Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Lamotrigine, an anti­epileptic drug, has been complexed with three aromatic carb­oxy­lic acids. All three compounds crystallize with the inclusion of N,N-di­methyl­formamide (DMF) solvent, viz. lamotriginium [3,5-di­amino-6-(2,3-di­chloro­phenyl)-1,2,4-tri­az­in-2-ium] 4-iodo­benzoate N,N-di­methyl­form­amide monosolvate, C9H8Cl2N5+·C7H4IO2-·C3H7NO, (I), lamotriginium 4-methyl­benzoate N,N-di­methyl­formamide mono­solvate, C9H7Cl2N5+·C8H8O2-·C3H7NO, (II), and lamotriginium 3,5-di­nitro-2-hy­droxy­benzoate N,N-di­methyl­form­amide monosolvate, C9H8Cl2N5+·C7H3N2O7-·C3H7NO, (III). In all three structures, proton transfer takes place from the acid to the lamotrigine mol­ecule. However, in (I) and (II), the acidic H atom is disordered over two sites and there is only partial transfer of the H atom from O to N. In (III), the corresponding H atom is ordered and complete proton transfer has occurred. Lamotrigine-lamotrigine, lamotrigine-acid and lamotrigine-solvent inter­actions are observed in all three structures and they thereby exhibit isostructurality. The DMF solvent extends the lamotrigine-lamotrigine dimers into a pseudo-quadruple hydrogen-bonding motif.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113023573/lg3120sup1.cif
Contains datablocks I, II, III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113023573/lg3120Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113023573/lg3120IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113023573/lg3120IIIsup4.hkl
Contains datablock III

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270113023573/lg3120Isup5.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270113023573/lg3120IIsup6.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270113023573/lg3120IIIsup7.cml
Supplementary material

CCDC references: 969464; 969465; 969466

Introduction top

Salt formation is a well known multicomponent approach for improving the aqueous solubility of poorly soluble drugs, since the majority of active pharmaceutical ingredients (API's) fall into the Biopharmaceutical Classification System (BCS) (Takagi et al., 2006) class II (low solubility, high permeability) (Hiten et al., 2009). Low solubility of a drug results in low bioavailability and becomes a key physicochemical property to control in current drug development processes [not clear] (Stegemann et al., 2007). It is estimated that approximately 40% of drugs are currently marketed as salt formulations (Lipinski, 2002). Along with salts, solvates and polymorphs, cocrystals are now one of the routes to enhance the dissolution rate of these low-solubility drugs. Cocrystals are crystalline complexes of more than one solid component that are held together by noncovalent inter­actions, mostly hydrogen bonding (Almarsson & Zaworotko, 2004). Lamotrigine [6-(2,3-di­chloro­phenyl)-1,2,4-triazine-3,5-di­amine] is an anti­convulsant drug used in the treatment of epilepsy, marketed under the brand name Lami­ctal. It belongs to BCS class II, having a low solubility in water (0.17 mg ml-1 at 298 K), which in turn limits its absorption and dissolution rates and thus its bioavailability (Parmer et al., 2009; Chadha et al., 2013). Lamotrigine is a basic molecule, with pKa = 5.7 at atom N2 of the triazine ring. The molecular framework contains multiple donor and acceptor sites, which makes this a potential target for both cocrystal and salt formation. The present study of three solvent-mediated lamotrigine–aromatic carb­oxy­lic acid complexes, (I), (II) and (III), is a continuation of our structural characterization of lamotrigine and its salts and solvates (Sridhar & Ravikumar, 2005, 2006, 2007, 2009, 2011).

Experimental top

Synthesis and crystallization top

Crystals of (I), (II) and (III) suitable for X-ray diffraction were obtained by dissolving lamotrigine (Jubilant Organosys Ltd, Mysore, India; 25 mg) with 4-iodo­benzoic acid [24 mg, for (I)], 4-methyl­benzoic acid [13 mg, for (II)] and 3,5-di­nitro-2-hy­droxy­benzoic acid [22 mg, for (III)] in methanol–DMF (70:30 v/v, 40 ml). The solutions were stirred at room temperature for 5 h and then allowed to evaporate slowly.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The contoured difference Fourier maps show significant electron density at the location of the potential H-atom site and the electron density is smeared along the N···O axis in (I) and (II), and along the O···O axis in (III). Hence, the H atoms were treated as disordered over two sites [H2N and H1O in (I) and (II), and H3O and H1O in (III)] and their site-occupation factors refined to 0.54 (4) and 0.46 (4) in (I), to 0.49 (5) and 0.51 (5) in (II), and to 0.55 (5) and 0.45 (5) in (III). These disordered H atoms were located in difference Fourier maps and refined as riding, with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O), with constrained distances of 0.86 and 0.82 Å for N—H and O—H, respectively. In (I), atom C19 of the DMF solvent molecule is disordered over two sites (C19 and C191) and the site-occupancy factors refined to 0.56 (5) and 0.44 (5). The N—C distances of the disordered atoms were restrained to be 1.46 (2) Å. The H atoms of the C17 methyl group of (II) are disordered over two orientations rotated by 60° relative to each other and they were refined with half occupancy. All other N-bound H atoms of the lamotrigine molecule in (I), (II) and (III) and the O-bound H atoms of the 4-methyl­benzoic acid of (II) were located in difference Fourier maps, and their positions and isotropic displacement parameters were refined. C-bound H atoms were located in a difference density map but were positioned geometrically and included as riding atoms, with C—H = 0.93–0.96 Å and Uiso(H) = 1.2Ueq(C).

Results and discussion top

The asymmetric units of (I), (II) and (III) contain one lamotrigine molecule, one aromatic carb­oxy­lic acid molecule [4-iodo­benzoic acid in (I), 4-methyl­benzoic acid in (II) and 3,5-di­nitro-2-hy­droxy­benzoic acid in (III)] and one di­methyl­formamide solvent molecule (Fig. 1). The molecular geometry of the three compounds, in terms of bond lengths and angles (Table 2), is in good agreement with those of related lamotrigine structures (Potter et al., 1999; Kubicki & Codding, 2001; Sridhar & Ravikumar, 2009, 2011). In all three structures, the di­chloro­phenyl and triazine rings are almost planar. The dihedral angles between the rings are 80.87 (10)° in (I), 85.05 (12)° in (II) and 61.88 (10)° in (III). The corresponding dihedral angles in similar structures are generally observed in the range 50–80° (Potter et al., 1999; Janes & Palmer, 1995a,b). The presence of substituents on the ortho-positions with respect to the central C—C bond may be responsible for the larger dihedral angles in these compounds, compared with the small value [9.3 (1)°] in the absence of substituents observed in the crystal structure of 5-(4-chloro­phenyl)-1,2,4-triazine (Atwood et al., 1974). Protonation occurs at atom N2 of the triazine ring, and the C8—N2—N1 angle for the protonated lamotrigine molecule is 123.4 (2)° (Potter et al., 1999). The corresponding angles for (I)–(III) are 120.79 (16), 119.75 (19) and 123.83 (16)°, respectively.

The state of the carb­oxy­lic acid group (whether neutral or anionic) can be found by inspecting the C—O and CO bond distances. For a neutral carb­oxy­lic acid group, the CO and C—O distances are around 1.2 and 1.3 Å, respectively. However, when deprotonation occurs, both C—O bond lengths will be similar, around 1.25 Å (Allen et al., 1995). The latest version of the Cambridge Structural Database (CSD, Version 5.34 with May 2013 updates; Allen, 2002) was searched for a better statistical representation of structures containing carb­oxy­lic groups. Two separate search queries were made, with COOH and COO- fragments, and the C—O bond was specified in the range 1.25–1.35 Å for carb­oxy­lic acid and 1.23 to 1.30 Å for carboxyl­ate. The search was restricted to structures with three-dimensional coordinates well defined, no disorder, no polymers, no errors, no powder structures, R factor < 0.075 and only organic structures. The median C—O distance for neutral carb­oxy­lic acid is 1.307 Å (obtained from 9259 CSD hits), while the corresponding median C—O bond length for a carboxyl­ate anion is 1.253 Å (obtained from 6031 CSD hits). In the present structures, the C—O (C10—O1) bond lengths are 1.280 (2), 1.289 (3) and 1.271 (3) Å for (I), II) and (III), respectively. These values are inter­mediate between the two median values for neutral and anionic carb­oxy­lic acid groups as noted from the CSD.

It is very difficult to say whether actual proton transfer has taken place from the acid to the lamotrigine molecule from the above mentioned C—O bond lengths and the C8—N2—N1 bond angles [particularly in (I) and (II)] in the triazine ring of the lamotrigine molecule. Using the ΔpKa rule [ΔpKa = pKa(base) - pKb(acid); Stahl & Wermuth, 2002], one can predict whether a salt or cocrystal is formed or not. When ΔpKa > 3, a salt is formed, and a cocrystal is obtained when it is < 0. However, when the ΔpKa value is between 0 and 3, the situation is unpredi­cta­ble. This can result in either a cocrystal or a salt, or the product may contain a shared/partial proton or mixed ionization states that cannot be assigned to either category (Childs & Hardcastle, 2007; Childs et al., 2007). In the present study, the pKa values for 4-iodo­benzoic acid in (I), 4-methyl­benzoic acid in (II) and 3,5-di­nitro-2-hy­droxy­benzoic acid in (III) are 4.0, 4.36 and 1.99, respectively (Stahl & Wermuth, 2002). The ΔpKa values are between 0 and 3 for 4-iodo­benzoic acid [ΔpKa = 1.76 for (I)] and 4-methyl­benzoic acid [ΔpKa = 1.4 for (II)], where the cocrystal or salt form can occur. The ΔpKa value for 3,5-di­nitro-2-hy­droxy­benzoic acid [(III)] is 3.71, which suggests salt formation.

Free refinement of the acidic H atom [H1N in (I), H1O in (II) and H3O in (III)] resulted in rather long donor–hydrogen distances [N2—H2N in (I), O1—H1O in (II) and O3—H3O in (III)], thus indicating that their hydrogen-bonding inter­actions are quite strong. A similar situation was observed and described by Linden et al. (2006), in the crystal structure of rac-2-methyl-2-[(3-hy­droxy-2-phenyl­propanoyl)amino]­propanoic acid, showing that the hydrogen bonds have a tendency to become more symmetrical, disordered across the N···O vector, or even perfectly symmetrical (Gilli et al., 1994; Alfonso et al., 2001). The refined position of these H atoms favours the partial symmetricalization of the H-atom position at the first site, but other evidence suggests that the refined position may be misleading. Contoured difference Fourier maps produced by PLATON (Spek, 2009), without the acidic H atoms in (I)–(III) and the hy­droxy H atom in (III), clearly show that the electron density is smeared out along the N···O axis in (I) and (II) and along the O···O axis in (III) (Fig. 2). However, in (III), the electron density has a maximum at atom N2. In (I) and (II), the H atom between O1 and N2 is treated as disordered over two sites (H2N and H1O) and the associated site-occupancy factors refined to 0.54 (4) and 0.46 (4), respectively, for (I), and 0.49 (5) and 0.51 (5), respectively, for (II). Thus, both 4-iodo­benzoic acid in (I) and 4-methyl­benzoic acid in (II) form salts and there is only partial transfer of the H atom from O to N, leading to disordered N—H···O/O—H···N hydrogen bonds with short N···O distances (Tables 3 and 4). Similar partial proton transfer from an acid to a nitro­gen base has been reported in the literature (Farrell et al., 2002a,b; Song et al., 2008). Also, in (III), the H atom between atoms O3 and O1 of the 3,5-di­nitro-2-hy­droxy­benzoic acid molecule is disordered over two sites and the site-occupancy factors refined to 0.55 (5) and 0.45 (5), respectively, leading to disordered O—H···O hydrogen bonds with short O···O distances (Table 5).

Three types of hydrogen-bonding inter­actions viz. lamotrigine–lamotrigine, lamotrigine–acid and lamotrigine–solvent, stabilize the crystal structures of (I)–(III). In all three structures, the lamotrigine–acid dimer is formed by two inter­molecular N—H···O hydrogen bonds (Tables 3, 4 and 5). Further, lamotrigine molecules form a home dimer [R22(8)] which is inter­linked by di­methyl­formamide (DMF) solvent molecules via hydrogen bonds (four N—H···O) and forms a pseudo-quadruple hydrogen-bonded ring of motif R42(16), according to graph-set notation (Etter, 1990; Etter et al., 1990; Bernstein et al., 1995). This motif can be defined in terms of three fused R32(8), R22(8) and R32(8) rings. The acid molecules link the pseudo-quadruple hydrogen-bonding motif on both sides and form a lamotrigine–acid heterosynthon of R22(8) motif. Inter­estingly, all three structures exhibit the same hydrogen-bonding motifs and thus show isostructurality (Fig. 3).

A search of the CSD indicated 62 crystal structure reports of lamotrigine. The search was made with the bond types in the triazine ring unspecified, restricted to only organics with three-dimensional coordinates well defined. All duplicate structures and triazine derivatives were manually filtered out, leaving a total of 51 structures for our study, including the parent API, solvates (DMF, di­methyl sulfoxide, methanol, water, tetra­hydro­furan, ethanol etc.), cocrystals (mostly with amide-group-bearing molecules, such as nicotinamide, phthalamide etc.) and salts (di­carb­oxy­lic acid, aromatic carb­oxy­lic acids etc.). An in-depth synthon analysis was carried out to understand the influence of various solvents and co-formers on the hydrogen-bonding patterns of lamotrigine. The most common hydrogen-bonding motif observed is the heterosynthon between lamotrigine and the acid/amide coformers (types 1a and 1b in Scheme 2), which is seen in 37 of the 51 structures. Similar lamotrigine–acid heterosynthons are also observed in the present three structures. The remaining 14 structures in the CSD are either solvates or structures without the complementary functional groups to form the above-mentioned heterosynthon.

In a further investigation, we wanted to understand how many of the CSD hits exhibit the pseduo-quadruple hydrogen-bonding motifs (type 2) observed in the present three structures. As stated earlier, the pseudo-quadruple hydrogen-bonding motif is mainly achieved by the lamotrigine–lamotrigine dimer and does not exist in its absence. It is observed that there are more structures containing the pseudo-quadruple hydrogen-bonding motif than those without it [27 hits (53%) versus 24 hits (47%), respectively]. Various other complementary heterosynthons (types 3a and 3d) compete strongly and disturb the pseudo-quadruple hydrogen-bond motif. For example, complexes of lamotrigine with aliphatic di­carb­oxy­lic acids are involved in either two- or three-point heterosynthons (types 3a and 3b). The predominance of these synthons can be attributed to two factors: (i) the presence of complementary O-atom acceptors on the di­carb­oxy­lic acids to match the di­amine N—H donors of the lamotrigine; and (ii) the complementary distance between the two O-atom acceptors with that of the two N—H donors, at a separation distance in the range 4.5–4.9 Å. However, when the distance between the O-atom acceptors on the di­carb­oxy­lic acids exceeds 5 Å, the above-mentioned two- or three-point motifs with lamotrigine are not observed (for example, the lamotrigine–adipic acid complex, CSD refcode WUVKUU; Cheney et al., 2010). Inter­estingly, seven structures are able to disrupt the pseudo-quadruple hydrogen-bonding motif, even though analogous criteria to (i) and (ii) found for di­carb­oxy­lic acids are not strictly met in these cases. These structures are governed by other hydrogen-bonding inter­actions (types 3c and 3d). Thus, this CSD analysis clearly indicates that the lamotrigine–acid heterosynthon and pseudo-quadruple hydrogen-bonding motif are the most common synthons for lamotrigine complexes, as also observed in the present three structures.

Related literature top

For related literature, see: Alfonso et al. (2001); Allen (2002); Allen et al. (1995); Almarsson & Zaworotko (2004); Atwood et al. (1974); Bernstein et al. (1995); Chadha et al. (2013); Cheney et al. (2010); Childs & Hardcastle (2007); Childs, Stahly & Park (2007); Etter (1990); Etter, MacDonald & Bernstein (1990); Farrell et al. (2002a, 2002b); Gilli et al. (1994); Hiten et al. (2009); Janes & Palmer (1995a, 1995b); Kubicki & Codding (2001); Linden et al. (2006); Lipinski (2002); Parmer et al. (2009); Potter et al. (1999); Song et al. (2008); Spek (2009); Sridhar & Ravikumar (2005, 2006, 2007, 2009, 2011); Stahl & Wermuth (2002); Stegemann et al. (2007); Takagi et al. (2006).

Computing details top

For all compounds, data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric units of (a) (I), (b) (II) and (c) (III), showing the atom-numbering schemes. Displacement ellipsoids are drawn at the 30% probability level. Dashed lines indicate hydrogen bonds. The H atom between atoms N2 and O1 in (I) and (II), and the H atom between atoms O3 and O1 in (III), are disordered over two sites, with major site occupancies of 0.54, 0.51 and 0.55 for (I), (II) and (III), respectively. The minor component of disordered atom C191 of the DMF solvent molecule in (I) has been omitted for clarity. H atoms attached to methyl atom C17 of (II) are disordered over two orientations rotated by 60° relative to each other with half occupancy.
[Figure 2] Fig. 2. Contoured difference Fourier maps, sliced in the plane of the triazine and carboxylic acid group, for (a) (I), (b) (II) and (c) (III). The refined positions of the atoms are shown by solid circles with a `plus' (+) sign. The contour intervals are 0.08 e Å-3.
[Figure 3] Fig. 3. Partial packing diagrams for (a) (I), (b) (II) and (c) (III), showing the pseudo-quadruple hydrogen-bonding motif. H atoms not involved in hydrogen bonding have been omitted for clarity. Only atoms involved in hydrogen bonding (dashed lines) are labelled. [Symmetry codes: (i) -x, -y, -z + 1 for (I); (i) -x + 2, -y, -z + 2 for (II); (i) -x, -y, -z + 1 for (III).]
(I) 3,5-Diamino-6-(2,3-dichlorophenyl)-1,2,4-triazin-2-ium 4-iodobenzoate N,N-dimethylformamide monosolvate top
Crystal data top
C9H7.54Cl2N5+·C7H4.46IO2·C3H7NOF(000) = 1144
Mr = 577.20Dx = 1.664 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6634 reflections
a = 9.7282 (6) Åθ = 2.4–27.9°
b = 24.9148 (16) ŵ = 1.66 mm1
c = 10.0307 (6) ÅT = 294 K
β = 108.618 (1)°Block, colourless
V = 2304.0 (2) Å30.15 × 0.13 × 0.06 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5481 independent reflections
Radiation source: fine-focus sealed tube4776 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 28.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker,2001)
h = 1212
Tmin = 0.75, Tmax = 0.89k = 3232
26643 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0403P)2 + 0.9467P]
where P = (Fo2 + 2Fc2)/3
5481 reflections(Δ/σ)max = 0.003
308 parametersΔρmax = 0.68 e Å3
2 restraintsΔρmin = 0.27 e Å3
Crystal data top
C9H7.54Cl2N5+·C7H4.46IO2·C3H7NOV = 2304.0 (2) Å3
Mr = 577.20Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.7282 (6) ŵ = 1.66 mm1
b = 24.9148 (16) ÅT = 294 K
c = 10.0307 (6) Å0.15 × 0.13 × 0.06 mm
β = 108.618 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5481 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker,2001)
4776 reflections with I > 2σ(I)
Tmin = 0.75, Tmax = 0.89Rint = 0.023
26643 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0292 restraints
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.68 e Å3
5481 reflectionsΔρmin = 0.27 e Å3
308 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.3147 (2)0.13181 (7)0.7443 (2)0.0365 (4)
C20.2379 (2)0.17959 (8)0.7303 (2)0.0409 (4)
C30.2641 (2)0.21473 (8)0.8426 (2)0.0461 (5)
C40.3663 (2)0.20241 (9)0.9697 (2)0.0490 (5)
H40.38350.22601.04520.059*
C50.4428 (3)0.15511 (10)0.9846 (2)0.0539 (5)
H50.51160.14671.07050.065*
C60.4180 (2)0.11988 (9)0.8725 (2)0.0472 (5)
H60.47080.08820.88310.057*
C70.2945 (2)0.09466 (7)0.6235 (2)0.0358 (4)
C80.28278 (19)0.02356 (7)0.42351 (19)0.0353 (4)
C90.17929 (19)0.05547 (7)0.58142 (18)0.0346 (4)
N10.39026 (19)0.09786 (7)0.55866 (19)0.0417 (4)
N20.38318 (18)0.06259 (7)0.45538 (18)0.0429 (4)
H2N0.44370.06500.40910.052*0.56 (4)
N30.2883 (2)0.01182 (8)0.3265 (2)0.0457 (4)
H3N0.354 (3)0.0084 (9)0.292 (3)0.046 (6)*
H4N0.235 (3)0.0400 (10)0.314 (2)0.048 (6)*
N40.17765 (16)0.01954 (6)0.48332 (16)0.0360 (3)
N50.07420 (19)0.05487 (8)0.6386 (2)0.0452 (4)
H5N0.004 (3)0.0341 (10)0.606 (3)0.049 (7)*
H6N0.071 (3)0.0783 (11)0.697 (3)0.055 (7)*
Cl10.11138 (9)0.19507 (3)0.56986 (6)0.07010 (19)
Cl20.17244 (10)0.27526 (3)0.82541 (8)0.0804 (2)
C100.6014 (2)0.05019 (8)0.2597 (2)0.0401 (4)
C110.7303 (2)0.06249 (8)0.2133 (2)0.0380 (4)
C120.8372 (2)0.09754 (9)0.2912 (2)0.0456 (5)
H120.82780.11360.37150.055*
C130.9571 (2)0.10863 (9)0.2505 (2)0.0486 (5)
H131.02910.13160.30380.058*
C140.9691 (2)0.08530 (9)0.1299 (2)0.0436 (4)
C150.8646 (2)0.05050 (9)0.0507 (2)0.0485 (5)
H150.87390.03500.03030.058*
C160.7449 (2)0.03881 (9)0.0933 (2)0.0455 (4)
H160.67450.01500.04120.055*
O10.57969 (18)0.08384 (7)0.34716 (19)0.0568 (4)
H1O0.51180.07360.37230.085*0.44 (4)
O20.52634 (17)0.01037 (6)0.21442 (18)0.0539 (4)
I11.151363 (16)0.103707 (7)0.069786 (17)0.05740 (7)
C170.2545 (3)0.14805 (10)0.6744 (3)0.0594 (6)
H170.32220.13880.58870.071*
C180.4063 (3)0.22452 (13)0.6751 (4)0.0835 (9)
H18A0.42040.24730.74680.125*
H18B0.48890.20150.63910.125*
H18C0.39500.24620.60020.125*
C190.198 (3)0.2035 (9)0.8804 (18)0.096 (5)0.56 (5)
H19A0.22860.23730.90690.144*0.56 (5)
H19B0.09580.20500.89240.144*0.56 (5)
H19C0.21560.17550.93860.144*0.56 (5)
C1910.161 (2)0.2162 (13)0.850 (3)0.094 (6)0.44 (5)
H19D0.19550.24820.88150.141*0.44 (5)
H19E0.08070.22500.81730.141*0.44 (5)
H19F0.12950.19110.92590.141*0.44 (5)
N60.2777 (2)0.19234 (8)0.7341 (2)0.0600 (5)
O30.1507 (2)0.11761 (8)0.7219 (2)0.0726 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0356 (9)0.0361 (9)0.0405 (9)0.0064 (7)0.0159 (7)0.0043 (7)
C20.0466 (10)0.0393 (10)0.0373 (9)0.0029 (8)0.0141 (8)0.0024 (8)
C30.0578 (12)0.0356 (10)0.0494 (11)0.0053 (9)0.0234 (10)0.0056 (8)
C40.0564 (12)0.0491 (12)0.0440 (10)0.0179 (10)0.0193 (9)0.0139 (9)
C50.0497 (12)0.0621 (14)0.0429 (11)0.0071 (10)0.0048 (9)0.0066 (10)
C60.0421 (11)0.0474 (11)0.0483 (11)0.0003 (9)0.0090 (9)0.0046 (9)
C70.0332 (9)0.0353 (9)0.0400 (9)0.0003 (7)0.0134 (7)0.0024 (7)
C80.0338 (9)0.0365 (9)0.0365 (9)0.0020 (7)0.0123 (7)0.0007 (7)
C90.0321 (8)0.0353 (9)0.0373 (9)0.0004 (7)0.0125 (7)0.0012 (7)
N10.0395 (8)0.0433 (9)0.0464 (9)0.0063 (7)0.0196 (7)0.0074 (7)
N20.0414 (8)0.0470 (9)0.0478 (9)0.0074 (7)0.0246 (7)0.0093 (7)
N30.0504 (10)0.0459 (10)0.0484 (10)0.0048 (8)0.0265 (8)0.0107 (8)
N40.0327 (7)0.0367 (8)0.0400 (8)0.0023 (6)0.0136 (6)0.0043 (6)
N50.0395 (9)0.0487 (10)0.0539 (10)0.0103 (8)0.0242 (8)0.0172 (8)
Cl10.0912 (5)0.0593 (4)0.0462 (3)0.0271 (3)0.0028 (3)0.0027 (2)
Cl20.1204 (6)0.0464 (3)0.0722 (4)0.0197 (4)0.0278 (4)0.0118 (3)
C100.0387 (9)0.0442 (10)0.0402 (10)0.0017 (8)0.0166 (8)0.0024 (8)
C110.0384 (9)0.0404 (9)0.0377 (9)0.0037 (7)0.0158 (8)0.0032 (7)
C120.0474 (11)0.0517 (12)0.0423 (10)0.0032 (9)0.0208 (9)0.0069 (8)
C130.0447 (11)0.0545 (12)0.0491 (12)0.0094 (9)0.0186 (9)0.0079 (9)
C140.0398 (10)0.0521 (11)0.0434 (10)0.0015 (9)0.0195 (8)0.0074 (9)
C150.0503 (11)0.0602 (13)0.0404 (10)0.0018 (10)0.0222 (9)0.0064 (9)
C160.0433 (10)0.0516 (11)0.0434 (10)0.0048 (9)0.0165 (8)0.0060 (9)
O10.0572 (9)0.0596 (9)0.0690 (10)0.0144 (8)0.0419 (8)0.0193 (8)
O20.0514 (9)0.0559 (9)0.0635 (10)0.0119 (7)0.0309 (7)0.0145 (7)
I10.04684 (10)0.07118 (12)0.06239 (11)0.00173 (6)0.02899 (8)0.01100 (7)
C170.0579 (14)0.0563 (14)0.0642 (15)0.0083 (11)0.0198 (11)0.0072 (11)
C180.0695 (18)0.0683 (18)0.113 (3)0.0130 (14)0.0292 (18)0.0150 (17)
C190.084 (9)0.083 (7)0.100 (7)0.015 (6)0.000 (6)0.030 (5)
C1910.071 (7)0.107 (12)0.093 (9)0.005 (6)0.009 (5)0.046 (9)
N60.0535 (11)0.0529 (11)0.0714 (13)0.0014 (9)0.0170 (10)0.0075 (10)
O30.0620 (11)0.0605 (10)0.0948 (15)0.0046 (9)0.0242 (10)0.0171 (10)
Geometric parameters (Å, º) top
C1—C21.388 (3)C11—C161.388 (3)
C1—C61.388 (3)C11—C121.391 (3)
C1—C71.487 (3)C12—C131.382 (3)
C2—C31.385 (3)C12—H120.9300
C2—Cl11.729 (2)C13—C141.380 (3)
C3—C41.378 (3)C13—H130.9300
C3—Cl21.732 (2)C14—C151.378 (3)
C4—C51.376 (3)C14—I12.098 (2)
C4—H40.9300C15—C161.393 (3)
C5—C61.386 (3)C15—H150.9300
C5—H50.9300C16—H160.9300
C6—H60.9300O1—H1O0.8200
C7—N11.298 (3)C17—O31.231 (3)
C7—C91.444 (3)C17—N61.309 (3)
C8—N31.327 (2)C17—H170.9300
C8—N21.343 (3)C18—N61.444 (3)
C8—N41.345 (2)C18—H18A0.9600
C9—N51.322 (2)C18—H18B0.9600
C9—N41.327 (2)C18—H18C0.9600
N1—N21.343 (2)C19—N61.451 (12)
N2—H2N0.8600C19—H19A0.9600
N3—H3N0.82 (3)C19—H19B0.9600
N3—H4N0.86 (3)C19—H19C0.9600
N5—H5N0.83 (3)C191—N61.466 (13)
N5—H6N0.83 (3)C191—H19D0.9600
C10—O21.230 (2)C191—H19E0.9600
C10—O11.279 (2)C191—H19F0.9600
C10—C111.502 (3)
C2—C1—C6118.98 (18)C12—C11—C10120.15 (18)
C2—C1—C7121.64 (17)C13—C12—C11120.62 (19)
C6—C1—C7119.30 (18)C13—C12—H12119.7
C3—C2—C1120.43 (19)C11—C12—H12119.7
C3—C2—Cl1120.50 (16)C14—C13—C12119.4 (2)
C1—C2—Cl1119.06 (15)C14—C13—H13120.3
C4—C3—C2120.2 (2)C12—C13—H13120.3
C4—C3—Cl2118.84 (16)C15—C14—C13121.14 (19)
C2—C3—Cl2120.95 (17)C15—C14—I1120.47 (15)
C5—C4—C3119.8 (2)C13—C14—I1118.38 (16)
C5—C4—H4120.1C14—C15—C16119.29 (19)
C3—C4—H4120.1C14—C15—H15120.4
C4—C5—C6120.4 (2)C16—C15—H15120.4
C4—C5—H5119.8C11—C16—C15120.26 (19)
C6—C5—H5119.8C11—C16—H16119.9
C5—C6—C1120.2 (2)C15—C16—H16119.9
C5—C6—H6119.9C10—O1—H1O109.5
C1—C6—H6119.9O3—C17—N6125.6 (3)
N1—C7—C9120.61 (17)O3—C17—H17117.2
N1—C7—C1116.18 (16)N6—C17—H17117.2
C9—C7—C1123.18 (16)N6—C18—H18A109.5
N3—C8—N2117.32 (18)N6—C18—H18B109.5
N3—C8—N4119.52 (18)H18A—C18—H18B109.5
N2—C8—N4123.15 (17)N6—C18—H18C109.5
N5—C9—N4119.08 (17)H18A—C18—H18C109.5
N5—C9—C7121.08 (17)H18B—C18—H18C109.5
N4—C9—C7119.84 (16)N6—C19—H19A109.5
C7—N1—N2118.56 (16)N6—C19—H19B109.5
C8—N2—N1120.78 (16)H19A—C19—H19B109.5
C8—N2—H2N119.6N6—C19—H19C109.5
N1—N2—H2N119.6H19A—C19—H19C109.5
C8—N3—H3N117.3 (17)H19B—C19—H19C109.5
C8—N3—H4N118.9 (16)N6—C191—H19D109.5
H3N—N3—H4N123 (2)N6—C191—H19E109.5
C9—N4—C8116.75 (16)H19D—C191—H19E109.5
C9—N5—H5N118.9 (17)N6—C191—H19F109.5
C9—N5—H6N120.5 (18)H19D—C191—H19F109.5
H5N—N5—H6N120 (2)H19E—C191—H19F109.5
O2—C10—O1124.99 (18)C17—N6—C18122.3 (3)
O2—C10—C11120.44 (17)C17—N6—C19120.5 (7)
O1—C10—C11114.57 (17)C18—N6—C19115.1 (8)
C16—C11—C12119.30 (18)C17—N6—C191120.0 (10)
C16—C11—C10120.55 (18)C18—N6—C191116.8 (11)
C6—C1—C2—C30.1 (3)N3—C8—N2—N1175.78 (18)
C7—C1—C2—C3176.74 (18)N4—C8—N2—N15.3 (3)
C6—C1—C2—Cl1178.90 (16)C7—N1—N2—C82.5 (3)
C7—C1—C2—Cl12.3 (3)N5—C9—N4—C8176.74 (18)
C1—C2—C3—C40.3 (3)C7—C9—N4—C82.9 (3)
Cl1—C2—C3—C4179.28 (17)N3—C8—N4—C9178.80 (18)
C1—C2—C3—Cl2178.37 (15)N2—C8—N4—C92.3 (3)
Cl1—C2—C3—Cl20.6 (3)O2—C10—C11—C1617.6 (3)
C2—C3—C4—C50.2 (3)O1—C10—C11—C16162.6 (2)
Cl2—C3—C4—C5178.44 (18)O2—C10—C11—C12161.9 (2)
C3—C4—C5—C60.2 (4)O1—C10—C11—C1217.9 (3)
C4—C5—C6—C10.6 (4)C16—C11—C12—C130.3 (3)
C2—C1—C6—C50.5 (3)C10—C11—C12—C13179.2 (2)
C7—C1—C6—C5177.3 (2)C11—C12—C13—C141.1 (3)
C2—C1—C7—N198.6 (2)C12—C13—C14—C151.0 (3)
C6—C1—C7—N178.1 (2)C12—C13—C14—I1179.31 (17)
C2—C1—C7—C983.6 (2)C13—C14—C15—C160.1 (3)
C6—C1—C7—C999.7 (2)I1—C14—C15—C16179.75 (17)
N1—C7—C9—N5174.13 (19)C12—C11—C16—C150.7 (3)
C1—C7—C9—N58.2 (3)C10—C11—C16—C15179.83 (19)
N1—C7—C9—N45.5 (3)C14—C15—C16—C110.8 (3)
C1—C7—C9—N4172.20 (17)O3—C17—N6—C18176.8 (3)
C9—C7—N1—N22.6 (3)O3—C17—N6—C1914.2 (18)
C1—C7—N1—N2175.25 (17)O3—C17—N6—C19114.7 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O10.861.702.537 (2)166
N3—H3N···O20.82 (3)2.11 (3)2.931 (3)173 (2)
N3—H4N···O3i0.86 (3)2.09 (3)2.926 (3)166 (2)
N5—H5N···N4i0.83 (3)2.17 (3)3.004 (2)179 (2)
N5—H6N···O30.83 (3)2.45 (3)3.016 (3)126 (2)
O1—H1O···N20.821.732.537 (2)167
O1—H1O···N10.822.583.243 (2)139
Symmetry code: (i) x, y, z+1.
(II) 3,5-Diamino-6-(2,3-dichlorophenyl)-1,2,4-triazin-2-ium 4-methylbenzoate N,N-dimethylformamide monosolvate top
Crystal data top
C9H7.41Cl2N5+·C8H7.59O2·C3H7NOF(000) = 968
Mr = 465.34Dx = 1.368 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1583 reflections
a = 9.3976 (12) Åθ = 2.3–24.5°
b = 24.904 (3) ŵ = 0.32 mm1
c = 10.2105 (14) ÅT = 294 K
β = 108.976 (3)°Needle, colourless
V = 2259.8 (5) Å30.18 × 0.11 × 0.08 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5388 independent reflections
Radiation source: fine-focus sealed tube4389 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 28.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1212
Tmin = 0.93, Tmax = 0.96k = 3232
26199 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 1.19 w = 1/[σ2(Fo2) + (0.0585P)2 + 1.0152P]
where P = (Fo2 + 2Fc2)/3
5388 reflections(Δ/σ)max < 0.001
301 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C9H7.41Cl2N5+·C8H7.59O2·C3H7NOV = 2259.8 (5) Å3
Mr = 465.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.3976 (12) ŵ = 0.32 mm1
b = 24.904 (3) ÅT = 294 K
c = 10.2105 (14) Å0.18 × 0.11 × 0.08 mm
β = 108.976 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5388 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4389 reflections with I > 2σ(I)
Tmin = 0.93, Tmax = 0.96Rint = 0.031
26199 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 1.19Δρmax = 0.34 e Å3
5388 reflectionsΔρmin = 0.23 e Å3
301 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6860 (2)0.13241 (9)0.7602 (2)0.0374 (5)
C20.7668 (3)0.18011 (9)0.7750 (2)0.0412 (5)
C30.7470 (3)0.21381 (9)0.6629 (3)0.0463 (6)
C40.6485 (3)0.20004 (10)0.5351 (3)0.0510 (6)
H40.63550.22270.45970.061*
C50.5692 (3)0.15260 (12)0.5190 (3)0.0583 (7)
H50.50290.14320.43250.070*
C60.5880 (3)0.11907 (10)0.6309 (3)0.0517 (6)
H60.53410.08710.61920.062*
C70.7020 (2)0.09595 (9)0.8803 (2)0.0378 (5)
C80.7122 (2)0.02619 (9)1.0784 (2)0.0378 (5)
C90.8192 (2)0.05608 (8)0.9214 (2)0.0368 (5)
N10.6040 (2)0.10032 (8)0.9439 (2)0.0458 (5)
N20.6101 (2)0.06586 (8)1.0477 (2)0.0467 (5)
H2N0.54870.06931.09390.056*0.41 (5)
N30.7075 (3)0.00843 (9)1.1762 (2)0.0496 (5)
H3N0.638 (3)0.0056 (10)1.209 (3)0.042 (7)*
H4N0.762 (3)0.0373 (12)1.187 (3)0.053 (8)*
N40.8189 (2)0.02038 (7)1.01839 (19)0.0393 (4)
N50.9266 (3)0.05401 (9)0.8648 (2)0.0488 (5)
H5N0.996 (3)0.0317 (12)0.897 (3)0.051 (8)*
H6N0.937 (3)0.0775 (11)0.812 (3)0.048 (7)*
Cl10.89091 (10)0.19684 (3)0.93657 (7)0.0692 (3)
Cl20.84167 (12)0.27455 (3)0.68139 (9)0.0841 (3)
C100.3847 (3)0.05427 (10)1.2412 (2)0.0442 (5)
C110.2533 (3)0.06597 (9)1.2887 (2)0.0418 (5)
C120.1406 (3)0.10104 (10)1.2162 (3)0.0491 (6)
H120.14750.11831.13770.059*
C130.0182 (3)0.11049 (11)1.2596 (3)0.0549 (6)
H130.05710.13371.20870.066*
C140.0053 (3)0.08621 (11)1.3773 (3)0.0519 (6)
C150.1192 (3)0.05153 (11)1.4498 (3)0.0548 (7)
H150.11330.03501.52960.066*
C160.2414 (3)0.04092 (11)1.4065 (3)0.0493 (6)
H160.31550.01711.45600.059*
C170.1283 (3)0.09738 (14)1.4244 (3)0.0703 (8)
H17A0.18050.12861.37750.105*0.50
H17B0.09430.10361.52250.105*0.50
H17C0.19500.06711.40310.105*0.50
H17D0.13270.07091.49130.105*0.50
H17E0.21890.09591.34620.105*0.50
H17F0.11820.13241.46560.105*0.50
O10.4019 (2)0.08747 (7)1.1506 (2)0.0605 (5)
H1O0.46940.07681.12260.091*0.59 (5)
O20.4669 (2)0.01563 (8)1.2861 (2)0.0596 (5)
C181.2339 (4)0.14868 (12)0.8138 (3)0.0629 (7)
H181.29200.14270.90550.075*
C191.3951 (4)0.22487 (14)0.8181 (5)0.0886 (11)
H19A1.44980.21070.90780.133*
H19B1.36010.26040.82810.133*
H19C1.45980.22630.76230.133*
C201.1858 (6)0.2010 (2)0.6088 (5)0.1221 (18)
H20A1.25110.19610.55430.183*
H20B1.14890.23720.59870.183*
H20C1.10260.17660.57760.183*
N61.2680 (3)0.19066 (9)0.7522 (3)0.0610 (6)
O31.1325 (3)0.11683 (9)0.7614 (2)0.0757 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0355 (11)0.0367 (11)0.0423 (12)0.0070 (9)0.0159 (9)0.0054 (9)
C20.0465 (13)0.0365 (11)0.0407 (12)0.0034 (9)0.0143 (10)0.0013 (9)
C30.0553 (14)0.0351 (12)0.0516 (14)0.0011 (10)0.0218 (12)0.0052 (10)
C40.0588 (15)0.0492 (14)0.0462 (14)0.0135 (12)0.0187 (12)0.0151 (11)
C50.0565 (16)0.0627 (17)0.0459 (14)0.0005 (13)0.0033 (12)0.0043 (12)
C60.0484 (14)0.0462 (14)0.0559 (15)0.0037 (11)0.0106 (12)0.0053 (11)
C70.0357 (11)0.0344 (11)0.0439 (12)0.0006 (9)0.0137 (9)0.0036 (9)
C80.0349 (11)0.0378 (11)0.0404 (12)0.0021 (9)0.0118 (9)0.0026 (9)
C90.0346 (11)0.0350 (11)0.0407 (11)0.0001 (8)0.0121 (9)0.0028 (9)
N10.0429 (11)0.0445 (11)0.0547 (12)0.0071 (9)0.0224 (9)0.0109 (9)
N20.0440 (11)0.0491 (11)0.0552 (12)0.0092 (9)0.0275 (10)0.0133 (9)
N30.0501 (13)0.0474 (12)0.0597 (14)0.0070 (10)0.0295 (11)0.0149 (10)
N40.0367 (10)0.0381 (10)0.0448 (10)0.0030 (8)0.0153 (8)0.0064 (8)
N50.0483 (12)0.0475 (12)0.0593 (13)0.0141 (10)0.0296 (11)0.0208 (11)
Cl10.0914 (6)0.0581 (4)0.0463 (4)0.0238 (4)0.0060 (3)0.0001 (3)
Cl20.1260 (8)0.0480 (4)0.0734 (5)0.0263 (4)0.0257 (5)0.0113 (4)
C100.0448 (13)0.0445 (13)0.0455 (13)0.0021 (10)0.0175 (10)0.0019 (10)
C110.0424 (12)0.0410 (12)0.0438 (12)0.0053 (10)0.0166 (10)0.0046 (10)
C120.0531 (14)0.0514 (14)0.0457 (13)0.0011 (11)0.0200 (11)0.0042 (11)
C130.0494 (15)0.0605 (16)0.0556 (15)0.0083 (12)0.0181 (12)0.0028 (13)
C140.0471 (14)0.0587 (15)0.0542 (15)0.0046 (12)0.0223 (12)0.0125 (12)
C150.0587 (16)0.0662 (17)0.0467 (14)0.0045 (13)0.0270 (12)0.0029 (12)
C160.0488 (14)0.0536 (14)0.0464 (13)0.0013 (11)0.0169 (11)0.0056 (11)
C170.0605 (18)0.086 (2)0.077 (2)0.0014 (16)0.0386 (16)0.0129 (17)
O10.0660 (12)0.0566 (11)0.0760 (13)0.0149 (9)0.0465 (11)0.0200 (10)
O20.0568 (11)0.0622 (12)0.0698 (12)0.0150 (9)0.0340 (9)0.0197 (10)
C180.0699 (19)0.0603 (17)0.0619 (17)0.0063 (15)0.0262 (15)0.0091 (14)
C190.075 (2)0.073 (2)0.119 (3)0.0149 (18)0.033 (2)0.017 (2)
C200.122 (4)0.122 (4)0.096 (3)0.035 (3)0.001 (3)0.052 (3)
N60.0557 (14)0.0553 (14)0.0725 (16)0.0012 (11)0.0216 (12)0.0072 (12)
O30.0825 (15)0.0663 (13)0.0853 (15)0.0159 (12)0.0366 (13)0.0096 (12)
Geometric parameters (Å, º) top
C1—C61.382 (3)C11—C161.391 (3)
C1—C21.391 (3)C12—C131.380 (4)
C1—C71.494 (3)C12—H120.9300
C2—C31.382 (3)C13—C141.386 (4)
C2—Cl11.733 (2)C13—H130.9300
C3—C41.375 (4)C14—C151.387 (4)
C3—Cl21.734 (2)C14—C171.509 (4)
C4—C51.378 (4)C15—C161.384 (4)
C4—H40.9300C15—H150.9300
C5—C61.379 (4)C16—H160.9300
C5—H50.9300C17—H17A0.9600
C6—H60.9300C17—H17B0.9600
C7—N11.293 (3)C17—H17C0.9600
C7—C91.440 (3)C17—H17D0.9600
C8—N31.331 (3)C17—H17E0.9600
C8—N21.342 (3)C17—H17F0.9600
C8—N41.342 (3)O1—H1O0.8200
C9—N51.318 (3)C18—O31.221 (4)
C9—N41.331 (3)C18—N61.313 (4)
N1—N21.350 (3)C18—H180.9300
N2—H2N0.8600C19—N61.443 (4)
N3—H3N0.83 (3)C19—H19A0.9600
N3—H4N0.87 (3)C19—H19B0.9600
N5—H5N0.84 (3)C19—H19C0.9600
N5—H6N0.82 (3)C20—N61.439 (5)
C10—O21.226 (3)C20—H20A0.9600
C10—O11.289 (3)C20—H20B0.9600
C10—C111.495 (3)C20—H20C0.9600
C11—C121.386 (3)
C6—C1—C2118.6 (2)C13—C14—C15117.7 (2)
C6—C1—C7119.8 (2)C13—C14—C17120.8 (3)
C2—C1—C7121.6 (2)C15—C14—C17121.5 (3)
C3—C2—C1120.4 (2)C16—C15—C14121.6 (2)
C3—C2—Cl1120.66 (19)C16—C15—H15119.2
C1—C2—Cl1118.90 (17)C14—C15—H15119.2
C4—C3—C2120.2 (2)C15—C16—C11120.0 (2)
C4—C3—Cl2118.94 (19)C15—C16—H16120.0
C2—C3—Cl2120.9 (2)C11—C16—H16120.0
C3—C4—C5119.9 (2)C14—C17—H17A109.5
C3—C4—H4120.1C14—C17—H17B109.5
C5—C4—H4120.1H17A—C17—H17B109.5
C4—C5—C6120.1 (2)C14—C17—H17C109.5
C4—C5—H5119.9H17A—C17—H17C109.5
C6—C5—H5119.9H17B—C17—H17C109.5
C5—C6—C1120.8 (2)C14—C17—H17D109.5
C5—C6—H6119.6H17A—C17—H17D141.1
C1—C6—H6119.6H17B—C17—H17D56.3
N1—C7—C9120.9 (2)H17C—C17—H17D56.3
N1—C7—C1117.59 (19)C14—C17—H17E109.5
C9—C7—C1121.47 (19)H17A—C17—H17E56.3
N3—C8—N2117.2 (2)H17B—C17—H17E141.1
N3—C8—N4119.0 (2)H17C—C17—H17E56.3
N2—C8—N4123.8 (2)H17D—C17—H17E109.5
N5—C9—N4119.2 (2)C14—C17—H17F109.5
N5—C9—C7121.4 (2)H17A—C17—H17F56.3
N4—C9—C7119.43 (19)H17B—C17—H17F56.3
C7—N1—N2119.03 (19)H17C—C17—H17F141.1
C8—N2—N1119.75 (19)H17D—C17—H17F109.5
C8—N2—H2N120.1H17E—C17—H17F109.5
N1—N2—H2N120.1C10—O1—H1O109.5
C8—N3—H3N118.1 (17)O3—C18—N6125.8 (3)
C8—N3—H4N118.4 (18)O3—C18—H18117.1
H3N—N3—H4N122 (3)N6—C18—H18117.1
C9—N4—C8116.73 (18)N6—C19—H19A109.5
C9—N5—H5N117.4 (19)N6—C19—H19B109.5
C9—N5—H6N122.0 (19)H19A—C19—H19B109.5
H5N—N5—H6N119 (3)N6—C19—H19C109.5
O2—C10—O1124.1 (2)H19A—C19—H19C109.5
O2—C10—C11121.2 (2)H19B—C19—H19C109.5
O1—C10—C11114.7 (2)N6—C20—H20A109.5
C12—C11—C16118.8 (2)N6—C20—H20B109.5
C12—C11—C10121.2 (2)H20A—C20—H20B109.5
C16—C11—C10120.0 (2)N6—C20—H20C109.5
C13—C12—C11120.5 (2)H20A—C20—H20C109.5
C13—C12—H12119.8H20B—C20—H20C109.5
C11—C12—H12119.8C18—N6—C20119.8 (3)
C12—C13—C14121.4 (3)C18—N6—C19122.7 (3)
C12—C13—H13119.3C20—N6—C19117.3 (3)
C14—C13—H13119.3
C6—C1—C2—C31.2 (3)N3—C8—N2—N1176.2 (2)
C7—C1—C2—C3178.3 (2)N4—C8—N2—N15.1 (3)
C6—C1—C2—Cl1179.52 (18)C7—N1—N2—C83.3 (3)
C7—C1—C2—Cl11.0 (3)N5—C9—N4—C8176.2 (2)
C1—C2—C3—C40.9 (4)C7—C9—N4—C84.0 (3)
Cl1—C2—C3—C4179.8 (2)N3—C8—N4—C9179.8 (2)
C1—C2—C3—Cl2177.56 (18)N2—C8—N4—C91.2 (3)
Cl1—C2—C3—Cl21.7 (3)O2—C10—C11—C12164.4 (2)
C2—C3—C4—C50.2 (4)O1—C10—C11—C1215.1 (3)
Cl2—C3—C4—C5178.3 (2)O2—C10—C11—C1614.6 (4)
C3—C4—C5—C60.3 (4)O1—C10—C11—C16165.9 (2)
C4—C5—C6—C10.0 (4)C16—C11—C12—C130.6 (4)
C2—C1—C6—C50.7 (4)C10—C11—C12—C13178.5 (2)
C7—C1—C6—C5178.8 (2)C11—C12—C13—C141.1 (4)
C6—C1—C7—N183.1 (3)C12—C13—C14—C150.6 (4)
C2—C1—C7—N196.4 (3)C12—C13—C14—C17179.3 (3)
C6—C1—C7—C994.8 (3)C13—C14—C15—C160.5 (4)
C2—C1—C7—C985.7 (3)C17—C14—C15—C16179.6 (3)
N1—C7—C9—N5174.6 (2)C14—C15—C16—C111.0 (4)
C1—C7—C9—N57.6 (3)C12—C11—C16—C150.5 (4)
N1—C7—C9—N45.7 (3)C10—C11—C16—C15179.6 (2)
C1—C7—C9—N4172.2 (2)O3—C18—N6—C202.3 (5)
C9—C7—N1—N21.8 (3)O3—C18—N6—C19176.3 (3)
C1—C7—N1—N2176.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O10.861.722.560 (3)165
N3—H3N···O20.83 (3)2.07 (3)2.895 (3)170 (2)
N3—H4N···O3i0.87 (3)2.20 (3)3.055 (3)168 (3)
N5—H5N···N4i0.84 (3)2.11 (3)2.953 (3)176 (3)
N5—H6N···O30.82 (3)2.29 (3)2.939 (3)137 (2)
O1—H1O···N20.821.752.560 (3)169
O1—H1O···N10.822.603.281 (3)141
Symmetry code: (i) x+2, y, z+2.
(III) 3,5-Diamino-6-(2,3-dichlorophenyl)-1,2,4-triazin-2-ium 3,5-dinitro-2-hydroxybenzoate N,N-dimethylformamide monosolvate top
Crystal data top
C9H8Cl2N5+·C7H3N2O7·C3H7NOZ = 2
Mr = 557.31F(000) = 572
Triclinic, P1Dx = 1.564 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.0227 (5) ÅCell parameters from 6413 reflections
b = 10.5507 (5) Åθ = 2.3–28.2°
c = 12.5359 (6) ŵ = 0.34 mm1
α = 81.858 (1)°T = 294 K
β = 71.888 (1)°Plate, colourless
γ = 70.009 (1)°0.16 × 0.14 × 0.08 mm
V = 1183.1 (1) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5512 independent reflections
Radiation source: fine-focus sealed tube4695 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 28.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1213
Tmin = 0.93, Tmax = 0.97k = 1313
13936 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0912P)2 + 0.4027P]
where P = (Fo2 + 2Fc2)/3
5512 reflections(Δ/σ)max < 0.001
359 parametersΔρmax = 0.87 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C9H8Cl2N5+·C7H3N2O7·C3H7NOγ = 70.009 (1)°
Mr = 557.31V = 1183.1 (1) Å3
Triclinic, P1Z = 2
a = 10.0227 (5) ÅMo Kα radiation
b = 10.5507 (5) ŵ = 0.34 mm1
c = 12.5359 (6) ÅT = 294 K
α = 81.858 (1)°0.16 × 0.14 × 0.08 mm
β = 71.888 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5512 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4695 reflections with I > 2σ(I)
Tmin = 0.93, Tmax = 0.97Rint = 0.019
13936 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.166H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.87 e Å3
5512 reflectionsΔρmin = 0.37 e Å3
359 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.32147 (18)0.0676 (2)0.15864 (16)0.0456 (4)
C20.2720 (2)0.0235 (2)0.08348 (16)0.0478 (4)
C30.2716 (2)0.0907 (2)0.02058 (16)0.0530 (5)
C40.3232 (2)0.2000 (2)0.04979 (19)0.0599 (5)
H40.32310.24490.11920.072*
C50.3744 (3)0.2424 (2)0.0235 (2)0.0620 (5)
H50.41060.31520.00190.074*
C60.3743 (2)0.1809 (2)0.12846 (18)0.0546 (5)
H60.40760.21240.17780.066*
C70.32749 (18)0.00096 (19)0.26975 (15)0.0437 (4)
C80.35065 (19)0.1088 (2)0.47353 (16)0.0451 (4)
C90.19764 (18)0.00600 (19)0.36277 (15)0.0419 (4)
N10.45757 (16)0.04766 (18)0.28557 (14)0.0485 (4)
N20.46764 (17)0.10148 (19)0.38696 (14)0.0484 (4)
H2N0.546 (3)0.128 (3)0.395 (2)0.055 (6)*
N30.3738 (2)0.1646 (2)0.56909 (16)0.0608 (5)
H3N0.472 (3)0.199 (3)0.578 (2)0.078 (8)*
H4N0.300 (3)0.168 (3)0.625 (2)0.059 (7)*
N40.21293 (15)0.06014 (17)0.46196 (13)0.0455 (4)
N50.06415 (17)0.0461 (2)0.35095 (16)0.0506 (4)
H5N0.005 (3)0.039 (3)0.404 (2)0.058 (7)*
H6N0.047 (3)0.080 (2)0.292 (2)0.053 (6)*
Cl10.21436 (7)0.11640 (6)0.11854 (5)0.06715 (19)
Cl20.20376 (7)0.04045 (8)0.11170 (5)0.0756 (2)
C100.7667 (2)0.2492 (2)0.50288 (18)0.0498 (4)
C110.9250 (2)0.31133 (18)0.50556 (17)0.0455 (4)
C121.0400 (2)0.31938 (19)0.40500 (18)0.0480 (4)
C131.1856 (2)0.3784 (2)0.4123 (2)0.0565 (5)
C141.2174 (3)0.4273 (2)0.5117 (2)0.0649 (6)
H141.31490.46410.51440.078*
C151.1020 (3)0.4207 (2)0.6073 (2)0.0613 (6)
C160.9556 (2)0.3632 (2)0.60573 (19)0.0536 (5)
H160.87910.35970.67150.064*
N61.3083 (2)0.3908 (2)0.3079 (2)0.0767 (6)
N71.1328 (4)0.4783 (3)0.7140 (3)0.0868 (8)
O10.74807 (16)0.20284 (19)0.40748 (14)0.0638 (4)
H1O0.82870.20960.36160.096*0.45 (5)
O20.66642 (17)0.24697 (19)0.58995 (14)0.0690 (5)
O31.01384 (17)0.27131 (19)0.30756 (14)0.0644 (4)
H3O0.92440.23710.31710.097*0.55 (5)
O41.3031 (2)0.4378 (3)0.2290 (2)0.0954 (7)
O51.4099 (2)0.3539 (3)0.3108 (3)0.1306 (11)
O61.2619 (3)0.5346 (3)0.7116 (3)0.1258 (10)
O71.0297 (4)0.4646 (3)0.7976 (2)0.1145 (10)
C170.1027 (2)0.2420 (3)0.13863 (19)0.0624 (6)
H170.00260.22630.10250.075*
C180.3508 (3)0.3564 (4)0.1359 (3)0.0978 (10)
H18A0.38890.44570.16390.147*
H18B0.37100.29300.19670.147*
H18C0.39760.35310.08050.147*
C190.1384 (4)0.3904 (3)0.0197 (3)0.0927 (9)
H19A0.03310.34980.04620.139*
H19B0.16120.48440.00810.139*
H19C0.18330.38130.07440.139*
N80.1959 (2)0.32295 (19)0.08637 (15)0.0588 (4)
O80.13443 (18)0.1846 (2)0.23094 (13)0.0686 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0309 (8)0.0541 (10)0.0461 (9)0.0088 (7)0.0072 (7)0.0040 (8)
C20.0356 (8)0.0567 (10)0.0462 (10)0.0131 (7)0.0042 (7)0.0064 (8)
C30.0371 (9)0.0697 (12)0.0431 (9)0.0091 (8)0.0062 (7)0.0055 (9)
C40.0473 (11)0.0702 (13)0.0520 (11)0.0098 (9)0.0113 (9)0.0012 (10)
C50.0569 (12)0.0592 (12)0.0684 (14)0.0220 (10)0.0156 (10)0.0063 (10)
C60.0456 (10)0.0598 (11)0.0520 (11)0.0118 (9)0.0125 (8)0.0026 (9)
C70.0318 (8)0.0542 (10)0.0421 (9)0.0114 (7)0.0072 (7)0.0053 (7)
C80.0312 (8)0.0563 (10)0.0452 (9)0.0109 (7)0.0099 (7)0.0037 (7)
C90.0302 (7)0.0511 (9)0.0425 (9)0.0112 (7)0.0075 (6)0.0068 (7)
N10.0315 (7)0.0628 (10)0.0457 (8)0.0116 (6)0.0072 (6)0.0013 (7)
N20.0268 (7)0.0684 (10)0.0458 (8)0.0106 (7)0.0102 (6)0.0001 (7)
N30.0352 (8)0.0928 (14)0.0469 (9)0.0153 (8)0.0110 (7)0.0071 (9)
N40.0291 (7)0.0621 (9)0.0419 (8)0.0123 (6)0.0077 (6)0.0023 (7)
N50.0301 (7)0.0744 (11)0.0416 (9)0.0106 (7)0.0093 (7)0.0011 (8)
Cl10.0772 (4)0.0768 (4)0.0587 (3)0.0413 (3)0.0147 (3)0.0056 (3)
Cl20.0708 (4)0.1147 (5)0.0507 (3)0.0370 (4)0.0190 (3)0.0087 (3)
C100.0380 (9)0.0512 (10)0.0598 (11)0.0071 (7)0.0178 (8)0.0100 (8)
C110.0404 (9)0.0419 (9)0.0587 (11)0.0099 (7)0.0219 (8)0.0061 (8)
C120.0376 (9)0.0452 (9)0.0645 (12)0.0116 (7)0.0204 (8)0.0030 (8)
C130.0374 (9)0.0517 (10)0.0834 (15)0.0100 (8)0.0225 (9)0.0093 (10)
C140.0497 (12)0.0532 (11)0.1059 (19)0.0087 (9)0.0457 (13)0.0128 (11)
C150.0691 (14)0.0515 (11)0.0807 (15)0.0152 (10)0.0490 (13)0.0041 (10)
C160.0569 (11)0.0507 (10)0.0625 (12)0.0158 (9)0.0291 (10)0.0065 (9)
N60.0354 (9)0.0781 (14)0.1083 (19)0.0086 (9)0.0143 (10)0.0152 (13)
N70.113 (2)0.0758 (14)0.107 (2)0.0322 (14)0.0817 (19)0.0081 (14)
O10.0370 (7)0.0848 (11)0.0636 (9)0.0092 (7)0.0214 (7)0.0069 (8)
O20.0426 (8)0.0944 (12)0.0589 (9)0.0073 (8)0.0120 (7)0.0101 (8)
O30.0435 (8)0.0793 (11)0.0644 (9)0.0150 (7)0.0163 (7)0.0075 (8)
O40.0571 (11)0.1274 (19)0.0874 (14)0.0117 (11)0.0130 (10)0.0202 (13)
O50.0510 (11)0.162 (3)0.180 (3)0.0473 (14)0.0036 (14)0.060 (2)
O60.126 (2)0.129 (2)0.138 (2)0.0029 (16)0.1046 (19)0.0101 (17)
O70.143 (2)0.157 (2)0.0879 (16)0.087 (2)0.0713 (17)0.0403 (17)
C170.0451 (10)0.0726 (14)0.0556 (12)0.0064 (10)0.0073 (9)0.0059 (10)
C180.0559 (15)0.125 (3)0.116 (3)0.0159 (16)0.0430 (17)0.007 (2)
C190.120 (3)0.0789 (18)0.0688 (17)0.0233 (17)0.0283 (17)0.0113 (14)
N80.0602 (10)0.0603 (10)0.0536 (10)0.0103 (8)0.0217 (8)0.0037 (8)
O80.0550 (9)0.0935 (12)0.0511 (8)0.0195 (8)0.0164 (7)0.0095 (8)
Geometric parameters (Å, º) top
C1—C21.386 (3)C11—C161.379 (3)
C1—C61.426 (3)C11—C121.409 (3)
C1—C71.485 (3)C12—O31.323 (3)
C2—C31.394 (3)C12—C131.404 (3)
C2—Cl11.717 (2)C13—C141.368 (4)
C3—C41.379 (3)C13—N61.476 (3)
C3—Cl21.717 (2)C14—C151.373 (4)
C4—C51.370 (3)C14—H140.9300
C4—H40.9300C15—C161.388 (3)
C5—C61.382 (3)C15—N71.467 (3)
C5—H50.9300C16—H160.9300
C6—H60.9300N6—O41.190 (3)
C7—N11.294 (2)N6—O51.219 (3)
C7—C91.464 (2)N7—O71.206 (4)
C8—N31.309 (3)N7—O61.218 (4)
C8—N21.344 (2)O1—H1O0.8200
C8—N41.345 (2)O3—H3O0.8200
C9—N51.308 (2)C17—O81.229 (3)
C9—N41.324 (2)C17—N81.306 (3)
N1—N21.336 (2)C17—H170.9300
N2—H2N0.77 (3)C18—N81.418 (4)
N3—H3N0.96 (3)C18—H18A0.9600
N3—H4N0.85 (3)C18—H18B0.9600
N5—H5N0.82 (3)C18—H18C0.9600
N5—H6N0.81 (3)C19—N81.464 (4)
C10—O21.229 (3)C19—H19A0.9600
C10—O11.271 (3)C19—H19B0.9600
C10—C111.505 (2)C19—H19C0.9600
C2—C1—C6119.73 (18)C12—C11—C10119.52 (17)
C2—C1—C7123.00 (18)O3—C12—C13120.70 (19)
C6—C1—C7117.24 (17)O3—C12—C11122.13 (16)
C1—C2—C3120.33 (19)C13—C12—C11117.15 (19)
C1—C2—Cl1119.45 (15)C14—C13—C12122.5 (2)
C3—C2—Cl1120.20 (16)C14—C13—N6119.08 (19)
C4—C3—C2119.9 (2)C12—C13—N6118.4 (2)
C4—C3—Cl2119.66 (17)C13—C14—C15118.44 (19)
C2—C3—Cl2120.46 (17)C13—C14—H14120.8
C5—C4—C3120.0 (2)C15—C14—H14120.8
C5—C4—H4120.0C14—C15—C16121.8 (2)
C3—C4—H4120.0C14—C15—N7119.6 (2)
C4—C5—C6122.3 (2)C16—C15—N7118.6 (3)
C4—C5—H5118.8C11—C16—C15119.2 (2)
C6—C5—H5118.8C11—C16—H16120.4
C5—C6—C1117.8 (2)C15—C16—H16120.4
C5—C6—H6121.1O4—N6—O5125.0 (3)
C1—C6—H6121.1O4—N6—C13118.6 (2)
N1—C7—C9119.54 (17)O5—N6—C13116.4 (3)
N1—C7—C1115.57 (15)O7—N7—O6124.8 (3)
C9—C7—C1124.57 (15)O7—N7—C15118.1 (3)
N3—C8—N2118.58 (17)O6—N7—C15117.1 (3)
N3—C8—N4120.84 (17)C10—O1—H1O109.5
N2—C8—N4120.59 (17)C12—O3—H3O109.5
N5—C9—N4118.57 (16)O8—C17—N8126.4 (2)
N5—C9—C7120.99 (17)O8—C17—H17116.8
N4—C9—C7120.41 (15)N8—C17—H17116.8
C7—N1—N2117.94 (15)N8—C18—H18A109.5
N1—N2—C8123.83 (16)N8—C18—H18B109.5
N1—N2—H2N116.6 (19)H18A—C18—H18B109.5
C8—N2—H2N119.6 (19)N8—C18—H18C109.5
C8—N3—H3N121.4 (17)H18A—C18—H18C109.5
C8—N3—H4N118.8 (17)H18B—C18—H18C109.5
H3N—N3—H4N120 (2)N8—C19—H19A109.5
C9—N4—C8117.67 (15)N8—C19—H19B109.5
C9—N5—H5N118.2 (18)H19A—C19—H19B109.5
C9—N5—H6N123.5 (17)N8—C19—H19C109.5
H5N—N5—H6N118 (2)H19A—C19—H19C109.5
O2—C10—O1124.92 (18)H19B—C19—H19C109.5
O2—C10—C11119.42 (18)C17—N8—C18121.1 (2)
O1—C10—C11115.66 (18)C17—N8—C19118.9 (2)
C16—C11—C12120.84 (18)C18—N8—C19119.7 (2)
C16—C11—C10119.61 (19)
C6—C1—C2—C31.0 (3)O2—C10—C11—C160.9 (3)
C7—C1—C2—C3178.80 (16)O1—C10—C11—C16179.50 (18)
C6—C1—C2—Cl1177.84 (14)O2—C10—C11—C12177.19 (19)
C7—C1—C2—Cl10.1 (2)O1—C10—C11—C122.4 (3)
C1—C2—C3—C41.3 (3)C16—C11—C12—O3179.52 (18)
Cl1—C2—C3—C4177.60 (16)C10—C11—C12—O31.4 (3)
C1—C2—C3—Cl2177.48 (14)C16—C11—C12—C131.9 (3)
Cl1—C2—C3—Cl23.7 (2)C10—C11—C12—C13179.95 (17)
C2—C3—C4—C50.1 (3)O3—C12—C13—C14178.9 (2)
Cl2—C3—C4—C5178.61 (17)C11—C12—C13—C140.3 (3)
C3—C4—C5—C61.2 (3)O3—C12—C13—N62.6 (3)
C4—C5—C6—C11.4 (3)C11—C12—C13—N6178.74 (18)
C2—C1—C6—C50.3 (3)C12—C13—C14—C151.4 (3)
C7—C1—C6—C5177.62 (18)N6—C13—C14—C15177.0 (2)
C2—C1—C7—N1119.4 (2)C13—C14—C15—C161.6 (3)
C6—C1—C7—N158.5 (2)C13—C14—C15—N7177.0 (2)
C2—C1—C7—C967.1 (3)C12—C11—C16—C151.7 (3)
C6—C1—C7—C9115.1 (2)C10—C11—C16—C15179.81 (18)
N1—C7—C9—N5176.76 (19)C14—C15—C16—C110.0 (3)
C1—C7—C9—N53.4 (3)N7—C15—C16—C11178.59 (19)
N1—C7—C9—N41.2 (3)C14—C13—N6—O4129.4 (3)
C1—C7—C9—N4174.58 (18)C12—C13—N6—O449.1 (3)
C9—C7—N1—N21.3 (3)C14—C13—N6—O549.1 (4)
C1—C7—N1—N2175.22 (17)C12—C13—N6—O5132.4 (3)
C7—N1—N2—C80.6 (3)C14—C15—N7—O7176.0 (3)
N3—C8—N2—N1179.6 (2)C16—C15—N7—O75.3 (4)
N4—C8—N2—N10.3 (3)C14—C15—N7—O62.6 (4)
N5—C9—N4—C8177.68 (18)C16—C15—N7—O6176.1 (2)
C7—C9—N4—C80.4 (3)O8—C17—N8—C181.8 (4)
N3—C8—N4—C9179.5 (2)O8—C17—N8—C19175.6 (3)
N2—C8—N4—C90.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O10.77 (3)1.96 (3)2.725 (2)176 (3)
N3—H3N···O20.96 (3)1.89 (3)2.845 (2)174 (3)
N3—H4N···O8i0.85 (3)2.07 (3)2.922 (2)174 (2)
N5—H5N···N4i0.82 (3)2.19 (3)3.000 (2)169 (2)
N5—H6N···O80.81 (3)2.09 (3)2.759 (2)139 (2)
O1—H1O···O30.821.692.460 (2)157
O3—H3O···O10.821.722.460 (2)148
Symmetry code: (i) x, y, z+1.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC9H7.54Cl2N5+·C7H4.46IO2·C3H7NOC9H7.41Cl2N5+·C8H7.59O2·C3H7NOC9H8Cl2N5+·C7H3N2O7·C3H7NO
Mr577.20465.34557.31
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/nTriclinic, P1
Temperature (K)294294294
a, b, c (Å)9.7282 (6), 24.9148 (16), 10.0307 (6)9.3976 (12), 24.904 (3), 10.2105 (14)10.0227 (5), 10.5507 (5), 12.5359 (6)
α, β, γ (°)90, 108.618 (1), 9090, 108.976 (3), 9081.858 (1), 71.888 (1), 70.009 (1)
V3)2304.0 (2)2259.8 (5)1183.1 (1)
Z442
Radiation typeMo KαMo KαMo Kα
µ (mm1)1.660.320.34
Crystal size (mm)0.15 × 0.13 × 0.060.18 × 0.11 × 0.080.16 × 0.14 × 0.08
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Bruker SMART APEX CCD area-detector
diffractometer
Bruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker,2001)
Multi-scan
(SADABS; Bruker, 2001)
Multi-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.75, 0.890.93, 0.960.93, 0.97
No. of measured, independent and
observed [I > 2σ(I)] reflections
26643, 5481, 4776 26199, 5388, 4389 13936, 5512, 4695
Rint0.0230.0310.019
(sin θ/λ)max1)0.6610.6600.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.077, 1.02 0.071, 0.159, 1.19 0.056, 0.166, 1.06
No. of reflections548153885512
No. of parameters308301359
No. of restraints200
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.68, 0.270.34, 0.230.87, 0.37

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Selected geometric parameters (Å, ° ) for (I), (II) and (III) top
Parameter(I)(II)(III)
C10—O11.280 (2)1.289 (3)1.271 (3)
C10—O21.230 (3)1.226 (3)1.229 (3)
O1—C10—C11114.55 (17)114.7 (2)115.66 (18)
O2—C10—C11120.47 (18)121.2 (2)119.42 (18)
O1—C10—O2124.97 (18)124.1 (2)124.92 (18)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O10.861.702.537 (2)166
N3—H3N···O20.82 (3)2.11 (3)2.931 (3)173 (2)
N3—H4N···O3i0.86 (3)2.09 (3)2.926 (3)166 (2)
N5—H5N···N4i0.83 (3)2.17 (3)3.004 (2)179 (2)
N5—H6N···O30.83 (3)2.45 (3)3.016 (3)126 (2)
O1—H1O···N20.821.732.537 (2)167
O1—H1O···N10.822.583.243 (2)139
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O10.861.722.560 (3)164.7
N3—H3N···O20.83 (3)2.07 (3)2.895 (3)170 (2)
N3—H4N···O3i0.87 (3)2.20 (3)3.055 (3)168 (3)
N5—H5N···N4i0.84 (3)2.11 (3)2.953 (3)176 (3)
N5—H6N···O30.82 (3)2.29 (3)2.939 (3)137 (2)
O1—H1O···N20.821.752.560 (3)169.1
O1—H1O···N10.822.603.281 (3)141.1
Symmetry code: (i) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O10.77 (3)1.96 (3)2.725 (2)176 (3)
N3—H3N···O20.96 (3)1.89 (3)2.845 (2)174 (3)
N3—H4N···O8i0.85 (3)2.07 (3)2.922 (2)174 (2)
N5—H5N···N4i0.82 (3)2.19 (3)3.000 (2)169 (2)
N5—H6N···O80.81 (3)2.09 (3)2.759 (2)139 (2)
O1—H1O···O30.821.692.460 (2)157
O3—H3O···O10.821.722.460 (2)148
Symmetry code: (i) x, y, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds