (× 3). Pd(OAc)2 (0.1 equivalents) and P(Cy)3 (0.2 equivalents) were dissolved in this argon saturated solvent. The resulting brown–yellow solution was stirred at room temperature for a further 30 min to produce the catalyst. 2-Aryl-3,5,6-tri­bromo­thieno[3,2-b]thio­phene, (1a)/(1b) (1.0 equivalent), Na2CO3 (6.0 equivalents) and the alkene (6.0–9.0 equivalents) were added to the solution of the catalyst under a stream of argon. The resulting solution was heated at 363 K with stirring under an argon atmosphere. The progress of the reaction was monitored by thin-layer chromatography (TLC; 100% hexane). When the starting material was completely consumed as indicated by TLC (about 20–24 h), the brownish mixture was allowed to cool to room temperature and filtered to remove the brown precipitate. The filtrate was diluted with ethyl acetate, washed with water (× 3) and dried over anhydrous Na2SO4. The solvent was removed under reduced pressure by rotary evaporation and the residue was purified by SiO2 column chromatography (100% hexane) to give the 5-alkenyl-2-aryl-3,6-di­bromo­thieno[3,2-b]thio­phene.

Spectroscopic data for 3,6-di­bromo-5-(4-tert-butyl­styryl)-2-(naphthalen-1-yl)thieno[3,2-b]thio­phene, (I) top

Starting from (1a) (63 mg, 0.125 mmol) and 4-tert-butyl­styrene (120 mg, 0.75 mmol), (I) was isolated (yield: 20 mg, 27%; m.p. 490–491 K) as an orange solid. 1H NMR (500 MHz, CDCl3): δ 7.97 (d, J = 8.0 Hz, 1H, Ar), 7.93 (d, J = 8.0 Hz, 1H, Ar), 7.84 (d, J = 7.5 Hz, 1H, Ar), 7.54 (m, 6H, Ar), 7.41 (d, J = 7.5 Hz, 2H, Ar), 7.32 (d, J = 16.0 Hz, 1H, trans-alkene), 7.07 (d, J = 16.0 Hz, 1H, trans-alkene), 1.35 (s, 9H, tert-butyl). 13C NMR (125 MHz, CDCl3): δ 31.2 (CH3), 34.8, 103.0, 103.9, 119.6, 125.1, 125.8, 125.9, 126.3, 126.5, 126.8, 128.4, 129.7, 130.0, 130.8, 131.9, 133.5, 133.6, 136.6, 138.4, 139.1, 139.4, 151.8. IR (KBr) (ν, cm-1): 3064 (w), 2923 (s), 2866 (m), 1635 (m), 1591 (w), 1500 (w), 617 (m), 548 (s).

Spectroscopic data for 3,6-di­bromo-5-(4-methyl­styryl)-2-(naphthalen-1-yl)thieno[3,2-b]thio­phene, (II) top

Starting from (1a) (63 mg, 0.125 mmol) and 4-methyl­styrene (133 mg, 1.125 mmol), (II) was obtained (yield: 15 mg, 22%; m.p. 495–496 K) as a yellow solid. 1H NMR (500 MHz, CDCl3): δ 7.96 (d, J = 7.5 Hz, 1H, Ar), 7.93 (d, J = 9.0 Hz, 1H, Ar), 7.85 (d, J = 9.0 Hz, 1H, Ar), 7.53 (m, 4H, Ar), 7.45 (d, J = 8.0 Hz, 2H, Ar), 7.32 (d, J = 16.0 Hz, 1H, trans-alkene), 7.19 (d, J = 7.5 Hz, 2H, Ar), 7.05 (d, J = 16.0 Hz, 1H, trans-alkene), 2.37 (s, 3H, CH3). 13C NMR (125 MHz, CDCl3): δ 21.3 (CH3), 102.9, 103.9, 119.3, 125.0; 125.9, 126.3, 126.7, 126.8, 128.4, 129.6, 129.7, 130.0, 130.9, 131.9, 133.5, 133.6, 136.6, 138.4, 138.6, 139.1, 139.3. IR (KBr) (ν, cm-1): 3050 (w), 2929 (m), 1626 (s), 1546 (m), 1499 (s), 773 (s), 647 (s), 531 (s).

Spectroscopic data for 3,6-di­bromo-2-(4-tert-butyl­phenyl)-5-(4-methyl­styryl)thieno[3,2-b]thio­phene, (III) top

Starting from (1b) (64 mg, 0,125 mmol) and 4-methyl­styrene (133 mg, 1.125 mmol), (III) was obtained as a yellow solid (yield: 13 mg, yield 18%; m.p. 493–494 K). 1H NMR (500 MHz, CDCl3): δ 7.63 (d, J = 8.5 Hz, 2H, Ar), 7.46 (d, J = 8.5 Hz, 2H, Ar), 7.40 (d, J = 8.0 Hz, 2H, Ar), 7.24 (d, J = 16.0 Hz, 1H, trans-alkene), 7.16 (d, J = 7.5 Hz, 2H, Ar), 6.97 (d, J = 16.0 Hz, 1H, trans-alkene), 2.36 (s, 3H, CH3), 1.35 (s, 9H, tert-Butyl). 13C NMR (125 MHz, CDCl3): δ 21.3, 31.2, 34.7, 99.9, 103.0, 119.4, 125.7, 126.6, 128.5, 129.5, 129.9, 130.6, 133.6, 137.7, 137.8, 138.4, 138.8, 140.1, 151.9. IR (KBr) (ν, cm-1): 3060 (w), 2924 (s), 1619 (w), 1520 (w), 1462 (w), 543 (s).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were placed in idealized positions and refined in riding mode, with Uiso(H) values assigned as 1.2 times Ueq of the parent atoms (1.5 times for methyl groups) and with C—H distance of 0.95 (aromatic), 0.98 (methyl) and 0.99 Å (methyl­ene).

Results and discussion top

All three title compounds, (I)–(III), were characterized by spectroscopic methods (see Experimental). In the 1H NMR spectra of (I), (II) and (III), it is easy to recognize the signals of the two vicinal olefinic H atoms of the ethyl­ene bridge at about 7.05–7.16 and 7.24–7.23 p.p.m. The splitting of the signals and the typically high coupling constants (16.0 Hz) of these two protons revealed that the cross-coupling happened selectively on the terminal end of the vinyl group, resulting in the formation of trans-alkenes. The regioselectivity of the Suzuki and Heck reactions of 3,5,6-tri­bromo­thieno[3,2-b]thio­phene, (1), however, can only be clarified through single-crystal X-ray diffraction analysis.

The molecular structures of (I)–(III) are shown in Fig. 1. The bond lengths and angles are in good agreement with the average values in the Cambridge Structural Database (CSD, Version 5.35, February 2014; Allen, 2002). The thieno[3,2-b]thio­phene rings are planar, as illustrated by the dihedral angles between the planes of the thio­phene rings, viz. 0.58 (9), 1.29 (12) and 1.74 (10)° for (I), (II) and (III), respectively. In the CSD, this angle ranges between 0.0 and 7.2° and is not related to the substitution pattern [in 3,6-di­bromo-2,5-bis­(thio­phen-2-yl)thieno[3,2-b]thio­phene (refcode WEXBEI; Liu et al., 2013), the central thieno[3,2-b]thio­phene is planar due to the presence of an inversion centre].

In order to enlarge the π-conjugated system of thio­phene, aromatic rings were introduced onto the thieno[3,2-b]thio­phene core structure by sequential Suzuki and Heck cross-coupling reactions. In the resulting compounds, the regioselectivity occured at the C-2 and C-5 atoms at two opposite sides of the thieno[3,2-b]thio­phene ring due to the electron deficiency at these positions.

In all three title compounds, the phenyl fragments attached to the thieno[3,2-b]thio­phene skeleton via an ethyl­ene bridge, and the thieno[3,2-b]thio­phene ring itself make an angle of about 10°. The dihedral angle between these mean planes is 14.05 (7)° in (I), 10.04 (10)° in (II) and 10.09 (8)° in (III), illustrating that π-conjugation is still favourable due to the ethyl­ene bridges. However, in the case of the tert-butyl group in (I), the dihedral angle is slightly larger. The CSD only lists three entries containing a thieno[3,2-b]thio­phene skeleton and a phenyl ring linked to each other via an ethyl­ene bridge [2,2'-(bi­phenyl-4,4'-diyldiethene-2,1-diyl)bis­(thieno[3,2-b]thio­phene) (refcode ARIFEN; Li et al., 2011), 2,6-bis­(2-phenyl­vinyl)­bis­thieno[3,2-b:2',3'-d]thio­phene (refcode GURQAM; Liu et al., 2010) and 2,6-bis­(2-phenyl­vinyl)­thieno[3,2-b]thieno[2',3':4,5]thieno[2,3-d]thio­phene (refcode GURQEQ; Liu et al., 2010)]. In each case, the angle between the mean planes through both planes is less than 10°. In GURQAM and GURQEQ, the thieno[3,2-b]thio­phene skeleton is further extended to bis­thieno[3,2-b:2',3'-d]thio­phene and thieno[3,2-b]thieno[2',3':4,5]thieno[2,3-d]thio­phene, respectively. Also in ARIFEN, no substituents are present on the conjugated system. As expected, the stereochemistry around the ethyl­ene bridge is always E. The aromatic rings directly connected to the thieno[3,2-b]thio­phene moiety by the Suzuki reaction, show no coplanarity with the rest of the molecule. In (I) and (II), the naphthalene rings are rotated out of the plane of the thieno[3,2-b]thio­phene ring by dihedral angles of 65.77 (5) and 52.68 (7)°, respectively. This rotation reduces the repulsion between atoms Br10···H31 and S6···H24 in (I) and between atoms Br10···H29 and S6···H21 in (II). The dihedral angle between the plane of the thieno[3,2-b]thio­phene system and that of the smaller phenyl ring in (III) is reduced to 41.49 (8)°, which correlates well with the related compounds (Liu et al., 2013). However, the tert-butyl substituent makes the tert-butyl­phenyl group slightly bent. Thus, the angles between the C20—C7 and C26—C23 bonds and the benzene ring are 6.30 (14) and 6.48 (13)°, respectively.

The packings of (I) and (III) show no ππ stacking, although they consist of a number of aromatic moieties. However, compound (II) displays ππ stacking inter­actions between naphthalene rings [Cg1···Cg2i = 3.6951 (16) Å; Cg1 and Cg2 are the centroids of the C20–C25 and C24–C29 rings, respectively; symmetry code: (i) x+1, y, z; Fig. 2]. This could be due to the absence of the tert-butyl group, allowing a closer molecule arrangement.

All three title structures show to a certain extent C—Br···π inter­actions. This inter­action is most favourable in (I) [C8—Br10···Cg3ii = 3.5695 (10) Å, C3—Br9···Cg4iii = 3.5412 (10) Å and C3—Br9···Cg3i = 3.8651 (11) Å; Cg3 and Cg4 are the centroids of the C13–C18 and S1/C2–C5 rings, respectively; symmetry codes: (ii) -x, y+1/2, -z+3/2; (iii) -x, -y+2, -z+1; Fig. 3]. The C—Br···π inter­actions are less prominent present in the two other structures [C3—Br9···Cg5iv = 3.9496 (11) Å for (II) and C3—Br9···Cg6v = 3.8542 (10) Å for (III); Cg5 and Cg6 are the centroids of the S1/C2—C5 and C4–C5/S6/C7–C8 rings, respectively; symmetry codes: (iv) x-1, y, z; (v) -x+1, -y+1, -z+1; Figs. 4 and 5]. In the case of (I), the long axis of the molecules is oriented in two directions, viz. [210] and [2 10]. For the two other structures, the long axis is oriented in only one direction, viz. [031] for (II) and [110] for (III). Possible inter­molecular S···S inter­actions, which may influence the electronic transport between neighbouring molecules, are only observed for (I). However, this inter­action is weak [S6···S6vi = 3.819 Å; symmetry code: (vi) -x+1, -y+2, -z+1].

Related literature top

For related literature, see: Allen (2002); Baletskaya & Cheprakov (2000); Deng et al. (2011); Ito et al. (2013); Kim et al. (2014); Lee et al. (2014); Li et al. (2011, 2013); Liu et al. (2010, 2013); Meager et al. (2013); Miyaura & Suzuki (1995); Nguyen et al. (2014); Nicolaou et al. (2005); Tokiyoshi et al. (2007).

Computing details top

Data collection: CrysAlis PRO, Version 1.171.36.28 (Agilent, 2012) for (I); (CrysAlis PRO; Agilent, 2012) for (II), (III). Cell refinement: CrysAlis PRO, Version 1.171.36.28 (Agilent, 2012) for (I); (CrysAlis PRO; Agilent, 2012) for (II), (III). Data reduction: CrysAlis PRO, Version 1.171.36.28 (Agilent, 2012) for (I); (CrysAlis PRO; Agilent, 2012) for (II), (III). Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for (I); XS (Sheldrick, 2008) for (II), (III). For all compounds, program(s) used to refine structure: XL (Sheldrick, 2008); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Views of the asymmetric units in (a) (I), (b) (II) and (c) (III), showing the atom-labelling schemes. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. ππ stacking (red dotted line) in (II) [Cg1 and Cg2 are the centroids of the C20–C25 and C25–C29 rings, respectively; symmetry code: (i) x+1, y, z.]
[Figure 3] Fig. 3. C—Br···π interactions in (I) [Cg3 and Cg4 are the centroids of the C13–C18 and S1/C2–C5 rings, respectively; symmetry codes: (i) x+1, y, z; (ii) -x, y+1/2, -z+3/2; (iii) -x, -y+2, -z+1.]
[Figure 4] Fig. 4. C—Br···π interactions in (II) [Cg5 is the centroid of the S1/C2–C5 ring; symmetry code: (iv) x-1, y, z.]
[Figure 5] Fig. 5. C—Br···π interactions in (III) [Cg6 is the centroid of the C4–C5/S6/C7–C8 ring; symmetry code: (v) -x+1, -y+1, -z+1.]
(I) 3,6-Dibromo-5-(4-tert-butylstyryl)2-(naphthalen-1-yl)thieno[3,2-b]thiophene top
Crystal data top
C28H22Br2S2F(000) = 1168
Mr = 582.40Dx = 1.594 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.3316 (3) ÅCell parameters from 12479 reflections
b = 16.1749 (6) Åθ = 3.1–29.0°
c = 18.1333 (6) ŵ = 3.53 mm1
β = 96.677 (3)°T = 100 K
V = 2427.13 (15) Å3Prism, orange
Z = 40.3 × 0.15 × 0.15 mm
Data collection top
Agilent SuperNova
diffractometer (Single source at offset, Eos detector)
4962 independent reflections
Radiation source: SuperNova (Mo) X-ray Source4491 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.030
Detector resolution: 15.9631 pixels mm-1θmax = 26.4°, θmin = 2.8°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 2020
Tmin = 0.681, Tmax = 1.000l = 2222
25300 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.051H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.019P)2 + 1.8507P]
where P = (Fo2 + 2Fc2)/3
4962 reflections(Δ/σ)max = 0.002
292 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C28H22Br2S2V = 2427.13 (15) Å3
Mr = 582.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.3316 (3) ŵ = 3.53 mm1
b = 16.1749 (6) ÅT = 100 K
c = 18.1333 (6) Å0.3 × 0.15 × 0.15 mm
β = 96.677 (3)°
Data collection top
Agilent SuperNova
diffractometer (Single source at offset, Eos detector)
4962 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
4491 reflections with I > 2σ(I)
Tmin = 0.681, Tmax = 1.000Rint = 0.030
25300 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.051H-atom parameters constrained
S = 1.04Δρmax = 0.43 e Å3
4962 reflectionsΔρmin = 0.27 e Å3
292 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.00853 (5)0.96982 (3)0.68447 (2)0.01444 (10)
C20.0013 (2)0.91490 (12)0.60029 (10)0.0155 (4)
C30.1292 (2)0.93567 (11)0.56283 (10)0.0147 (4)
C40.2305 (2)0.99653 (11)0.59933 (10)0.0137 (4)
C50.1812 (2)1.02135 (11)0.66578 (10)0.0136 (4)
S60.40170 (5)1.04792 (3)0.58019 (2)0.01574 (10)
C70.4082 (2)1.10340 (11)0.66312 (10)0.0147 (4)
C80.2845 (2)1.08156 (11)0.70254 (10)0.0140 (4)
Br90.16772 (2)0.890916 (11)0.470787 (10)0.01708 (5)
Br100.26100 (2)1.123191 (12)0.797833 (10)0.01786 (6)
C110.1291 (2)0.85885 (12)0.57696 (10)0.0170 (4)
H110.11810.82540.53480.020*
C120.2641 (2)0.84965 (12)0.60935 (10)0.0171 (4)
H120.27500.88360.65120.021*
C130.3968 (2)0.79259 (12)0.58677 (10)0.0167 (4)
C140.5332 (2)0.79350 (12)0.62447 (10)0.0174 (4)
H140.54100.83340.66230.021*
C150.6577 (2)0.73751 (12)0.60799 (10)0.0186 (4)
H150.74880.73970.63500.022*
C160.6528 (2)0.67819 (12)0.55286 (10)0.0169 (4)
C170.5183 (2)0.67923 (14)0.51340 (11)0.0247 (5)
H170.51280.64070.47420.030*
C180.3934 (2)0.73456 (13)0.52972 (11)0.0239 (4)
H180.30380.73330.50180.029*
C190.7904 (2)0.61567 (12)0.53462 (10)0.0188 (4)
C200.9133 (3)0.65201 (15)0.47382 (13)0.0353 (6)
H20A0.99980.61180.46050.053*
H20B0.85930.66470.42990.053*
H20C0.95940.70280.49210.053*
C210.8750 (3)0.59631 (16)0.60343 (12)0.0348 (6)
H21A0.95460.55230.59160.052*
H21B0.92970.64610.61860.052*
H21C0.79460.57830.64400.052*
C220.7260 (3)0.53419 (13)0.50670 (13)0.0306 (5)
H22A0.63760.51400.54250.046*
H22B0.68610.54330.45860.046*
H22C0.81310.49320.50110.046*
C230.5400 (2)1.16410 (12)0.68043 (10)0.0150 (4)
C240.6970 (2)1.13650 (12)0.69203 (10)0.0178 (4)
H240.71781.07880.69050.021*
C250.8273 (2)1.19146 (13)0.70602 (10)0.0208 (4)
H250.93471.17090.71420.025*
C260.7993 (2)1.27443 (13)0.70781 (10)0.0210 (4)
H260.88791.31140.71730.025*
C270.6397 (2)1.30641 (12)0.69573 (10)0.0189 (4)
C280.6092 (3)1.39219 (13)0.69696 (11)0.0238 (4)
H280.69741.42960.70510.029*
C290.4560 (3)1.42220 (13)0.68672 (11)0.0273 (5)
H290.43781.48010.68870.033*
C300.3238 (3)1.36753 (13)0.67316 (11)0.0248 (4)
H300.21691.38890.66580.030*
C310.3483 (2)1.28412 (12)0.67051 (10)0.0194 (4)
H310.25831.24810.66070.023*
C320.5070 (2)1.25076 (12)0.68225 (10)0.0160 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0126 (2)0.0167 (2)0.0141 (2)0.00241 (17)0.00161 (17)0.00025 (17)
C20.0162 (9)0.0146 (9)0.0147 (9)0.0008 (7)0.0022 (7)0.0011 (7)
C30.0160 (9)0.0143 (9)0.0135 (9)0.0010 (7)0.0002 (7)0.0002 (7)
C40.0129 (9)0.0130 (9)0.0151 (9)0.0007 (7)0.0006 (7)0.0010 (7)
C50.0121 (9)0.0142 (9)0.0144 (9)0.0004 (7)0.0007 (7)0.0023 (7)
S60.0153 (2)0.0176 (2)0.0148 (2)0.00484 (18)0.00368 (17)0.00338 (17)
C70.0150 (9)0.0137 (9)0.0148 (9)0.0001 (7)0.0007 (7)0.0010 (7)
C80.0142 (9)0.0147 (9)0.0127 (8)0.0023 (7)0.0004 (7)0.0012 (7)
Br90.01942 (10)0.01777 (10)0.01416 (9)0.00291 (7)0.00246 (7)0.00312 (7)
Br100.01814 (10)0.02115 (10)0.01455 (10)0.00166 (7)0.00306 (7)0.00452 (7)
C110.0170 (9)0.0174 (10)0.0157 (9)0.0030 (8)0.0012 (7)0.0006 (7)
C120.0196 (10)0.0175 (10)0.0136 (9)0.0037 (8)0.0011 (7)0.0004 (7)
C130.0153 (9)0.0189 (10)0.0153 (9)0.0028 (8)0.0014 (7)0.0032 (7)
C140.0186 (10)0.0182 (10)0.0154 (9)0.0008 (8)0.0025 (7)0.0009 (7)
C150.0158 (9)0.0215 (10)0.0190 (10)0.0024 (8)0.0043 (7)0.0019 (8)
C160.0155 (9)0.0190 (10)0.0155 (9)0.0044 (8)0.0014 (7)0.0031 (7)
C170.0256 (11)0.0303 (12)0.0191 (10)0.0100 (9)0.0060 (8)0.0090 (9)
C180.0197 (10)0.0328 (12)0.0209 (10)0.0098 (9)0.0092 (8)0.0049 (9)
C190.0175 (9)0.0211 (10)0.0176 (9)0.0082 (8)0.0017 (8)0.0011 (8)
C200.0265 (12)0.0323 (13)0.0430 (14)0.0126 (10)0.0130 (10)0.0108 (10)
C210.0349 (13)0.0426 (14)0.0286 (12)0.0226 (11)0.0116 (10)0.0054 (10)
C220.0262 (12)0.0225 (12)0.0441 (13)0.0104 (9)0.0078 (10)0.0037 (10)
C230.0169 (9)0.0177 (10)0.0106 (8)0.0034 (7)0.0022 (7)0.0020 (7)
C240.0183 (10)0.0203 (10)0.0149 (9)0.0003 (8)0.0025 (7)0.0021 (7)
C250.0143 (9)0.0287 (11)0.0191 (9)0.0010 (8)0.0009 (8)0.0030 (8)
C260.0197 (10)0.0270 (11)0.0160 (9)0.0100 (8)0.0001 (8)0.0023 (8)
C270.0244 (10)0.0201 (10)0.0119 (9)0.0047 (8)0.0005 (8)0.0017 (7)
C280.0314 (12)0.0198 (10)0.0186 (10)0.0078 (9)0.0037 (8)0.0005 (8)
C290.0415 (13)0.0159 (10)0.0225 (11)0.0004 (9)0.0048 (9)0.0004 (8)
C300.0261 (11)0.0237 (11)0.0231 (10)0.0059 (9)0.0028 (8)0.0012 (8)
C310.0214 (10)0.0196 (10)0.0165 (9)0.0004 (8)0.0003 (8)0.0000 (7)
C320.0200 (9)0.0172 (10)0.0105 (8)0.0019 (8)0.0006 (7)0.0005 (7)
Geometric parameters (Å, º) top
S1—C21.7612 (18)C19—C211.535 (3)
S1—C51.7297 (18)C19—C221.531 (3)
C2—C31.370 (3)C20—H20A0.9800
C2—C111.440 (3)C20—H20B0.9800
C3—C41.411 (2)C20—H20C0.9800
C3—Br91.8809 (18)C21—H21A0.9800
C4—C51.378 (3)C21—H21B0.9800
C4—S61.7205 (18)C21—H21C0.9800
C5—C81.414 (3)C22—H22A0.9800
S6—C71.7467 (18)C22—H22B0.9800
C7—C81.367 (3)C22—H22C0.9800
C7—C231.479 (3)C23—C241.375 (3)
C8—Br101.8858 (17)C23—C321.429 (3)
C11—H110.9500C24—H240.9500
C11—C121.337 (3)C24—C251.403 (3)
C12—H120.9500C25—H250.9500
C12—C131.462 (3)C25—C261.363 (3)
C13—C141.393 (3)C26—H260.9500
C13—C181.400 (3)C26—C271.420 (3)
C14—H140.9500C27—C281.411 (3)
C14—C151.383 (3)C27—C321.424 (3)
C15—H150.9500C28—H280.9500
C15—C161.390 (3)C28—C291.358 (3)
C16—C171.398 (3)C29—H290.9500
C16—C191.536 (3)C29—C301.412 (3)
C17—H170.9500C30—H300.9500
C17—C181.378 (3)C30—C311.366 (3)
C18—H180.9500C31—H310.9500
C19—C201.532 (3)C31—C321.422 (3)
C5—S1—C291.06 (9)C22—C19—C21107.75 (17)
C3—C2—S1110.85 (14)C19—C20—H20A109.5
C3—C2—C11127.75 (17)C19—C20—H20B109.5
C11—C2—S1121.37 (14)C19—C20—H20C109.5
C2—C3—C4113.34 (16)H20A—C20—H20B109.5
C2—C3—Br9124.64 (14)H20A—C20—H20C109.5
C4—C3—Br9122.01 (13)H20B—C20—H20C109.5
C3—C4—S6135.04 (14)C19—C21—H21A109.5
C5—C4—C3112.97 (16)C19—C21—H21B109.5
C5—C4—S6111.99 (14)C19—C21—H21C109.5
C4—C5—S1111.76 (14)H21A—C21—H21B109.5
C4—C5—C8112.68 (16)H21A—C21—H21C109.5
C8—C5—S1135.55 (14)H21B—C21—H21C109.5
C4—S6—C791.04 (9)C19—C22—H22A109.5
C8—C7—S6111.56 (14)C19—C22—H22B109.5
C8—C7—C23130.29 (17)C19—C22—H22C109.5
C23—C7—S6118.15 (13)H22A—C22—H22B109.5
C5—C8—Br10123.73 (13)H22A—C22—H22C109.5
C7—C8—C5112.71 (16)H22B—C22—H22C109.5
C7—C8—Br10123.48 (14)C24—C23—C7119.10 (17)
C2—C11—H11117.1C24—C23—C32119.78 (17)
C12—C11—C2125.86 (18)C32—C23—C7121.08 (17)
C12—C11—H11117.1C23—C24—H24119.2
C11—C12—H12116.7C23—C24—C25121.61 (19)
C11—C12—C13126.51 (18)C25—C24—H24119.2
C13—C12—H12116.7C24—C25—H25120.1
C14—C13—C12119.31 (17)C26—C25—C24119.80 (19)
C14—C13—C18117.22 (17)C26—C25—H25120.1
C18—C13—C12123.45 (17)C25—C26—H26119.5
C13—C14—H14119.3C25—C26—C27120.99 (18)
C15—C14—C13121.42 (18)C27—C26—H26119.5
C15—C14—H14119.3C26—C27—C32119.37 (18)
C14—C15—H15119.2C28—C27—C26121.53 (18)
C14—C15—C16121.54 (17)C28—C27—C32119.10 (19)
C16—C15—H15119.2C27—C28—H28119.4
C15—C16—C17116.90 (17)C29—C28—C27121.17 (19)
C15—C16—C19121.71 (17)C29—C28—H28119.4
C17—C16—C19121.37 (17)C28—C29—H29119.9
C16—C17—H17119.1C28—C29—C30120.1 (2)
C18—C17—C16121.86 (18)C30—C29—H29119.9
C18—C17—H17119.1C29—C30—H30119.7
C13—C18—H18119.5C31—C30—C29120.5 (2)
C17—C18—C13120.99 (18)C31—C30—H30119.7
C17—C18—H18119.5C30—C31—H31119.7
C20—C19—C16108.79 (16)C30—C31—C32120.65 (19)
C20—C19—C21109.38 (18)C32—C31—H31119.7
C21—C19—C16111.17 (16)C27—C32—C23118.45 (17)
C22—C19—C16110.88 (16)C31—C32—C23123.13 (17)
C22—C19—C20108.83 (18)C31—C32—C27118.42 (18)
S1—C2—C3—C41.6 (2)C11—C12—C13—C184.8 (3)
S1—C2—C3—Br9179.68 (10)C12—C13—C14—C15176.21 (18)
S1—C2—C11—C128.7 (3)C12—C13—C18—C17176.4 (2)
S1—C5—C8—C7179.54 (16)C13—C14—C15—C160.4 (3)
S1—C5—C8—Br103.5 (3)C14—C13—C18—C171.9 (3)
C2—S1—C5—C40.83 (14)C14—C15—C16—C171.8 (3)
C2—S1—C5—C8179.7 (2)C14—C15—C16—C19179.73 (18)
C2—C3—C4—C51.0 (2)C15—C16—C17—C182.1 (3)
C2—C3—C4—S6178.48 (16)C15—C16—C19—C2090.7 (2)
C2—C11—C12—C13179.42 (18)C15—C16—C19—C2129.8 (3)
C3—C2—C11—C12169.04 (19)C15—C16—C19—C22149.62 (19)
C3—C4—C5—S10.1 (2)C16—C17—C18—C130.2 (3)
C3—C4—C5—C8179.22 (16)C17—C16—C19—C2087.7 (2)
C3—C4—S6—C7179.9 (2)C17—C16—C19—C21151.8 (2)
C4—C5—C8—C71.6 (2)C17—C16—C19—C2231.9 (3)
C4—C5—C8—Br10175.38 (13)C18—C13—C14—C152.2 (3)
C4—S6—C7—C80.55 (15)C19—C16—C17—C18179.42 (19)
C4—S6—C7—C23179.67 (15)C23—C7—C8—C5178.96 (18)
C5—S1—C2—C31.41 (15)C23—C7—C8—Br104.1 (3)
C5—S1—C2—C11176.66 (16)C23—C24—C25—C260.4 (3)
C5—C4—S6—C70.35 (15)C24—C23—C32—C270.4 (3)
S6—C4—C5—S1179.71 (9)C24—C23—C32—C31179.74 (17)
S6—C4—C5—C81.1 (2)C24—C25—C26—C270.0 (3)
S6—C7—C8—C51.3 (2)C25—C26—C27—C28179.58 (18)
S6—C7—C8—Br10175.67 (10)C25—C26—C27—C320.6 (3)
S6—C7—C23—C2464.6 (2)C26—C27—C28—C29178.76 (18)
S6—C7—C23—C32112.86 (17)C26—C27—C32—C230.8 (3)
C7—C23—C24—C25177.69 (17)C26—C27—C32—C31179.82 (17)
C7—C23—C32—C27177.02 (16)C27—C28—C29—C301.2 (3)
C7—C23—C32—C312.3 (3)C28—C27—C32—C23179.38 (17)
C8—C7—C23—C24115.1 (2)C28—C27—C32—C310.0 (3)
C8—C7—C23—C3267.4 (3)C28—C29—C30—C310.3 (3)
Br9—C3—C4—C5179.76 (13)C29—C30—C31—C320.8 (3)
Br9—C3—C4—S60.2 (3)C30—C31—C32—C23179.75 (18)
C11—C2—C3—C4176.27 (18)C30—C31—C32—C270.9 (3)
C11—C2—C3—Br92.4 (3)C32—C23—C24—C250.2 (3)
C11—C12—C13—C14176.89 (19)C32—C27—C28—C291.0 (3)
(II) 3,6-Dibromo-5-(4-methylstyryl)-2-(naphthalen-1-yl)thieno[3,2-b]thiophene top
Crystal data top
C25H16Br2S2Z = 2
Mr = 540.32F(000) = 536
Triclinic, P1Dx = 1.742 Mg m3
a = 4.1522 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.2861 (14) ÅCell parameters from 11208 reflections
c = 19.6117 (18) Åθ = 3.2–29.0°
α = 106.464 (9)°µ = 4.15 mm1
β = 94.945 (7)°T = 100 K
γ = 93.016 (7)°Prism, yellow
V = 1030.32 (16) Å30.4 × 0.15 × 0.05 mm
Data collection top
Agilent SuperNova
diffractometer (Single source at offset, Eos detector)
4207 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3705 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.043
Detector resolution: 15.9631 pixels mm-1θmax = 26.4°, θmin = 3.1°
ω scansh = 55
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1616
Tmin = 0.455, Tmax = 1.000l = 2424
20862 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0365P)2 + 0.857P]
where P = (Fo2 + 2Fc2)/3
4207 reflections(Δ/σ)max = 0.001
263 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C25H16Br2S2γ = 93.016 (7)°
Mr = 540.32V = 1030.32 (16) Å3
Triclinic, P1Z = 2
a = 4.1522 (3) ÅMo Kα radiation
b = 13.2861 (14) ŵ = 4.15 mm1
c = 19.6117 (18) ÅT = 100 K
α = 106.464 (9)°0.4 × 0.15 × 0.05 mm
β = 94.945 (7)°
Data collection top
Agilent SuperNova
diffractometer (Single source at offset, Eos detector)
4207 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
3705 reflections with I > 2σ(I)
Tmin = 0.455, Tmax = 1.000Rint = 0.043
20862 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.06Δρmax = 0.65 e Å3
4207 reflectionsΔρmin = 0.49 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br90.35388 (6)0.232660 (19)0.371943 (13)0.01906 (9)
Br100.39181 (6)0.545455 (19)0.192448 (12)0.01776 (8)
C20.1827 (6)0.2195 (2)0.23021 (13)0.0158 (5)
C30.1770 (6)0.27901 (19)0.30016 (13)0.0154 (5)
C40.0242 (6)0.38101 (19)0.31388 (13)0.0158 (5)
C50.0795 (6)0.4009 (2)0.25420 (13)0.0156 (5)
C70.2307 (6)0.56396 (19)0.33719 (13)0.0153 (5)
C80.2226 (6)0.5042 (2)0.26721 (13)0.0156 (5)
C110.3148 (6)0.1121 (2)0.19773 (14)0.0168 (5)
H110.43340.07980.22630.020*
C120.2850 (6)0.0541 (2)0.13097 (14)0.0186 (5)
H120.16710.08700.10260.022*
C130.4148 (6)0.05453 (19)0.09730 (13)0.0156 (5)
C140.5996 (6)0.1120 (2)0.13151 (13)0.0178 (5)
H140.65020.07920.17860.021*
C150.7111 (7)0.2157 (2)0.09825 (14)0.0195 (6)
H150.83390.25330.12320.023*
C160.6465 (6)0.26626 (19)0.02888 (13)0.0175 (5)
C170.4658 (7)0.2095 (2)0.00600 (14)0.0194 (6)
H170.42010.24210.05350.023*
C180.3510 (6)0.1059 (2)0.02740 (13)0.0184 (5)
H180.22640.06880.00250.022*
C190.7751 (7)0.3789 (2)0.00734 (15)0.0244 (6)
H19A0.73120.42160.02530.037*
H19B0.66800.40650.05070.037*
H19C1.00950.38190.02010.037*
C200.3603 (6)0.67262 (19)0.37607 (13)0.0153 (5)
C210.5603 (6)0.6898 (2)0.43878 (13)0.0166 (5)
H210.60500.63200.45660.020*
C220.6998 (7)0.7911 (2)0.47697 (13)0.0197 (6)
H220.83680.80100.52010.024*
C230.6391 (7)0.8751 (2)0.45228 (13)0.0191 (6)
H230.74420.94250.47680.023*
C240.4210 (6)0.8628 (2)0.39039 (13)0.0167 (5)
C250.2769 (6)0.76085 (19)0.35194 (13)0.0146 (5)
C260.3404 (7)0.9507 (2)0.36704 (14)0.0206 (6)
H260.44261.01840.39190.025*
C270.1192 (7)0.9397 (2)0.30972 (14)0.0226 (6)
H270.06650.99950.29480.027*
C280.0321 (7)0.8394 (2)0.27242 (14)0.0213 (6)
H280.18880.83190.23270.026*
C290.0448 (6)0.7527 (2)0.29288 (13)0.0168 (5)
H290.05940.68570.26700.020*
S10.00132 (16)0.29277 (5)0.17990 (3)0.01613 (14)
S60.05858 (16)0.48915 (5)0.38773 (3)0.01611 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br90.02471 (17)0.01620 (14)0.01796 (14)0.00009 (11)0.00276 (11)0.00779 (10)
Br100.02196 (16)0.01626 (14)0.01408 (13)0.00284 (10)0.00263 (10)0.00339 (10)
C20.0156 (14)0.0148 (12)0.0180 (12)0.0015 (10)0.0012 (10)0.0063 (10)
C30.0191 (14)0.0136 (12)0.0153 (12)0.0022 (10)0.0004 (10)0.0072 (10)
C40.0173 (14)0.0137 (12)0.0160 (12)0.0034 (10)0.0007 (10)0.0036 (10)
C50.0153 (13)0.0151 (12)0.0149 (12)0.0024 (10)0.0002 (10)0.0024 (10)
C70.0179 (14)0.0131 (12)0.0157 (12)0.0014 (10)0.0024 (10)0.0055 (10)
C80.0173 (14)0.0155 (12)0.0145 (12)0.0008 (10)0.0000 (10)0.0057 (10)
C110.0152 (13)0.0156 (13)0.0207 (13)0.0004 (10)0.0012 (10)0.0080 (10)
C120.0181 (14)0.0175 (13)0.0207 (13)0.0003 (11)0.0004 (11)0.0074 (11)
C130.0149 (13)0.0137 (12)0.0172 (12)0.0019 (10)0.0019 (10)0.0038 (10)
C140.0219 (15)0.0158 (13)0.0151 (12)0.0024 (11)0.0008 (10)0.0035 (10)
C150.0233 (15)0.0157 (13)0.0207 (13)0.0015 (11)0.0004 (11)0.0085 (10)
C160.0179 (14)0.0136 (12)0.0188 (13)0.0026 (10)0.0038 (10)0.0026 (10)
C170.0231 (15)0.0168 (13)0.0169 (12)0.0031 (11)0.0014 (11)0.0027 (10)
C180.0212 (15)0.0178 (13)0.0167 (12)0.0009 (11)0.0026 (10)0.0060 (10)
C190.0283 (16)0.0137 (13)0.0272 (14)0.0012 (12)0.0017 (12)0.0016 (11)
C200.0171 (14)0.0135 (12)0.0138 (12)0.0009 (10)0.0054 (10)0.0006 (10)
C210.0196 (14)0.0164 (13)0.0146 (12)0.0046 (11)0.0036 (10)0.0049 (10)
C220.0197 (15)0.0226 (14)0.0133 (12)0.0017 (11)0.0008 (10)0.0001 (10)
C230.0191 (14)0.0167 (13)0.0174 (12)0.0044 (11)0.0027 (10)0.0007 (10)
C240.0176 (14)0.0154 (13)0.0165 (12)0.0015 (10)0.0073 (10)0.0018 (10)
C250.0163 (13)0.0139 (12)0.0137 (11)0.0011 (10)0.0045 (10)0.0032 (10)
C260.0264 (16)0.0147 (13)0.0200 (13)0.0010 (11)0.0113 (11)0.0017 (10)
C270.0306 (17)0.0181 (14)0.0247 (14)0.0087 (12)0.0123 (12)0.0114 (11)
C280.0217 (15)0.0247 (14)0.0199 (13)0.0058 (12)0.0058 (11)0.0087 (11)
C290.0172 (14)0.0170 (13)0.0152 (12)0.0002 (10)0.0027 (10)0.0032 (10)
S10.0215 (4)0.0124 (3)0.0129 (3)0.0017 (2)0.0003 (2)0.0019 (2)
S60.0227 (4)0.0121 (3)0.0129 (3)0.0009 (3)0.0025 (2)0.0026 (2)
Geometric parameters (Å, º) top
Br9—C31.877 (2)C17—H170.9500
Br10—C81.880 (2)C17—C181.385 (4)
C2—C31.373 (3)C18—H180.9500
C2—C111.445 (4)C19—H19A0.9800
C2—S11.756 (3)C19—H19B0.9800
C3—C41.409 (4)C19—H19C0.9800
C4—C51.369 (4)C20—C211.378 (4)
C4—S61.721 (2)C20—C251.431 (3)
C5—C81.412 (4)C21—H210.9500
C5—S11.726 (2)C21—C221.407 (4)
C7—C81.373 (3)C22—H220.9500
C7—C201.476 (3)C22—C231.363 (4)
C7—S61.757 (3)C23—H230.9500
C11—H110.9500C23—C241.415 (4)
C11—C121.338 (4)C24—C251.421 (3)
C12—H120.9500C24—C261.415 (4)
C12—C131.458 (4)C25—C291.417 (4)
C13—C141.393 (4)C26—H260.9500
C13—C181.402 (3)C26—C271.358 (4)
C14—H140.9500C27—H270.9500
C14—C151.382 (4)C27—C281.409 (4)
C15—H150.9500C28—H280.9500
C15—C161.392 (4)C28—C291.367 (4)
C16—C171.386 (4)C29—H290.9500
C16—C191.510 (3)
C3—C2—C11128.2 (2)C17—C18—C13121.3 (2)
C3—C2—S1110.50 (19)C17—C18—H18119.3
C11—C2—S1121.31 (19)C16—C19—H19A109.5
C2—C3—Br9124.7 (2)C16—C19—H19B109.5
C2—C3—C4113.3 (2)C16—C19—H19C109.5
C4—C3—Br9122.04 (18)H19A—C19—H19B109.5
C3—C4—S6135.5 (2)H19A—C19—H19C109.5
C5—C4—C3113.2 (2)H19B—C19—H19C109.5
C5—C4—S6111.3 (2)C21—C20—C7118.8 (2)
C4—C5—C8113.4 (2)C21—C20—C25119.0 (2)
C4—C5—S1111.6 (2)C25—C20—C7122.1 (2)
C8—C5—S1135.0 (2)C20—C21—H21119.3
C8—C7—C20133.1 (2)C20—C21—C22121.4 (2)
C8—C7—S6109.98 (19)C22—C21—H21119.3
C20—C7—S6116.85 (18)C21—C22—H22119.9
C5—C8—Br10119.77 (18)C23—C22—C21120.2 (2)
C7—C8—Br10126.8 (2)C23—C22—H22119.9
C7—C8—C5113.4 (2)C22—C23—H23119.7
C2—C11—H11117.1C22—C23—C24120.6 (2)
C12—C11—C2125.8 (2)C24—C23—H23119.7
C12—C11—H11117.1C23—C24—C25119.4 (2)
C11—C12—H12116.7C23—C24—C26120.9 (2)
C11—C12—C13126.6 (2)C26—C24—C25119.6 (2)
C13—C12—H12116.7C24—C25—C20119.1 (2)
C14—C13—C12123.2 (2)C29—C25—C20123.1 (2)
C14—C13—C18117.2 (2)C29—C25—C24117.7 (2)
C18—C13—C12119.6 (2)C24—C26—H26119.5
C13—C14—H14119.4C27—C26—C24121.0 (3)
C15—C14—C13121.3 (2)C27—C26—H26119.5
C15—C14—H14119.4C26—C27—H27120.1
C14—C15—H15119.4C26—C27—C28119.8 (3)
C14—C15—C16121.2 (2)C28—C27—H27120.1
C16—C15—H15119.4C27—C28—H28119.7
C15—C16—C19120.7 (2)C29—C28—C27120.6 (3)
C17—C16—C15118.0 (2)C29—C28—H28119.7
C17—C16—C19121.3 (2)C25—C29—H29119.4
C16—C17—H17119.5C28—C29—C25121.2 (2)
C18—C17—C16121.0 (2)C28—C29—H29119.4
C18—C17—H17119.5C5—S1—C291.37 (12)
C13—C18—H18119.3C4—S6—C791.93 (12)
Br9—C3—C4—C5178.01 (19)C18—C13—C14—C150.9 (4)
Br9—C3—C4—S60.4 (4)C19—C16—C17—C18179.5 (3)
C2—C3—C4—C51.7 (3)C20—C7—C8—Br100.5 (5)
C2—C3—C4—S6179.9 (2)C20—C7—C8—C5178.2 (3)
C2—C11—C12—C13179.7 (2)C20—C7—S6—C4178.9 (2)
C3—C2—C11—C12172.7 (3)C20—C21—C22—C230.1 (4)
C3—C2—S1—C50.4 (2)C20—C25—C29—C28178.8 (2)
C3—C4—C5—C8177.9 (2)C21—C20—C25—C244.6 (4)
C3—C4—C5—S11.4 (3)C21—C20—C25—C29172.6 (2)
C3—C4—S6—C7177.5 (3)C21—C22—C23—C243.7 (4)
C4—C5—C8—Br10178.14 (19)C22—C23—C24—C253.0 (4)
C4—C5—C8—C70.3 (3)C22—C23—C24—C26175.9 (2)
C4—C5—S1—C20.6 (2)C23—C24—C25—C201.1 (4)
C5—C4—S6—C70.9 (2)C23—C24—C25—C29176.2 (2)
C7—C20—C21—C22177.9 (2)C23—C24—C26—C27176.8 (2)
C7—C20—C25—C24177.4 (2)C24—C25—C29—C281.6 (4)
C7—C20—C25—C295.4 (4)C24—C26—C27—C280.4 (4)
C8—C5—S1—C2178.5 (3)C25—C20—C21—C224.1 (4)
C8—C7—C20—C21129.6 (3)C25—C24—C26—C272.1 (4)
C8—C7—C20—C2552.4 (4)C26—C24—C25—C20180.0 (2)
C8—C7—S6—C40.8 (2)C26—C24—C25—C292.7 (4)
C11—C2—C3—Br91.2 (4)C26—C27—C28—C290.8 (4)
C11—C2—C3—C4179.2 (2)C27—C28—C29—C250.1 (4)
C11—C2—S1—C5180.0 (2)S1—C2—C3—Br9178.49 (14)
C11—C12—C13—C141.7 (4)S1—C2—C3—C41.2 (3)
C11—C12—C13—C18177.5 (3)S1—C2—C11—C127.7 (4)
C12—C13—C14—C15178.3 (3)S1—C5—C8—Br102.8 (4)
C12—C13—C18—C17179.0 (2)S1—C5—C8—C7179.4 (2)
C13—C14—C15—C160.9 (4)S6—C4—C5—C80.9 (3)
C14—C13—C18—C170.3 (4)S6—C4—C5—S1179.81 (13)
C14—C15—C16—C170.2 (4)S6—C7—C8—Br10177.24 (15)
C14—C15—C16—C19178.8 (2)S6—C7—C8—C50.4 (3)
C15—C16—C17—C180.5 (4)S6—C7—C20—C2148.1 (3)
C16—C17—C18—C130.4 (4)S6—C7—C20—C25129.9 (2)
(III) 3,6-Dibromo-2-(4-tert-butylphenyl)-5-(4-methylstyryl)thieno[3,2-b]thiophene top
Crystal data top
C25H22Br2S2Z = 2
Mr = 546.37F(000) = 548
Triclinic, P1Dx = 1.633 Mg m3
a = 9.5401 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.1575 (17) ÅCell parameters from 12025 reflections
c = 12.1711 (16) Åθ = 3.1–29.1°
α = 106.933 (13)°µ = 3.85 mm1
β = 98.599 (11)°T = 100 K
γ = 92.192 (13)°Block, yellow
V = 1111.4 (3) Å30.35 × 0.3 × 0.15 mm
Data collection top
Agilent SuperNova
diffractometer (Single source at offset, Eos detector)
4543 independent reflections
Radiation source: SuperNova (Mo) X-ray Source4106 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 15.9631 pixels mm-1θmax = 26.4°, θmin = 2.9°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1212
Tmin = 0.621, Tmax = 1.000l = 1515
22740 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0284P)2 + 1.021P]
where P = (Fo2 + 2Fc2)/3
4543 reflections(Δ/σ)max = 0.001
266 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C25H22Br2S2γ = 92.192 (13)°
Mr = 546.37V = 1111.4 (3) Å3
Triclinic, P1Z = 2
a = 9.5401 (12) ÅMo Kα radiation
b = 10.1575 (17) ŵ = 3.85 mm1
c = 12.1711 (16) ÅT = 100 K
α = 106.933 (13)°0.35 × 0.3 × 0.15 mm
β = 98.599 (11)°
Data collection top
Agilent SuperNova
diffractometer (Single source at offset, Eos detector)
4543 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
4106 reflections with I > 2σ(I)
Tmin = 0.621, Tmax = 1.000Rint = 0.029
22740 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 1.05Δρmax = 0.86 e Å3
4543 reflectionsΔρmin = 0.34 e Å3
266 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.1667 (2)0.4087 (2)0.52334 (18)0.0149 (4)
C30.2415 (2)0.5007 (2)0.48676 (17)0.0140 (4)
C40.3487 (2)0.5848 (2)0.57443 (18)0.0135 (4)
C50.3561 (2)0.5556 (2)0.67867 (18)0.0149 (4)
C70.5323 (2)0.7369 (2)0.73035 (17)0.0134 (4)
C80.4616 (2)0.6421 (2)0.76726 (18)0.0156 (4)
C110.0485 (2)0.3098 (2)0.45728 (18)0.0154 (4)
H110.01430.30960.37980.018*
C120.0158 (2)0.2188 (2)0.49791 (19)0.0163 (4)
H120.02090.21960.57510.020*
C130.1367 (2)0.1182 (2)0.43625 (18)0.0147 (4)
C140.1847 (2)0.0836 (2)0.31652 (19)0.0184 (4)
H140.13790.12680.27080.022*
C150.2997 (2)0.0127 (2)0.2636 (2)0.0195 (4)
H150.32980.03520.18180.023*
C160.3721 (2)0.0775 (2)0.3276 (2)0.0188 (4)
C170.3245 (2)0.0435 (2)0.4464 (2)0.0222 (5)
H170.37190.08620.49210.027*
C180.2088 (2)0.0521 (2)0.4994 (2)0.0212 (5)
H180.17780.07310.58100.025*
C190.4989 (2)0.1807 (2)0.2693 (2)0.0257 (5)
H19A0.47530.24810.20010.039*
H19B0.57980.13240.24600.039*
H19C0.52400.22860.32380.039*
C200.6407 (2)0.8514 (2)0.79371 (18)0.0144 (4)
C210.6309 (2)0.9344 (2)0.90533 (19)0.0204 (5)
H210.55990.91030.94480.024*
C220.7237 (2)1.0518 (2)0.95947 (19)0.0222 (5)
H220.71451.10681.03550.027*
C230.8300 (2)1.0912 (2)0.90537 (18)0.0156 (4)
C240.8424 (2)1.0043 (2)0.79612 (19)0.0174 (4)
H240.91671.02550.75840.021*
C250.7490 (2)0.8872 (2)0.74042 (18)0.0159 (4)
H250.75950.83110.66510.019*
C260.9213 (2)1.2294 (2)0.95810 (19)0.0181 (4)
C270.9335 (4)1.2808 (3)1.0898 (2)0.0466 (8)
H27A0.97851.21321.12370.070*
H27B0.83841.29281.11040.070*
H27C0.99151.36941.12020.070*
C280.8494 (3)1.3340 (3)0.9067 (3)0.0412 (7)
H28A0.75561.34680.93000.062*
H28B0.83821.30030.82160.062*
H28C0.90801.42240.93540.062*
C291.0711 (3)1.2170 (3)0.9299 (4)0.0579 (10)
H29A1.06721.19510.84550.087*
H29B1.11391.14320.95670.087*
H29C1.12881.30460.96920.087*
S10.23075 (6)0.42387 (5)0.66948 (5)0.01670 (11)
S60.47053 (5)0.71827 (5)0.58407 (4)0.01402 (11)
Br90.21007 (2)0.51931 (2)0.336305 (17)0.01818 (7)
Br100.50454 (2)0.61519 (2)0.914456 (19)0.02445 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0146 (10)0.0139 (10)0.0142 (10)0.0029 (8)0.0000 (8)0.0020 (8)
C30.0143 (10)0.0134 (10)0.0127 (10)0.0033 (8)0.0010 (8)0.0017 (8)
C40.0133 (10)0.0115 (10)0.0152 (10)0.0006 (8)0.0021 (8)0.0035 (8)
C50.0145 (10)0.0117 (10)0.0172 (10)0.0016 (8)0.0002 (8)0.0041 (8)
C70.0139 (10)0.0134 (10)0.0116 (10)0.0015 (8)0.0000 (8)0.0028 (8)
C80.0163 (10)0.0151 (10)0.0139 (10)0.0002 (8)0.0004 (8)0.0037 (8)
C110.0136 (10)0.0144 (10)0.0153 (10)0.0008 (8)0.0001 (8)0.0014 (8)
C120.0142 (10)0.0162 (10)0.0169 (10)0.0008 (8)0.0007 (8)0.0040 (8)
C130.0114 (9)0.0123 (10)0.0196 (11)0.0010 (8)0.0006 (8)0.0047 (8)
C140.0169 (10)0.0193 (11)0.0194 (11)0.0012 (8)0.0052 (9)0.0056 (9)
C150.0165 (10)0.0220 (11)0.0180 (11)0.0020 (9)0.0011 (9)0.0038 (9)
C160.0136 (10)0.0130 (10)0.0277 (12)0.0001 (8)0.0021 (9)0.0056 (9)
C170.0197 (11)0.0218 (12)0.0281 (12)0.0051 (9)0.0007 (9)0.0148 (10)
C180.0213 (11)0.0228 (12)0.0200 (11)0.0029 (9)0.0024 (9)0.0106 (9)
C190.0183 (11)0.0216 (12)0.0340 (14)0.0050 (9)0.0050 (10)0.0089 (10)
C200.0142 (10)0.0108 (10)0.0165 (10)0.0000 (8)0.0026 (8)0.0044 (8)
C210.0197 (11)0.0212 (11)0.0189 (11)0.0052 (9)0.0042 (9)0.0044 (9)
C220.0263 (12)0.0196 (11)0.0159 (11)0.0062 (9)0.0024 (9)0.0006 (9)
C230.0140 (10)0.0130 (10)0.0188 (11)0.0020 (8)0.0041 (8)0.0067 (8)
C240.0121 (10)0.0211 (11)0.0203 (11)0.0015 (8)0.0004 (8)0.0097 (9)
C250.0158 (10)0.0168 (10)0.0135 (10)0.0011 (8)0.0009 (8)0.0030 (8)
C260.0176 (10)0.0147 (10)0.0189 (11)0.0047 (8)0.0043 (8)0.0046 (9)
C270.067 (2)0.0429 (17)0.0190 (13)0.0359 (15)0.0120 (13)0.0069 (12)
C280.0457 (16)0.0207 (13)0.0498 (18)0.0154 (11)0.0257 (14)0.0181 (12)
C290.0241 (14)0.0310 (16)0.100 (3)0.0138 (12)0.0164 (16)0.0096 (17)
S10.0181 (3)0.0153 (3)0.0159 (3)0.0056 (2)0.0012 (2)0.0062 (2)
S60.0145 (2)0.0134 (2)0.0135 (2)0.00256 (19)0.00064 (19)0.00445 (19)
Br90.02011 (12)0.02063 (12)0.01261 (11)0.00192 (8)0.00041 (8)0.00521 (8)
Br100.03123 (14)0.02441 (13)0.01642 (12)0.01005 (9)0.00648 (9)0.01090 (9)
Geometric parameters (Å, º) top
C2—C31.367 (3)C18—H180.9500
C2—C111.449 (3)C19—H19A0.9800
C2—S11.752 (2)C19—H19B0.9800
C3—C41.410 (3)C19—H19C0.9800
C3—Br91.876 (2)C20—C211.393 (3)
C4—C51.377 (3)C20—C251.389 (3)
C4—S61.717 (2)C21—H210.9500
C5—C81.415 (3)C21—C221.389 (3)
C5—S11.727 (2)C22—H220.9500
C7—C81.371 (3)C22—C231.394 (3)
C7—C201.471 (3)C23—C241.390 (3)
C7—S61.742 (2)C23—C261.535 (3)
C8—Br101.878 (2)C24—H240.9500
C11—H110.9500C24—C251.392 (3)
C11—C121.337 (3)C25—H250.9500
C12—H120.9500C26—C271.519 (3)
C12—C131.463 (3)C26—C281.518 (3)
C13—C141.395 (3)C26—C291.521 (3)
C13—C181.393 (3)C27—H27A0.9800
C14—H140.9500C27—H27B0.9800
C14—C151.384 (3)C27—H27C0.9800
C15—H150.9500C28—H28A0.9800
C15—C161.394 (3)C28—H28B0.9800
C16—C171.385 (3)C28—H28C0.9800
C16—C191.509 (3)C29—H29A0.9800
C17—H170.9500C29—H29B0.9800
C17—C181.385 (3)C29—H29C0.9800
C3—C2—C11127.97 (19)H19A—C19—H19C109.5
C3—C2—S1110.83 (15)H19B—C19—H19C109.5
C11—C2—S1121.19 (16)C21—C20—C7120.91 (19)
C2—C3—C4113.44 (19)C25—C20—C7120.93 (19)
C2—C3—Br9125.30 (16)C25—C20—C21117.95 (19)
C4—C3—Br9121.26 (15)C20—C21—H21119.6
C3—C4—S6135.45 (16)C22—C21—C20120.7 (2)
C5—C4—C3112.85 (18)C22—C21—H21119.6
C5—C4—S6111.68 (16)C21—C22—H22119.1
C4—C5—C8112.77 (18)C21—C22—C23121.8 (2)
C4—C5—S1111.53 (16)C23—C22—H22119.1
C8—C5—S1135.68 (17)C22—C23—C26122.09 (19)
C8—C7—C20131.33 (19)C24—C23—C22116.81 (19)
C8—C7—S6111.14 (15)C24—C23—C26120.91 (19)
C20—C7—S6117.42 (15)C23—C24—H24119.1
C5—C8—Br10121.61 (15)C23—C24—C25121.86 (19)
C7—C8—C5112.82 (19)C25—C24—H24119.1
C7—C8—Br10125.41 (16)C20—C25—C24120.8 (2)
C2—C11—H11117.8C20—C25—H25119.6
C12—C11—C2124.5 (2)C24—C25—H25119.6
C12—C11—H11117.8C27—C26—C23111.81 (18)
C11—C12—H12116.5C27—C26—C29107.7 (2)
C11—C12—C13127.0 (2)C28—C26—C23107.46 (18)
C13—C12—H12116.5C28—C26—C27108.8 (2)
C14—C13—C12123.75 (19)C28—C26—C29109.7 (2)
C18—C13—C12118.85 (19)C29—C26—C23111.25 (19)
C18—C13—C14117.39 (19)C26—C27—H27A109.5
C13—C14—H14119.6C26—C27—H27B109.5
C15—C14—C13120.8 (2)C26—C27—H27C109.5
C15—C14—H14119.6H27A—C27—H27B109.5
C14—C15—H15119.3H27A—C27—H27C109.5
C14—C15—C16121.5 (2)H27B—C27—H27C109.5
C16—C15—H15119.3C26—C28—H28A109.5
C15—C16—C19121.0 (2)C26—C28—H28B109.5
C17—C16—C15117.8 (2)C26—C28—H28C109.5
C17—C16—C19121.1 (2)H28A—C28—H28B109.5
C16—C17—H17119.6H28A—C28—H28C109.5
C18—C17—C16120.8 (2)H28B—C28—H28C109.5
C18—C17—H17119.6C26—C29—H29A109.5
C13—C18—H18119.2C26—C29—H29B109.5
C17—C18—C13121.7 (2)C26—C29—H29C109.5
C17—C18—H18119.2H29A—C29—H29B109.5
C16—C19—H19A109.5H29A—C29—H29C109.5
C16—C19—H19B109.5H29B—C29—H29C109.5
C16—C19—H19C109.5C5—S1—C291.35 (10)
H19A—C19—H19B109.5C4—S6—C791.58 (10)
C2—C3—C4—C50.4 (3)C19—C16—C17—C18179.5 (2)
C2—C3—C4—S6177.73 (17)C20—C7—C8—C5175.1 (2)
C2—C11—C12—C13179.0 (2)C20—C7—C8—Br109.6 (3)
C3—C2—C11—C12177.1 (2)C20—C7—S6—C4175.85 (16)
C3—C2—S1—C50.59 (16)C20—C21—C22—C230.3 (4)
C3—C4—C5—C8178.68 (17)C21—C20—C25—C241.5 (3)
C3—C4—C5—S10.1 (2)C21—C22—C23—C242.4 (3)
C3—C4—S6—C7177.8 (2)C21—C22—C23—C26172.5 (2)
C4—C5—C8—C70.7 (3)C22—C23—C24—C253.1 (3)
C4—C5—C8—Br10174.92 (15)C22—C23—C26—C2726.8 (3)
C4—C5—S1—C20.36 (17)C22—C23—C26—C2892.6 (3)
C5—C4—S6—C70.38 (17)C22—C23—C26—C29147.3 (3)
C7—C20—C21—C22172.5 (2)C23—C24—C25—C201.2 (3)
C7—C20—C25—C24173.19 (19)C24—C23—C26—C27158.5 (2)
C8—C5—S1—C2178.0 (2)C24—C23—C26—C2882.1 (3)
C8—C7—C20—C2140.0 (3)C24—C23—C26—C2938.0 (3)
C8—C7—C20—C25145.4 (2)C25—C20—C21—C222.2 (3)
C8—C7—S6—C40.75 (16)C26—C23—C24—C25171.87 (19)
C11—C2—C3—C4178.58 (19)S1—C2—C3—C40.7 (2)
C11—C2—C3—Br91.3 (3)S1—C2—C3—Br9179.46 (11)
C11—C2—S1—C5178.72 (17)S1—C2—C11—C123.7 (3)
C11—C12—C13—C1413.6 (3)S1—C5—C8—C7177.65 (18)
C11—C12—C13—C18166.6 (2)S1—C5—C8—Br106.8 (3)
C12—C13—C14—C15179.9 (2)S6—C4—C5—C80.1 (2)
C12—C13—C18—C17179.6 (2)S6—C4—C5—S1178.65 (10)
C13—C14—C15—C160.6 (3)S6—C7—C8—C50.9 (2)
C14—C13—C18—C170.6 (3)S6—C7—C8—Br10174.46 (12)
C14—C15—C16—C170.7 (3)S6—C7—C20—C21135.75 (18)
C14—C15—C16—C19179.0 (2)S6—C7—C20—C2538.8 (3)
C15—C16—C17—C180.1 (3)Br9—C3—C4—C5179.72 (15)
C16—C17—C18—C130.5 (4)Br9—C3—C4—S62.1 (3)
C18—C13—C14—C150.0 (3)

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC28H22Br2S2C25H16Br2S2C25H22Br2S2
Mr582.40540.32546.37
Crystal system, space groupMonoclinic, P21/cTriclinic, P1Triclinic, P1
Temperature (K)100100100
a, b, c (Å)8.3316 (3), 16.1749 (6), 18.1333 (6)4.1522 (3), 13.2861 (14), 19.6117 (18)9.5401 (12), 10.1575 (17), 12.1711 (16)
α, β, γ (°)90, 96.677 (3), 90106.464 (9), 94.945 (7), 93.016 (7)106.933 (13), 98.599 (11), 92.192 (13)
V3)2427.13 (15)1030.32 (16)1111.4 (3)
Z422
Radiation typeMo KαMo KαMo Kα
µ (mm1)3.534.153.85
Crystal size (mm)0.3 × 0.15 × 0.150.4 × 0.15 × 0.050.35 × 0.3 × 0.15
Data collection
DiffractometerAgilent SuperNova
diffractometer (Single source at offset, Eos detector)
Agilent SuperNova
diffractometer (Single source at offset, Eos detector)
Agilent SuperNova
diffractometer (Single source at offset, Eos detector)
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Multi-scan
(CrysAlis PRO; Agilent, 2012)
Multi-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.681, 1.0000.455, 1.0000.621, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
25300, 4962, 4491 20862, 4207, 3705 22740, 4543, 4106
Rint0.0300.0430.029
(sin θ/λ)max1)0.6250.6250.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.051, 1.04 0.028, 0.074, 1.06 0.024, 0.063, 1.05
No. of reflections496242074543
No. of parameters292263266
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.270.65, 0.490.86, 0.34

Computer programs: CrysAlis PRO, Version 1.171.36.28 (Agilent, 2012), (CrysAlis PRO; Agilent, 2012), SHELXS97 (Sheldrick, 2008), XS (Sheldrick, 2008), XL (Sheldrick, 2008), Olex2 (Dolomanov et al., 2009).

 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds