Download citation
Download citation
link to html
The title cocrystal contains two chiral conformational diastereomers, viz. (1S,2R,RN)- and (1S,2R,SN)-, of [2,4-di-tert-butyl-6-{[(1-oxido-1-phenyl­propan-2-yl)(methyl)amino]methyl}phenolato](methanol)-cis-dioxidomolybdenum(VI), [Mo(C25H35NO2)O2(CH3OH)], representing the first example of a structurally characterized molybdenum complex with enanti­omerically pure ephedrine derivative ligands. The MoVI cations exhibit differently distorted octa­hedral coordination environments, with two oxide ligands positioned cis to each other. The remainder of the coordination comprises phenoxide, alkoxide and methanol O atoms, with an amine N atom completing the octa­hedron. The distinct complexes are linked by strong inter­molecular O—H...O hydrogen bonds, resulting in one-dimensional mol­ecular chains. Furthermore, the phenyl rings are involved in weak T-shaped/edge-to-face π–π inter­actions with each other.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113010652/lg3109sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113010652/lg3109Isup2.hkl
Contains datablock I

mol

MDL mol file https://doi.org/10.1107/S0108270113010652/lg3109Isup4.mol
Supplementary material

CCDC reference: 950360

Comment top

For the past several decades, high-valent molybdenum complexes have gained considerable attention in various catalytic oxidation reactions (Arzoumanian, 1998), as well as biological model compounds (Hille, 1996; Collison et al., 1996). Recently, oxomolybdenum complexes have appeared in novel studies concerning, for example, X—H (X = Si, B, P or H) bond activation (Sousa et al., 2012) and hydrogen production from water (Karunadasa et al., 2010), previously dominated by more noble metals. Ephedrine and its N-substituted derivatives are inexpensive, readily available in enantiomerically pure forms and relatively easy to mould, and thus are an interesting group of chiral ligands for various purposes (Yuan et al., 2003; Kuznetsov et al., 1999; Bouquillon et al., 1999). These two strands of interest are combined in the title compound, (I).

The asymmetric unit of (I) contains two distinct MoVI complexes, A and B, which are conformational diastereomers (Fig. 1 and Table 1). The bonding and geometric parameters around the MoVI cation of A and B are comparable to some extent, but several differences can be noted, so the different ligand geometries of the two diastereomers will be discussed.

In A and B, the tridentate doubly deprotonated 2,4-di-tert-butyl-6-{[(1-oxido-1-phenylpropan-2-yl)(methyl)amino]methyl}phenolate (L12-) ligand wraps around the cis-[MoO2]2+ fragment, with an additional coordinated methanol molecule producing a heavily distorted octahedral coordination geometry for the MoVI cation. The oxide ligands are strongly bound, with MoO distances of about 1.7 Å, thus indicating clear double-bond character. The phenoxo and alkoxo O atoms are arranged trans to each other, with a marginally longer Mo—O(phenoxo) distance compared with Mo—O(alkoxo), as might be expected from the different electronic nature and steric hindrance of the groups. The amine N and methanol O atoms are trans to the MoO groups and rather weakly bound to the MoVI cation, with relatively long bond lengths of over 2.35 Å. This weaker bonding can be explained by the lack of negative partial charge on the coordinating atoms (amine N and methanol O) and by the considerable trans influence induced by the oxide ligands. The different character of the coordinating groups emphasizes the distortion of the MoVI octahedron, which is evident from the trans angles around the metal cation (O1—Mo1—N8, O2—Mo1—O5 and O3—Mo1—O4 for A, and O6—Mo2—N38, O7—Mo2—O10 and O8—Mo2—O9 for B) deviating by 7–34° from the value of 180° for a perfect octahedron. In general, the bond lengths and angles involving the MoVI centres are in good agreement with previous studies concerning [MoO2]2+ aminophenolates (Lehtonen & Sillanpää, 2005; Riisiö et al., 2013) and aminoalcoholates (Cross et al., 1999). The Flack (1983) parameter of 0.00 (3) indicates that the crystals of (I) are enantiomerically pure and the absolute configuration has been determined correctly.

The ligand geometries of complexes A and B are notably different, which can be seen from an overlay of the molecules (Fig. 2). The two carbon stereocentres of the L12- ligand have the same configuration (1S,2R) in both molecules, but the amine N atoms have different stereochemistries due to the conformational change of the ligand, producing R (N8) and S (N38) configurations for A and B, respectively. This difference induces major changes in the coordination angles (Mo—O—C), general conformation and `folding' of the ligand (Table 1). The most significant conformational changes of the ligand are seen when comparing the chelate angles of the ligands (N8—C9—C10—O4 and N38—C39—C40—O9; Table 1). Also, the dihedral angles related to the position of methyl substituents C17 and C47 (C17—N8—C9—C18 and C47—N38—C39—C48) are quite dissimilar in A and B (Table 1). The Mo1—O3 bond is slightly shorter than Mo2—O8, which might be due to the increased π-bonding ability of atom O3 because of the larger Mo—O—C angle. The pyramidality of the amine N atom has been related to the donor ability of the atom (Hänninen et al., 2011). For B, the dihedral angle indicating the pyramidality of the N atom (C37—C39—C47—N48) is -35.9 (3)°, while the corresponding angle for A (C7—C9—C17—N8) is only 33.9 (2)°, indicating a less pyramidalized arrangement. The shorter Mo—N bond for complex B is in agreement with the above conclusion. Furthermore, the shorter Mo1—O5 bond compared with Mo2—O10 can be attributed to the tighter hydrogen bonding (O5—H5O···O6i versus O10—H10O···O1; see Table 2 for symmetry code).

The solid-state ordering of the complexes is governed by strong intermolecular hydrogen bonds from the coordinated methanol molecule to an oxide ligand of a neighbouring complex (Table 2). These hydrogen bonds bind the molecules together, forming a one-dimensional chain of complexes (Fig. 3a). Furthermore, T-shaped/edge-to-face ππ interactions are present between the phenyl rings of the ephedrine part of the ligands (Fig. 3b). The distances between phenyl-ring centroids are in the range 4.7–5.2 Å and the angles between the phenyl-ring planes vary from 58 to 89°, thus supporting the presence of ππ interactions. Both of the preceding effects can be seen to enhance the crystallization of the compounds, thus contributing to the good quality and stability of the single crystals. The solid-state structure of the complex does not contain any additional noncoordinating solvents or notable cavities.

Related literature top

For related literature, see: Arzoumanian (1998); Bouquillon et al. (1999); Chen et al. (1976); Collison et al. (1996); Cross et al. (1999); Flack (1983); Hänninen et al. (2011); Hille (1996); Karunadasa et al. (2010); Kuznetsov et al. (1999); Lehtonen & Sillanpää (2005); Riisiö et al. (2013); Sousa et al. (2012); Yuan et al. (2003).

Experimental top

MoO2(acac)2 (acac is acetylacetate) was prepared according to the literature procedure of Chen et al. (1976). 2,4-Di-tert-butyl-6-{[(1-hydroxy-1-phenylpropan-2-yl)(methyl)amino]methyl}phenol (H2L1) was synthesized by dissolving equimolar amounts of 2,4-di-tert-butylphenol, formaldehyde (36.5% water solution) and (1S,2R)-(+)-ephedrine hydrochloride in methanol. Two equivalents of triethylamine were added and the mixture was refluxed for two weeks, after which time the reaction did not proceed any further and roughly half of the starting materials were converted to products (determined by high-performance liquid chromatography). Small amounts of ligand H2L1 could be separated by crystallization from the methanol solution in a freezer and were used in the complexation reaction. Cocrystals were prepared by dissolving H2L1 (0.10 mmol) and MoO2(acac)2 (0.10 mmol) in methanol (4 ml). The solution was stirred for 20 h, filtered and placed in a freezer. Pale-yellow crystals of (I) suitable for X-ray diffraction formed within a few days.

Refinement top

All C-bound H atoms were placed in idealized positions and refined in riding mode, with C—H = 0.93 (aromatic), 0.96 (methyl) or 0.97 Å (methylene), and with Uiso(H) = 1.5Ueq(C) for methyl H atoms or 1.2Ueq(C) for aromatic and methylene H atoms. Hydroxy H atoms were located from the electron-density map and O—H distances restrained to 0.82 (1) Å. Reflections 102, 002 and 101 were omitted from the data because the Fo were considerably smaller than the Fc, as these reflections were partially obscured by the beam-stop during the data collection.

Computing details top

Data collection: COLLECT (Nonius, 2004); cell refinement: SCALEPACK (Otwinowski & Minor 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: DIAMOND (Brandenburg, 1999) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of complexes A (top) and B (bottom), with the atom-numbering schemes. Displacement ellipsoids are drawn at the 50% probability level and C-bound H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Overlay capped-sticks presentation of complexes A (green in the electronic version of the paper) and B (yellow). The overlaid atom pairs are C6/C36, N8/N38 and Mo1/Mo2.
[Figure 3] Fig. 3. (a) A capped-sticks presentation of the O—H···O hydrogen bonds (dashed lines) forming chains of complexes in the b direction, and (b) the T-shaped/edge-to-face ππ interactions (dashed lines and shaded hexagons) in the structure.
[(1S,2R,RN)-2,4-Di-tert-butyl-6-{[(1-oxido-1-phenylpropan-2-yl)(methyl)amino]methyl}phenolato](methanol)-cis-dioxidomolybdenum(VI)–[(1S,2R,SN)-2,4-di-tert-butyl-6-{[(1-oxido-1-phenylpropan-2-yl)(methyl)amino]methyl}phenolato](methanol)-cis-dioxidomolybdenum(VI) top
Crystal data top
[Mo(C25H35NO2)O2(CH4O)]F(000) = 1136
Mr = 541.52Dx = 1.383 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 4502 reflections
a = 16.1560 (4) Åθ = 0.4–28.7°
b = 8.4129 (1) ŵ = 0.54 mm1
c = 20.3545 (6) ÅT = 123 K
β = 109.934 (1)°Plate, yellow
V = 2600.80 (10) Å30.36 × 0.16 × 0.12 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
9756 independent reflections
Radiation source: Enraf–Nonius FR5908963 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 9 pixels mm-1θmax = 26°, θmin = 2.6°
CCD rotation images, thick slices scansh = 1419
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
k = 1010
Tmin = 0.608, Tmax = 0.746l = 2524
15118 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.P)2 + 2.3404P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
9756 reflectionsΔρmax = 0.36 e Å3
621 parametersΔρmin = 0.54 e Å3
3 restraintsAbsolute structure: Flack (1983), with 4298 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (3)
Crystal data top
[Mo(C25H35NO2)O2(CH4O)]V = 2600.80 (10) Å3
Mr = 541.52Z = 4
Monoclinic, P21Mo Kα radiation
a = 16.1560 (4) ŵ = 0.54 mm1
b = 8.4129 (1) ÅT = 123 K
c = 20.3545 (6) Å0.36 × 0.16 × 0.12 mm
β = 109.934 (1)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
9756 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
8963 reflections with I > 2σ(I)
Tmin = 0.608, Tmax = 0.746Rint = 0.033
15118 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.085Δρmax = 0.36 e Å3
S = 1.04Δρmin = 0.54 e Å3
9756 reflectionsAbsolute structure: Flack (1983), with 4298 Friedel pairs
621 parametersAbsolute structure parameter: 0.00 (3)
3 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.356925 (17)0.49021 (4)0.849500 (15)0.01348 (7)
Mo20.050199 (17)0.97967 (4)0.765051 (15)0.01410 (7)
O10.27783 (17)0.6343 (3)0.81671 (15)0.0201 (6)
O20.43944 (17)0.5867 (3)0.91100 (15)0.0204 (6)
O30.40185 (14)0.4785 (4)0.77379 (12)0.0166 (5)
O40.30770 (17)0.3748 (3)0.90769 (14)0.0174 (6)
O50.25127 (18)0.3246 (3)0.76682 (16)0.0205 (6)
O60.11718 (16)1.1430 (3)0.77312 (14)0.0194 (6)
O70.04313 (18)1.0539 (3)0.77283 (15)0.0220 (6)
O80.00846 (15)0.9542 (3)0.66421 (13)0.0163 (6)
O90.10678 (18)0.8852 (3)0.85415 (14)0.0215 (6)
O100.16371 (19)0.8432 (3)0.74084 (16)0.0232 (6)
N80.44682 (19)0.2510 (3)0.88457 (17)0.0153 (7)
N380.0070 (2)0.7147 (3)0.76097 (17)0.0144 (7)
C10.4698 (2)0.4135 (4)0.7575 (2)0.0151 (8)
C20.5071 (2)0.4983 (5)0.71536 (17)0.0144 (7)
C30.5759 (2)0.4251 (4)0.7002 (2)0.0172 (8)
H30.60060.47850.67130.021*
C40.6100 (2)0.2761 (4)0.7259 (2)0.0152 (8)
C50.5708 (2)0.1958 (4)0.7672 (2)0.0156 (8)
H50.59210.09640.78510.019*
C60.4998 (2)0.2618 (4)0.7824 (2)0.0148 (8)
C70.4526 (2)0.1662 (4)0.8221 (2)0.0150 (8)
H7A0.39360.14180.7910.018*
H7B0.48340.06650.83690.018*
C90.4055 (2)0.1524 (4)0.9274 (2)0.0156 (8)
H90.45290.09890.96430.019*
C100.3633 (2)0.2756 (4)0.9622 (2)0.0165 (8)
H100.41040.34190.99310.02*
C110.3113 (2)0.2061 (4)1.0049 (2)0.0169 (8)
C120.2225 (3)0.1694 (4)0.9744 (2)0.0210 (9)
H120.19360.18950.92720.025*
C130.1772 (3)0.1031 (5)1.0141 (2)0.0233 (9)
H130.11780.0790.99350.028*
C140.2195 (3)0.0722 (5)1.0845 (2)0.0291 (10)
H140.18850.02691.11080.035*
C150.3075 (3)0.1086 (5)1.1155 (2)0.0284 (10)
H150.33630.08771.16270.034*
C160.3528 (3)0.1773 (5)1.0753 (2)0.0226 (9)
H160.41190.2041.09620.027*
C170.5389 (2)0.2908 (4)0.9307 (2)0.0193 (8)
H17A0.57320.19520.94240.029*
H17B0.53730.34050.97280.029*
H17C0.5650.36220.90660.029*
C180.3408 (3)0.0267 (4)0.8868 (2)0.0204 (9)
H18A0.29280.07690.85120.031*
H18B0.31850.03070.9180.031*
H18C0.37010.04570.86550.031*
C190.4739 (2)0.6659 (4)0.6866 (2)0.0148 (8)
C200.3757 (3)0.6624 (5)0.6435 (2)0.0211 (9)
H20A0.35660.76730.62650.032*
H20B0.34310.62640.67220.032*
H20C0.36580.59130.60470.032*
C210.4897 (3)0.7825 (4)0.7484 (2)0.0218 (9)
H21A0.55170.78950.7740.033*
H21B0.45960.74480.77870.033*
H21C0.46760.88570.73080.033*
C220.5231 (3)0.7302 (5)0.6399 (2)0.0234 (9)
H22A0.51510.6590.60140.035*
H22B0.58470.73870.66660.035*
H22C0.50040.83310.62250.035*
C230.6875 (2)0.2064 (4)0.7074 (2)0.0186 (8)
C240.6578 (3)0.1755 (5)0.6289 (2)0.0283 (10)
H24A0.70570.13040.61730.042*
H24B0.640.27380.60410.042*
H24C0.60910.10280.61590.042*
C250.7202 (3)0.0488 (5)0.7461 (3)0.0281 (10)
H25A0.67290.0270.73370.042*
H25B0.740.0670.79570.042*
H25C0.7680.00810.73320.042*
C260.7648 (3)0.3256 (5)0.7293 (3)0.0290 (10)
H26A0.78420.3410.7790.043*
H26B0.74570.42540.70610.043*
H26C0.81250.28460.71630.043*
C270.2057 (3)0.3818 (5)0.6974 (2)0.0246 (9)
H27A0.16750.46770.69940.037*
H27B0.17140.29720.66950.037*
H27C0.24770.41860.6770.037*
C310.0700 (2)0.8955 (4)0.6205 (2)0.0162 (8)
C320.1222 (2)0.9814 (5)0.56211 (17)0.0153 (6)
C330.2021 (3)0.9153 (4)0.5224 (2)0.0198 (8)
H330.23770.97270.48420.024*
C340.2327 (2)0.7675 (4)0.5362 (2)0.0169 (8)
C350.1763 (3)0.6818 (4)0.5922 (2)0.0192 (8)
H350.19320.58180.60250.023*
C360.0952 (3)0.7431 (4)0.6330 (2)0.0180 (8)
C370.0306 (3)0.6443 (4)0.6895 (2)0.0179 (8)
H37A0.05570.53970.68980.021*
H37B0.02270.63110.67830.021*
C390.0661 (2)0.6177 (4)0.8105 (2)0.0162 (8)
H390.10640.59330.78520.019*
C400.1195 (2)0.7236 (4)0.8736 (2)0.0174 (8)
H400.18180.70080.88210.021*
C410.1049 (3)0.6964 (4)0.9425 (2)0.0196 (8)
C420.0449 (3)0.7818 (5)0.9626 (2)0.0242 (9)
H420.00950.85690.93230.029*
C430.0364 (3)0.7575 (6)1.0275 (3)0.0371 (12)
H430.00450.81611.04020.045*
C440.0882 (4)0.6474 (6)1.0731 (3)0.0459 (15)
H440.08310.63211.11680.055*
C450.1484 (4)0.5591 (6)1.0528 (3)0.0457 (15)
H450.1830.48261.08270.055*
C460.1568 (3)0.5850 (5)0.9886 (2)0.0301 (10)
H460.19790.52690.97590.036*
C470.0864 (2)0.7173 (4)0.7812 (2)0.0190 (8)
H47A0.12840.79070.75180.029*
H47B0.07070.75020.82910.029*
H47C0.11180.61290.77590.029*
C480.0382 (3)0.4583 (5)0.8310 (2)0.0247 (9)
H48A0.00090.4750.85830.037*
H48B0.08940.39950.85790.037*
H48C0.00660.39950.78960.037*
C490.0901 (2)1.1420 (4)0.5419 (2)0.0183 (8)
C500.0758 (3)1.2651 (5)0.6011 (2)0.0259 (10)
H50A0.06351.36720.58550.039*
H50B0.02711.23270.64120.039*
H50C0.1281.27190.61350.039*
C510.0040 (3)1.1164 (5)0.5272 (3)0.0296 (10)
H51A0.01391.04250.48930.044*
H51B0.041.07460.56820.044*
H51C0.01581.21590.51480.044*
C520.1576 (3)1.2143 (5)0.4765 (2)0.0343 (11)
H52A0.16761.14250.43790.051*
H52B0.13551.31340.46580.051*
H52C0.21191.23250.48470.051*
C530.3239 (3)0.7063 (4)0.4909 (2)0.0199 (9)
C540.3945 (3)0.8249 (5)0.4944 (2)0.0260 (10)
H54A0.39260.83470.54190.039*
H54B0.45150.78740.46580.039*
H54C0.38350.92670.47770.039*
C550.3446 (3)0.5445 (5)0.5170 (2)0.0291 (11)
H55A0.30410.46610.51170.044*
H55B0.40360.51360.490.044*
H55C0.33890.55270.56530.044*
C560.3284 (3)0.6866 (6)0.4145 (2)0.0316 (11)
H56A0.31760.78730.39670.047*
H56B0.38580.64890.38680.047*
H56C0.28470.61140.41240.047*
C570.2059 (3)0.9108 (5)0.6966 (2)0.0253 (9)
H57A0.16220.94410.65360.038*
H57B0.24370.83310.6870.038*
H57C0.24021.00090.71940.038*
H5O0.225 (3)0.264 (6)0.784 (3)0.059 (19)*
H10O0.198 (2)0.786 (4)0.7704 (18)0.025 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01271 (14)0.01256 (14)0.01522 (15)0.00186 (15)0.00483 (11)0.00129 (16)
Mo20.01390 (14)0.01320 (14)0.01498 (15)0.00125 (16)0.00462 (11)0.00027 (17)
O10.0192 (14)0.0187 (14)0.0253 (17)0.0064 (11)0.0112 (13)0.0058 (12)
O20.0198 (14)0.0185 (14)0.0218 (16)0.0009 (11)0.0057 (12)0.0018 (11)
O30.0162 (11)0.0170 (11)0.0183 (12)0.0046 (13)0.0080 (10)0.0024 (14)
O40.0175 (14)0.0164 (13)0.0167 (15)0.0030 (10)0.0038 (12)0.0048 (11)
O50.0201 (15)0.0209 (15)0.0186 (16)0.0056 (11)0.0042 (13)0.0036 (12)
O60.0159 (14)0.0202 (14)0.0189 (15)0.0040 (11)0.0018 (12)0.0017 (11)
O70.0250 (15)0.0180 (13)0.0261 (17)0.0022 (11)0.0126 (13)0.0038 (11)
O80.0128 (12)0.0187 (16)0.0137 (13)0.0013 (10)0.0004 (10)0.0025 (10)
O90.0281 (16)0.0177 (14)0.0133 (15)0.0039 (11)0.0000 (12)0.0030 (11)
O100.0190 (15)0.0247 (16)0.0243 (18)0.0087 (12)0.0052 (13)0.0106 (13)
N80.0126 (16)0.0148 (16)0.0169 (17)0.0018 (12)0.0030 (13)0.0029 (13)
N380.0151 (16)0.0124 (15)0.0152 (17)0.0000 (12)0.0044 (14)0.0012 (12)
C10.0107 (18)0.0165 (17)0.016 (2)0.0013 (14)0.0022 (16)0.0034 (15)
C20.0159 (16)0.0121 (17)0.0136 (16)0.0056 (17)0.0030 (13)0.0054 (18)
C30.019 (2)0.0149 (18)0.018 (2)0.0038 (14)0.0066 (17)0.0004 (14)
C40.0123 (18)0.0146 (18)0.017 (2)0.0039 (14)0.0036 (16)0.0061 (15)
C50.0131 (19)0.0142 (18)0.019 (2)0.0041 (14)0.0041 (16)0.0020 (15)
C60.0171 (19)0.0136 (18)0.014 (2)0.0039 (14)0.0054 (16)0.0050 (15)
C70.0186 (19)0.0118 (18)0.015 (2)0.0012 (14)0.0067 (16)0.0004 (14)
C90.0176 (19)0.0171 (19)0.0121 (19)0.0019 (15)0.0050 (16)0.0026 (15)
C100.0167 (19)0.0183 (19)0.013 (2)0.0021 (14)0.0026 (16)0.0022 (15)
C110.020 (2)0.0157 (18)0.018 (2)0.0030 (14)0.0110 (17)0.0002 (15)
C120.020 (2)0.019 (2)0.024 (2)0.0037 (15)0.0065 (18)0.0061 (16)
C130.016 (2)0.024 (2)0.030 (3)0.0018 (15)0.0075 (18)0.0040 (17)
C140.028 (2)0.031 (2)0.036 (3)0.0010 (18)0.020 (2)0.006 (2)
C150.026 (2)0.044 (3)0.017 (2)0.0033 (19)0.0083 (19)0.0087 (19)
C160.017 (2)0.031 (2)0.018 (2)0.0010 (16)0.0041 (17)0.0013 (17)
C170.0128 (19)0.020 (2)0.023 (2)0.0003 (15)0.0033 (17)0.0006 (16)
C180.021 (2)0.020 (2)0.024 (2)0.0021 (14)0.0115 (17)0.0007 (15)
C190.0174 (19)0.0120 (18)0.014 (2)0.0013 (14)0.0035 (16)0.0031 (14)
C200.024 (2)0.0166 (19)0.022 (2)0.0026 (15)0.0063 (18)0.0006 (16)
C210.026 (2)0.0152 (19)0.022 (2)0.0018 (16)0.0051 (19)0.0045 (17)
C220.026 (2)0.016 (2)0.031 (3)0.0010 (16)0.014 (2)0.0065 (17)
C230.017 (2)0.0172 (19)0.023 (2)0.0019 (15)0.0079 (17)0.0044 (16)
C240.028 (2)0.031 (2)0.027 (3)0.0009 (18)0.011 (2)0.0077 (19)
C250.026 (2)0.025 (2)0.038 (3)0.0091 (17)0.017 (2)0.0059 (18)
C260.017 (2)0.026 (2)0.047 (3)0.0009 (17)0.014 (2)0.006 (2)
C270.027 (2)0.029 (2)0.015 (2)0.0055 (17)0.0037 (18)0.0007 (17)
C310.0136 (19)0.0174 (19)0.018 (2)0.0000 (14)0.0059 (16)0.0021 (16)
C320.0140 (15)0.0122 (15)0.0189 (17)0.0026 (19)0.0045 (13)0.003 (2)
C330.019 (2)0.0200 (19)0.017 (2)0.0016 (15)0.0016 (17)0.0027 (16)
C340.0168 (19)0.0192 (19)0.013 (2)0.0027 (15)0.0029 (16)0.0030 (15)
C350.023 (2)0.0171 (19)0.018 (2)0.0027 (15)0.0067 (17)0.0021 (15)
C360.026 (2)0.0142 (19)0.015 (2)0.0052 (15)0.0078 (17)0.0001 (15)
C370.024 (2)0.0082 (17)0.017 (2)0.0001 (14)0.0010 (17)0.0009 (15)
C390.0186 (19)0.0157 (19)0.014 (2)0.0041 (15)0.0051 (16)0.0021 (15)
C400.0142 (19)0.0194 (19)0.018 (2)0.0003 (15)0.0051 (16)0.0023 (16)
C410.025 (2)0.0170 (19)0.017 (2)0.0049 (15)0.0082 (18)0.0019 (15)
C420.018 (2)0.030 (2)0.023 (2)0.0072 (16)0.0057 (18)0.0093 (18)
C430.036 (3)0.049 (3)0.035 (3)0.022 (2)0.023 (2)0.021 (2)
C440.073 (4)0.051 (3)0.018 (3)0.037 (3)0.020 (3)0.010 (2)
C450.078 (4)0.034 (3)0.015 (3)0.011 (3)0.003 (3)0.008 (2)
C460.046 (3)0.020 (2)0.019 (2)0.0014 (19)0.004 (2)0.0032 (17)
C470.017 (2)0.0187 (19)0.021 (2)0.0033 (15)0.0062 (17)0.0008 (16)
C480.033 (2)0.018 (2)0.019 (2)0.0001 (17)0.0041 (17)0.0056 (17)
C490.020 (2)0.0127 (18)0.019 (2)0.0022 (15)0.0024 (17)0.0041 (15)
C500.035 (2)0.0132 (19)0.028 (3)0.0007 (17)0.009 (2)0.0025 (17)
C510.034 (3)0.024 (2)0.037 (3)0.0005 (18)0.021 (2)0.0058 (19)
C520.038 (3)0.023 (2)0.028 (3)0.0079 (18)0.007 (2)0.0092 (19)
C530.022 (2)0.0177 (19)0.015 (2)0.0060 (15)0.0004 (17)0.0012 (15)
C540.017 (2)0.028 (2)0.031 (3)0.0026 (16)0.0049 (19)0.0046 (19)
C550.026 (2)0.023 (2)0.031 (3)0.0084 (16)0.001 (2)0.0040 (18)
C560.030 (2)0.042 (3)0.022 (2)0.013 (2)0.007 (2)0.007 (2)
C570.026 (2)0.034 (2)0.020 (2)0.0051 (17)0.0127 (19)0.0019 (18)
Geometric parameters (Å, º) top
Mo1—O11.722 (3)C23—C261.543 (5)
Mo1—O21.693 (3)C24—H24A0.96
Mo1—O31.917 (2)C24—H24B0.96
Mo1—O41.903 (3)C24—H24C0.96
Mo1—O52.393 (3)C25—H25A0.96
Mo1—N82.442 (3)C25—H25B0.96
Mo2—O61.722 (2)C25—H25C0.96
Mo2—O71.689 (3)C26—H26A0.96
Mo2—O81.942 (3)C26—H26B0.96
Mo2—O91.904 (3)C26—H26C0.96
Mo2—O102.354 (3)C27—H27A0.96
Mo2—N382.404 (3)C27—H27B0.96
O3—C11.365 (4)C27—H27C0.96
O4—C101.433 (4)C31—C361.395 (5)
O5—C271.435 (5)C31—C321.401 (5)
O5—H5O0.814 (10)C32—C331.384 (5)
O8—C311.368 (4)C32—C491.552 (5)
O9—C401.411 (4)C33—C341.402 (5)
O10—C571.419 (5)C33—H330.93
O10—H10O0.817 (10)C34—C351.394 (5)
N8—C71.488 (5)C34—C531.535 (5)
N8—C171.502 (5)C35—C361.389 (5)
N8—C91.514 (5)C35—H350.93
N38—C471.475 (5)C36—C371.511 (5)
N38—C371.495 (5)C37—H37A0.97
N38—C391.505 (5)C37—H37B0.97
C1—C61.398 (5)C39—C481.517 (5)
C1—C21.400 (5)C39—C401.560 (5)
C2—C31.394 (5)C39—H390.98
C2—C191.551 (5)C40—C411.517 (6)
C3—C41.396 (5)C40—H400.98
C3—H30.93C41—C421.377 (6)
C4—C51.388 (5)C41—C461.387 (6)
C4—C231.542 (5)C42—C431.389 (6)
C5—C61.401 (5)C42—H420.93
C5—H50.93C43—C441.374 (7)
C6—C71.517 (5)C43—H430.93
C7—H7A0.97C44—C451.395 (8)
C7—H7B0.97C44—H440.93
C9—C181.519 (5)C45—C461.377 (7)
C9—C101.538 (5)C45—H450.93
C9—H90.98C46—H460.93
C10—C111.518 (5)C47—H47A0.96
C10—H100.98C47—H47B0.96
C11—C161.380 (6)C47—H47C0.96
C11—C121.390 (5)C48—H48A0.96
C12—C131.380 (6)C48—H48B0.96
C12—H120.93C48—H48C0.96
C13—C141.385 (6)C49—C521.530 (5)
C13—H130.93C49—C511.535 (5)
C14—C151.380 (6)C49—C501.546 (6)
C14—H140.93C50—H50A0.96
C15—C161.396 (6)C50—H50B0.96
C15—H150.93C50—H50C0.96
C16—H160.93C51—H51A0.96
C17—H17A0.96C51—H51B0.96
C17—H17B0.96C51—H51C0.96
C17—H17C0.96C52—H52A0.96
C18—H18A0.96C52—H52B0.96
C18—H18B0.96C52—H52C0.96
C18—H18C0.96C53—C541.535 (6)
C19—C201.529 (5)C53—C551.538 (5)
C19—C221.531 (5)C53—C561.541 (6)
C19—C211.546 (5)C54—H54A0.96
C20—H20A0.96C54—H54B0.96
C20—H20B0.96C54—H54C0.96
C20—H20C0.96C55—H55A0.96
C21—H21A0.96C55—H55B0.96
C21—H21B0.96C55—H55C0.96
C21—H21C0.96C56—H56A0.96
C22—H22A0.96C56—H56B0.96
C22—H22B0.96C56—H56C0.96
C22—H22C0.96C57—H57A0.96
C23—C241.526 (6)C57—H57B0.96
C23—C251.542 (6)C57—H57C0.96
O1—Mo1—O2104.01 (13)C4—C23—C25111.5 (3)
O1—Mo1—O399.14 (12)C24—C23—C26110.4 (4)
O1—Mo1—O4100.84 (12)C4—C23—C26109.0 (3)
O1—Mo1—O583.11 (12)C25—C23—C26108.0 (3)
O2—Mo1—O5172.87 (11)C23—C24—H24A109.5
O3—Mo1—O4145.84 (13)C23—C24—H24B109.5
O1—Mo1—N8169.16 (12)H24A—C24—H24B109.5
Mo1—O3—C1140.5 (2)C23—C24—H24C109.5
Mo1—O4—C10119.6 (2)H24A—C24—H24C109.5
N8—C7—C6113.0 (3)H24B—C24—H24C109.5
N8—C9—C10104.3 (3)C23—C25—H25A109.5
O6—Mo2—O7104.38 (13)C23—C25—H25B109.5
O6—Mo2—O899.75 (12)H25A—C25—H25B109.5
O6—Mo2—O999.23 (12)C23—C25—H25C109.5
O6—Mo2—O1084.26 (11)H25A—C25—H25C109.5
O7—Mo2—O10169.85 (12)H25B—C25—H25C109.5
O8—Mo2—O9147.31 (11)C23—C26—H26A109.5
O6—Mo2—N38164.80 (11)C23—C26—H26B109.5
Mo2—O8—C31129.7 (2)H26A—C26—H26B109.5
Mo2—O9—C40130.3 (2)C23—C26—H26C109.5
N38—C37—C36113.8 (3)H26A—C26—H26C109.5
N38—C39—C40109.3 (3)H26B—C26—H26C109.5
O2—Mo1—O3101.57 (12)O5—C27—H27A109.5
O2—Mo1—O4100.10 (13)O5—C27—H27B109.5
O4—Mo1—O577.96 (11)H27A—C27—H27B109.5
O3—Mo1—O577.27 (11)O5—C27—H27C109.5
O2—Mo1—N886.52 (11)H27A—C27—H27C109.5
O4—Mo1—N874.37 (11)H27B—C27—H27C109.5
O3—Mo1—N880.93 (12)O8—C31—C36118.4 (3)
O5—Mo1—N886.35 (10)O8—C31—C32121.5 (3)
O7—Mo2—O9102.66 (13)C36—C31—C32120.0 (4)
O7—Mo2—O898.08 (12)C33—C32—C31117.4 (4)
O9—Mo2—O1080.82 (11)C33—C32—C49121.6 (3)
O8—Mo2—O1074.90 (10)C31—C32—C49121.0 (3)
O7—Mo2—N3890.07 (11)C32—C33—C34124.2 (4)
O9—Mo2—N3872.52 (11)C32—C33—H33117.9
O8—Mo2—N3882.54 (11)C34—C33—H33117.9
O10—Mo2—N3881.84 (10)C35—C34—C33116.4 (3)
C27—O5—Mo1120.0 (2)C35—C34—C53122.9 (3)
C27—O5—H5O118 (4)C33—C34—C53120.6 (3)
Mo1—O5—H5O114 (4)C36—C35—C34121.2 (3)
C57—O10—Mo2120.9 (2)C36—C35—H35119.4
C57—O10—H10O111 (3)C34—C35—H35119.4
Mo2—O10—H10O120 (3)C35—C36—C31120.4 (4)
C7—N8—C17107.7 (3)C35—C36—C37121.1 (3)
C7—N8—C9113.5 (3)C31—C36—C37118.4 (4)
C17—N8—C9107.4 (3)N38—C37—H37A108.8
C7—N8—Mo1110.5 (2)C36—C37—H37A108.8
C17—N8—Mo1111.3 (2)N38—C37—H37B108.8
C9—N8—Mo1106.6 (2)C36—C37—H37B108.8
C47—N38—C37108.7 (3)H37A—C37—H37B107.7
C47—N38—C39112.3 (3)N38—C39—C48115.1 (3)
C37—N38—C39108.6 (3)C48—C39—C40114.3 (3)
C47—N38—Mo2109.7 (2)N38—C39—H39105.7
C37—N38—Mo2111.6 (2)C48—C39—H39105.7
C39—N38—Mo2106.0 (2)C40—C39—H39105.7
O3—C1—C6119.1 (3)O9—C40—C41110.6 (3)
O3—C1—C2119.6 (3)O9—C40—C39109.4 (3)
C6—C1—C2121.3 (3)C41—C40—C39117.3 (3)
C3—C2—C1116.9 (4)O9—C40—H40106.3
C3—C2—C19121.2 (3)C41—C40—H40106.3
C1—C2—C19121.9 (3)C39—C40—H40106.3
C2—C3—C4123.8 (4)C42—C41—C46118.5 (4)
C2—C3—H3118.1C42—C41—C40122.9 (4)
C4—C3—H3118.1C46—C41—C40118.6 (4)
C5—C4—C3117.4 (3)C41—C42—C43120.9 (4)
C5—C4—C23122.6 (3)C41—C42—H42119.6
C3—C4—C23120.0 (3)C43—C42—H42119.6
C4—C5—C6121.2 (3)C44—C43—C42120.5 (5)
C4—C5—H5119.4C44—C43—H43119.7
C6—C5—H5119.4C42—C43—H43119.7
C1—C6—C5119.3 (3)C43—C44—C45119.0 (5)
C1—C6—C7120.1 (3)C43—C44—H44120.5
C5—C6—C7120.4 (3)C45—C44—H44120.5
N8—C7—H7A109C46—C45—C44120.1 (5)
C6—C7—H7A109C46—C45—H45120
N8—C7—H7B109C44—C45—H45120
C6—C7—H7B109C45—C46—C41121.1 (5)
H7A—C7—H7B107.8C45—C46—H46119.4
N8—C9—C18115.1 (3)C41—C46—H46119.4
C18—C9—C10112.9 (3)N38—C47—H47A109.5
N8—C9—H9108.1N38—C47—H47B109.5
C18—C9—H9108.1H47A—C47—H47B109.5
C10—C9—H9108.1N38—C47—H47C109.5
O4—C10—C11110.1 (3)H47A—C47—H47C109.5
O4—C10—C9107.2 (3)H47B—C47—H47C109.5
C11—C10—C9115.0 (3)C39—C48—H48A109.5
O4—C10—H10108.1C39—C48—H48B109.5
C11—C10—H10108.1H48A—C48—H48B109.5
C9—C10—H10108.1C39—C48—H48C109.5
C16—C11—C12119.2 (4)H48A—C48—H48C109.5
C16—C11—C10119.6 (3)H48B—C48—H48C109.5
C12—C11—C10121.2 (4)C52—C49—C51108.1 (4)
C13—C12—C11120.1 (4)C52—C49—C50106.6 (3)
C13—C12—H12120C51—C49—C50110.0 (3)
C11—C12—H12120C52—C49—C32111.9 (3)
C12—C13—C14120.6 (4)C51—C49—C32109.7 (3)
C12—C13—H13119.7C50—C49—C32110.6 (3)
C14—C13—H13119.7C49—C50—H50A109.5
C15—C14—C13120.0 (4)C49—C50—H50B109.5
C15—C14—H14120H50A—C50—H50B109.5
C13—C14—H14120C49—C50—H50C109.5
C14—C15—C16119.3 (4)H50A—C50—H50C109.5
C14—C15—H15120.4H50B—C50—H50C109.5
C16—C15—H15120.4C49—C51—H51A109.5
C11—C16—C15121.0 (4)C49—C51—H51B109.5
C11—C16—H16119.5H51A—C51—H51B109.5
C15—C16—H16119.5C49—C51—H51C109.5
N8—C17—H17A109.5H51A—C51—H51C109.5
N8—C17—H17B109.5H51B—C51—H51C109.5
H17A—C17—H17B109.5C49—C52—H52A109.5
N8—C17—H17C109.5C49—C52—H52B109.5
H17A—C17—H17C109.5H52A—C52—H52B109.5
H17B—C17—H17C109.5C49—C52—H52C109.5
C9—C18—H18A109.5H52A—C52—H52C109.5
C9—C18—H18B109.5H52B—C52—H52C109.5
H18A—C18—H18B109.5C34—C53—C54109.3 (3)
C9—C18—H18C109.5C34—C53—C55111.5 (3)
H18A—C18—H18C109.5C54—C53—C55107.9 (3)
H18B—C18—H18C109.5C34—C53—C56110.4 (3)
C20—C19—C22107.9 (3)C54—C53—C56109.6 (4)
C20—C19—C21109.3 (3)C55—C53—C56108.1 (3)
C22—C19—C21107.7 (3)C53—C54—H54A109.5
C20—C19—C2110.9 (3)C53—C54—H54B109.5
C22—C19—C2111.7 (3)H54A—C54—H54B109.5
C21—C19—C2109.3 (3)C53—C54—H54C109.5
C19—C20—H20A109.5H54A—C54—H54C109.5
C19—C20—H20B109.5H54B—C54—H54C109.5
H20A—C20—H20B109.5C53—C55—H55A109.5
C19—C20—H20C109.5C53—C55—H55B109.5
H20A—C20—H20C109.5H55A—C55—H55B109.5
H20B—C20—H20C109.5C53—C55—H55C109.5
C19—C21—H21A109.5H55A—C55—H55C109.5
C19—C21—H21B109.5H55B—C55—H55C109.5
H21A—C21—H21B109.5C53—C56—H56A109.5
C19—C21—H21C109.5C53—C56—H56B109.5
H21A—C21—H21C109.5H56A—C56—H56B109.5
H21B—C21—H21C109.5C53—C56—H56C109.5
C19—C22—H22A109.5H56A—C56—H56C109.5
C19—C22—H22B109.5H56B—C56—H56C109.5
H22A—C22—H22B109.5O10—C57—H57A109.5
C19—C22—H22C109.5O10—C57—H57B109.5
H22A—C22—H22C109.5H57A—C57—H57B109.5
H22B—C22—H22C109.5O10—C57—H57C109.5
C24—C23—C4109.2 (3)H57A—C57—H57C109.5
C24—C23—C25108.6 (3)H57B—C57—H57C109.5
C17—N8—C9—C18146.5 (3)C17—N8—C9—C1089.2 (3)
N8—C9—C10—O453.2 (4)Mo1—N8—C9—C1030.1 (3)
C47—N38—C39—C4845.1 (4)Mo1—O4—C10—C11175.6 (2)
N38—C39—C40—O921.9 (4)Mo1—O4—C10—C958.6 (3)
O2—Mo1—O3—C163.4 (4)C18—C9—C10—O472.5 (4)
O1—Mo1—O3—C1169.8 (4)N8—C9—C10—C11176.0 (3)
O4—Mo1—O3—C165.0 (4)C18—C9—C10—C1150.3 (4)
O5—Mo1—O3—C1109.4 (4)O4—C10—C11—C16147.7 (3)
N8—Mo1—O3—C121.2 (4)C9—C10—C11—C1691.1 (4)
O2—Mo1—O4—C1053.7 (3)O4—C10—C11—C1232.9 (5)
O1—Mo1—O4—C10160.2 (3)C9—C10—C11—C1288.3 (4)
O3—Mo1—O4—C1075.1 (3)C16—C11—C12—C130.8 (6)
O5—Mo1—O4—C10119.4 (3)C10—C11—C12—C13178.6 (4)
N8—Mo1—O4—C1029.8 (2)C11—C12—C13—C140.1 (6)
O1—Mo1—O5—C2743.7 (3)C12—C13—C14—C150.4 (6)
O4—Mo1—O5—C27146.4 (3)C13—C14—C15—C160.3 (7)
O3—Mo1—O5—C2757.3 (3)C12—C11—C16—C151.6 (6)
N8—Mo1—O5—C27138.8 (3)C10—C11—C16—C15177.9 (4)
O7—Mo2—O8—C3143.4 (3)C14—C15—C16—C111.3 (7)
O6—Mo2—O8—C31149.6 (3)C3—C2—C19—C20122.5 (4)
O9—Mo2—O8—C3185.7 (3)C1—C2—C19—C2057.5 (5)
O10—Mo2—O8—C31129.1 (3)C3—C2—C19—C222.1 (5)
N38—Mo2—O8—C3145.6 (3)C1—C2—C19—C22177.9 (3)
O7—Mo2—O9—C40108.6 (3)C3—C2—C19—C21117.0 (4)
O6—Mo2—O9—C40144.3 (3)C1—C2—C19—C2163.0 (4)
O8—Mo2—O9—C4019.5 (4)C5—C4—C23—C24114.4 (4)
O10—Mo2—O9—C4061.7 (3)C3—C4—C23—C2465.0 (4)
N38—Mo2—O9—C4022.6 (3)C5—C4—C23—C255.7 (5)
O7—Mo2—O10—C57106.3 (7)C3—C4—C23—C25174.9 (4)
O6—Mo2—O10—C5742.5 (3)C5—C4—C23—C26125.0 (4)
O9—Mo2—O10—C57142.8 (3)C3—C4—C23—C2655.7 (5)
O8—Mo2—O10—C5759.3 (3)Mo2—O8—C31—C3656.0 (4)
N38—Mo2—O10—C57143.7 (3)Mo2—O8—C31—C32127.3 (3)
O2—Mo1—N8—C7131.5 (2)O8—C31—C32—C33177.5 (3)
O1—Mo1—N8—C762.0 (7)C36—C31—C32—C335.8 (5)
O4—Mo1—N8—C7127.0 (2)O8—C31—C32—C494.2 (5)
O3—Mo1—N8—C729.2 (2)C36—C31—C32—C49172.4 (3)
O5—Mo1—N8—C748.5 (2)C31—C32—C33—C341.3 (6)
O2—Mo1—N8—C1711.9 (3)C49—C32—C33—C34176.9 (4)
O1—Mo1—N8—C17178.4 (6)C32—C33—C34—C352.4 (6)
O4—Mo1—N8—C17113.4 (3)C32—C33—C34—C53177.7 (4)
O3—Mo1—N8—C1790.4 (3)C33—C34—C35—C361.7 (6)
O5—Mo1—N8—C17168.0 (3)C53—C34—C35—C36178.4 (4)
O2—Mo1—N8—C9104.8 (2)C34—C35—C36—C312.7 (6)
O1—Mo1—N8—C961.7 (7)C34—C35—C36—C37174.3 (4)
O4—Mo1—N8—C93.3 (2)O8—C31—C36—C35176.6 (3)
O3—Mo1—N8—C9152.9 (2)C32—C31—C36—C356.6 (6)
O5—Mo1—N8—C975.2 (2)O8—C31—C36—C376.2 (5)
O7—Mo2—N38—C4711.8 (3)C32—C31—C36—C37170.5 (3)
O6—Mo2—N38—C47150.3 (4)C47—N38—C37—C3665.0 (4)
O9—Mo2—N38—C4791.4 (3)C39—N38—C37—C36172.6 (3)
O8—Mo2—N38—C47110.0 (2)Mo2—N38—C37—C3656.1 (4)
O10—Mo2—N38—C47174.3 (3)C35—C36—C37—N38120.4 (4)
O7—Mo2—N38—C37108.7 (2)C31—C36—C37—N3862.5 (5)
O6—Mo2—N38—C3789.3 (5)C37—N38—C39—C4875.1 (4)
O9—Mo2—N38—C37148.1 (3)Mo2—N38—C39—C48164.8 (3)
O8—Mo2—N38—C3710.5 (2)C47—N38—C39—C4085.2 (4)
O10—Mo2—N38—C3765.2 (2)C37—N38—C39—C40154.6 (3)
O7—Mo2—N38—C39133.2 (2)Mo2—N38—C39—C4034.5 (3)
O6—Mo2—N38—C3928.8 (6)Mo2—O9—C40—C41139.2 (3)
O9—Mo2—N38—C3930.0 (2)Mo2—O9—C40—C398.6 (5)
O8—Mo2—N38—C39128.6 (2)C48—C39—C40—O9152.6 (3)
O10—Mo2—N38—C3952.9 (2)N38—C39—C40—C41105.0 (4)
Mo1—O3—C1—C637.5 (6)C48—C39—C40—C4125.7 (5)
Mo1—O3—C1—C2143.6 (3)O9—C40—C41—C4232.9 (5)
O3—C1—C2—C3179.6 (3)C39—C40—C41—C4293.5 (4)
C6—C1—C2—C30.7 (5)O9—C40—C41—C46144.5 (4)
O3—C1—C2—C190.4 (5)C39—C40—C41—C4689.2 (5)
C6—C1—C2—C19179.3 (3)C46—C41—C42—C430.1 (6)
C1—C2—C3—C41.6 (6)C40—C41—C42—C43177.2 (4)
C19—C2—C3—C4178.5 (3)C41—C42—C43—C440.1 (6)
C2—C3—C4—C51.9 (6)C42—C43—C44—C450.8 (7)
C2—C3—C4—C23178.8 (3)C43—C44—C45—C461.4 (7)
C3—C4—C5—C60.0 (5)C44—C45—C46—C411.2 (7)
C23—C4—C5—C6179.3 (3)C42—C41—C46—C450.4 (6)
O3—C1—C6—C5178.6 (3)C40—C41—C46—C45177.9 (4)
C2—C1—C6—C52.5 (6)C33—C32—C49—C521.6 (5)
O3—C1—C6—C74.7 (5)C31—C32—C49—C52179.8 (4)
C2—C1—C6—C7174.2 (3)C33—C32—C49—C51118.3 (4)
C4—C5—C6—C12.2 (6)C31—C32—C49—C5159.9 (5)
C4—C5—C6—C7174.5 (3)C33—C32—C49—C50120.3 (4)
C17—N8—C7—C657.3 (4)C31—C32—C49—C5061.5 (5)
C9—N8—C7—C6176.0 (3)C35—C34—C53—C54121.0 (4)
Mo1—N8—C7—C664.4 (3)C33—C34—C53—C5459.1 (5)
C1—C6—C7—N856.5 (5)C35—C34—C53—C551.8 (6)
C5—C6—C7—N8126.8 (4)C33—C34—C53—C55178.3 (4)
C7—N8—C9—C1827.6 (4)C35—C34—C53—C56118.4 (4)
Mo1—N8—C9—C1894.2 (3)C33—C34—C53—C5661.5 (5)
C7—N8—C9—C10151.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5O···O6i0.81 (1)1.96 (3)2.690 (4)148 (6)
O10—H10O···O10.82 (1)1.84 (2)2.633 (4)165 (5)
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formula[Mo(C25H35NO2)O2(CH4O)]
Mr541.52
Crystal system, space groupMonoclinic, P21
Temperature (K)123
a, b, c (Å)16.1560 (4), 8.4129 (1), 20.3545 (6)
β (°) 109.934 (1)
V3)2600.80 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.54
Crystal size (mm)0.36 × 0.16 × 0.12
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.608, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
15118, 9756, 8963
Rint0.033
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.085, 1.04
No. of reflections9756
No. of parameters621
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.54
Absolute structureFlack (1983), with 4298 Friedel pairs
Absolute structure parameter0.00 (3)

Computer programs: COLLECT (Nonius, 2004), DENZO and SCALEPACK (Otwinowski & Minor 1997), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), DIAMOND (Brandenburg, 1999) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 2012).

Selected geometric parameters (Å, º) top
Mo1—O11.722 (3)Mo2—O61.722 (2)
Mo1—O21.693 (3)Mo2—O71.689 (3)
Mo1—O31.917 (2)Mo2—O81.942 (3)
Mo1—O41.903 (3)Mo2—O91.904 (3)
Mo1—O52.393 (3)Mo2—O102.354 (3)
Mo1—N82.442 (3)Mo2—N382.404 (3)
O1—Mo1—O2104.01 (13)O6—Mo2—O7104.38 (13)
O1—Mo1—O399.14 (12)O6—Mo2—O899.75 (12)
O1—Mo1—O4100.84 (12)O6—Mo2—O999.23 (12)
O1—Mo1—O583.11 (12)O6—Mo2—O1084.26 (11)
O2—Mo1—O5172.87 (11)O7—Mo2—O10169.85 (12)
O3—Mo1—O4145.84 (13)O8—Mo2—O9147.31 (11)
O1—Mo1—N8169.16 (12)O6—Mo2—N38164.80 (11)
Mo1—O3—C1140.5 (2)Mo2—O8—C31129.7 (2)
Mo1—O4—C10119.6 (2)Mo2—O9—C40130.3 (2)
N8—C7—C6113.0 (3)N38—C37—C36113.8 (3)
N8—C9—C10104.3 (3)N38—C39—C40109.3 (3)
C17—N8—C9—C18146.5 (3)C47—N38—C39—C4845.1 (4)
N8—C9—C10—O453.2 (4)N38—C39—C40—O921.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5O···O6i0.814 (10)1.96 (3)2.690 (4)148 (6)
O10—H10O···O10.817 (10)1.835 (16)2.633 (4)165 (5)
Symmetry code: (i) x, y1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds