Download citation
Download citation
link to html
A new metal–formate framework, poly[1H-imidazol-3-ium [tri-μ2-formato-manganese(II)]], {(C3H5N2)[Mn(HCOO)3]}n, was synthesized and its structural phase transition was studied by thermal analysis and variable-temperature X-ray diffraction analysis. The transition temperature is around 435 K. The high-temperature phase is tetra­gonal and the low-temperature phase is monoclinic, with a β angle close to 90°. The relationship of the unit cells between the two phases can be described as: aHT = 0.5aLT + 0.5bLT; bHT = −0.5aLT + 0.5bLT; cHT = 0.5cLT. In the high-temperature phase, both the frame­work and the guest 1H-imidazol-3-ium (HIm) cations are disordered; the HIm cations are located about 2mm sites and were modelled as fourfold disordered. The Mn and a formate C atom are located on fourfold rotary inversion axes, while another formate C atom is on a mirror plane. The low-temperature structure is ordered and consists of two crystallographically independent HIm cations and two crystallographically independent Mn2+ ions. The phase transition is attributable to the order–disorder transition of the HIm cations.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113012638/lg3108sup1.cif
Contains datablocks I_RT, I_HT, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113012638/lg3108I_RTsup2.hkl
Contains datablock I_RT

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113012638/lg3108I_HTsup3.hkl
Contains datablock I_HT

CCDC references: 950433; 950434

Comment top

Recently developed metal formate frameworks (AmineH+)[M(HCOO)3-] [AmineH+ = (CH3)2NH2+, (CH2)3NH2+, NH4+ etc.; M = Mn2+, Fe2+, Cu2+, Zn2+ etc.) (Xu et al. 2010; Zhou et al., 2011; Wang, Zhang et al., 2004; Jain et al., 2009) are of interest in terms of structural phase transition. The key feature of the structures is the anionic NaCl framework of [M2+(HCOO)3-], where the cavity is occupied by the alkylammonium cations. The guest alkylammonium cations tend to be disordered due to relative larger freedom of motion, and become ordered at lower temperature, which leads to phase transitions. Some transitions have been found to be accompanied by interesting and/or useful physical properties. For example, [(CH3)2NH2+][Mn(HCOO)3-] (Jain et al., 2009) was found to undergo a paraelectric-to-ferroelectric phase transition at 183 K due to the ordering of the (CH3)2NH2+ cations. Another example is the phase transition of [(CH2)3NH2+][Cu(HCOO)3-](Zhou et al., 2011). This phase transition is related to the ring-puckering of the organic cations, and is accompanied by unusually large dielectric response (Zhou et al., 2011).

It has been found that the crystal structures and their phase transitions in this series of compounds depend greatly on the shape and the size of the guest alkylammonium cations (Wang, Zhang et al., 2004). The introduction of new organic ammonium cations into the metal formate framework will enrich the structures of [and?] properties of this series. As a simple organic rotator, imidazole has been utilized to develop artificial molecular motors or potential dielectric rotors (Zhang et al., 2010; Sun, et al., 2010; Pająk et al., 2006). Among them, the perovskite-type cage compound (HIm)2[KFe(CN)6] (HIm is 1H-imidazol-3-ium; Zhang et al., 2010) are structurally analogous to the metal formate frameworks, and exhibits interesting phase transitions. Therefore, it is expected that inclusion of HIm cations into the metal formate frameworks would lead to formation of structures with interesting phase transitions. Here, we describe the phase transition of a new member of this series, {(HIm)[Mn(HCOO)3]}n, (I).

At room temperature, (I) crystallizes in a monoclinic system, with β = 91.31 (3)°. The crystal structure has the common feature of the three-dimensional metal formate framework (Wang, Gan et al., 2004), i.e. the HIm cations occupy the cavities of the three-dimensional metal formate framework formed by the octahedral coordinated Mn2+ ions and the bidentate formate ligands (Fig. 1). The crystal structure consists of two crystallographically independent HIm cations. They have the same geometry and adopt configurations suitable for the formation of hydrogen bonds to the formate groups (Table 2). The structure of the manganese(II) formate framework is comparable to that of the analogue with (CH2)3NH2+ (Wang, Zhang et al., 2004). The two crystallographically independent Mn2+ ions have similar coordination geometries with Mn—O bonds ranging from 2.1430 (14) to 2.2053 (14) Å (Table 1). The average distance of two neighbouring Mn2+ ions is about 6.28 Å. It has been shown that the size of the guest cation is mainly responsible for the apparent breathing nature of the framework brought about by the change of the Mn–O–C angles. Compared with those cations, including CH3NH3+, CH3CH2NH3+, (CH3)2NH2+ and (CH2)3NH2+ (Wang, Zhang et al., 2004), the imidazolium cation has a larger size. Correspondingly, the average Mn—O—C angle (135.1°) and the volume per four cages (987 Å3) in (I) are somewhat larger than those (121.9–128.7° and 847.1–948.6 Å3, respectively) in the analogues with smaller amines.

Qualitatively, the larger size of the HIm cations will decrease the freedom of their motion in the cavities. At room temperature, smaller cations, such as (CH3)2NH2+, (CH2)3NH2+ and NH4+, are all disordered in their corresponding metal formate frameworks; while in (I), the HIm cations are ordered, and the C and N atoms are definitely distinguishable. The hydrogen bonds also contribute to the formation of an ordered structure at room temperature. In the above-mentioned cage compound (HIm)2[KFe(CN)6] (Zhang et al., 2010), the average distance of between two neighbouringd Fe3+ and K+ ions is about 5.97 Å, a little shorter than that in (I). However, this compound has a totally disordered room-temperature structure, and the ordering temperature is about 160 K. This can be ascribed to the fact that the there are additional N—H···O hydrogen bonds and C—H···O interactions in (I).

Differential scanning calorimetry (DSC) measurements show that (I) undergoes a high-temperature phase transition at around 435 K (Fig. 2). Compared with other metal formate frameworks of type (AmineH+)[M(HCOO)3-] {Tc = 183, 286 and 192 K for [(CH3)2NH2+][Mn(HCOO)3-], [(CH2)3NH2+][Cu(HCOO)3-] and [NH4+][Zn(HCOO)3- respectively}, (I) has a significantly higher phase transition temperature. At 448 K, (I) was tetragonal, with space group P421m. The relationship of the unit cells between the two phases is aHT = 0.5aLT + 0.5bLT; bHT = -0.5 aLT + 0.5bLT; cHT = 0.5cLT. The Mn2+ ion is located on the rotoinversion centre; the formate groups along the direction of the c axis become disordered over two orientations, with atom C2 located on the rotoinversion centres; atom C1 is positioned on a mirror plane. The volume of the cages does not show significant change, with the average distance between two neighbouring Mn2+ ions being about 6.31 Å. As expected, the HIm cation is totally disordered. It is located on a 2mm site, inconsistent with its own symmetry. The crystal symmetry requirement is satisfied by the orientation disorder. As revealed in artificial molecular motors (Zhang et al., 2010; Pająk et al., 2006), the HIm cation tends to show in-plane disorder at high temperature. In this case, the orientation disorder is due to the rotation about the twofold axis which is inclined to the plane and thus leads to formation of fourfold disorder.

The transition observed in (I) is a new type of reversible temperature phase transition due to the order–disorder transition of HIm cations. The ordering of the cations breaks the 2 mm symmetry and lead to a little change of the β angle and the doubling of the c axis.

Related literature top

For related literature, see: Jain et al. (2009); Pająk et al. (2006); Sun et al. (2010); Wang, Gan, Zhang & Gao (2004); Wang, Zhang, Otsuka, Inoue, Kobayashi & Kurmoo (2004); Xu et al. (2010); Zhang et al. (2010); Zhou et al. (2011).

Experimental top

Crystals of (I) was prepared according to a similar procedure to that used for the preparation of the NH4+ analogue (Xu et al., 2010) but using imidazole instead of HCOONH4. In a typical synthesis procedure, an aqueous solution of Mn(ClO4)2.6H2O (0.8 mmol) and an aqueous solution containing imidazole (6.4 mmol) and formic acid (9.6 mmol) were loaded into two parts of an H-shape tube and allowed to diffuse slowly at room temperature. After 10 d, the precipitated crystals were collected and dried in a vacuum. The DSC measurements were performed using a Rigaku Thermal series instrument.

Refinement top

All H atoms were generated geometrically and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N). In the high-temperature phase, only two atoms of the HIm cation could be located on a Fourier difference map. The geometry of the HIm ring was constrained to be an ideal five-membered ring, and the Ueq values are restrained to be the same with a default value (0.08) of the standard deviation. The crystal structure was refined with two inversion domains.

Computing details top

For both compounds, data collection: RAPID-AUTO (Rigaku, 2000); cell refinement: RAPID-AUTO (Rigaku, 2000); data reduction: RAPID-AUTO (Rigaku, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008). Molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Putz, 2005) for I_RT; DIAMOND (Brandenburg & Putz, 2005) for I_HT. For both compounds, software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The crystal structure of the three-dimensional perovskite cage compound (I) at room temperature. H atoms bonded to formate C atoms have been omitted for clarity. The non-H atoms of an asymmetric unit are labelled. The atom with suffix is generated by symmetry operation. Displacement ellipsoids were drawn at the 30% probability level. Dashed lines indicate hydrogen-bond interactions.[Symmetry code: (A) -x+3/2, y-1/2, -z+1/2.]
[Figure 2] Fig. 2. The differential scanning calorimetry (DSC) plot for (I).
[Figure 3] Fig. 3. The crystal structure of the three-dimensional perovskite cage compound (I) at 453 K. H atoms have been omitted for clarity. The non-H atoms of the asymmetric unit are labelled. The four orientations of the disordered HIm cation are indicated by bonds with different colours. The two orientations for each disordered formate group along the c axis are indicated by bonds with different colors. Displacement ellipsoids were drawn at the 30% probability level.
(I_RT) Poly[1H-imidazol-3-ium [tri-µ2-formato-manganese(II)]] top
Crystal data top
(C3H5N2)[Mn(CHO2)3]F(000) = 1048
Mr = 259.08Dx = 1.743 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 10994 reflections
a = 12.332 (3) Åθ = 3.2–27.4°
b = 12.461 (3) ŵ = 1.35 mm1
c = 12.850 (3) ÅT = 293 K
β = 91.31 (3)°Block, colourless
V = 1974.1 (7) Å30.5 × 0.45 × 0.45 mm
Z = 8
Data collection top
Rigaku Rapid
diffractometer
4488 independent reflections
Radiation source: Rotating anode3025 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 27.4°, θmin = 3.2°
Absorption correction: multi-scan
(RAPID-AUTO; Rigaku, 2000)
h = 1515
Tmin = 0.446, Tmax = 0.545k = 1616
18874 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0263P)2 + 0.9936P]
where P = (Fo2 + 2Fc2)/3
4488 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
(C3H5N2)[Mn(CHO2)3]V = 1974.1 (7) Å3
Mr = 259.08Z = 8
Monoclinic, P21/nMo Kα radiation
a = 12.332 (3) ŵ = 1.35 mm1
b = 12.461 (3) ÅT = 293 K
c = 12.850 (3) Å0.5 × 0.45 × 0.45 mm
β = 91.31 (3)°
Data collection top
Rigaku Rapid
diffractometer
4488 independent reflections
Absorption correction: multi-scan
(RAPID-AUTO; Rigaku, 2000)
3025 reflections with I > 2σ(I)
Tmin = 0.446, Tmax = 0.545Rint = 0.029
18874 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.05Δρmax = 0.37 e Å3
4488 reflectionsΔρmin = 0.35 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.23949 (2)0.75287 (2)0.00823 (2)0.01852 (8)
Mn20.73998 (2)0.74768 (2)0.00685 (2)0.01818 (8)
C10.48867 (16)0.78333 (19)0.00373 (16)0.0305 (5)
H10.49000.73080.05510.037*
C20.00834 (16)0.72988 (19)0.04414 (18)0.0342 (5)
H20.00540.79930.07060.041*
C30.24711 (17)0.7810 (2)0.25854 (16)0.0314 (5)
H30.19940.83880.25940.038*
C40.73572 (17)0.72935 (19)0.25561 (16)0.0316 (5)
H40.78800.67550.25730.038*
C50.78179 (17)0.99722 (17)0.02302 (18)0.0305 (5)
H50.72970.99680.07650.037*
C60.72475 (17)0.49882 (17)0.01305 (17)0.0288 (5)
H60.78510.50060.05780.035*
O10.07757 (11)0.69195 (13)0.01836 (13)0.0397 (4)
O30.27906 (14)0.75159 (15)0.17279 (11)0.0462 (5)
O60.39848 (11)0.81763 (13)0.02546 (12)0.0373 (4)
O70.57760 (10)0.81345 (13)0.03009 (11)0.0329 (4)
O80.79963 (13)0.91219 (13)0.02088 (13)0.0428 (4)
O100.68150 (12)0.58561 (12)0.00958 (13)0.0367 (4)
O110.70120 (14)0.75907 (15)0.17015 (11)0.0473 (5)
N30.02918 (17)0.54480 (18)0.30825 (16)0.0449 (5)
H3A0.04300.58840.35870.054*
N40.04583 (16)0.42174 (17)0.21481 (16)0.0412 (5)
H4A0.08930.37180.19400.049*
C100.0858 (2)0.5365 (2)0.2205 (2)0.0458 (6)
H10A0.14620.57690.20350.055*
C110.0397 (2)0.4598 (2)0.16248 (19)0.0422 (6)
H11A0.06240.43670.09770.051*
C120.0511 (2)0.4751 (2)0.3041 (2)0.0491 (7)
H12A0.10260.46490.35490.059*
N10.44428 (16)0.5487 (2)0.19223 (17)0.0500 (6)
H1A0.39430.56950.14910.060*
N20.54806 (16)0.54070 (19)0.32563 (16)0.0434 (5)
H2A0.57800.55530.38510.052*
C70.5102 (2)0.4642 (3)0.1784 (2)0.0586 (8)
H7A0.51040.41820.12140.070*
C80.5755 (2)0.4597 (2)0.2629 (2)0.0524 (7)
H8A0.62990.40950.27570.063*
C90.4679 (2)0.5940 (2)0.2811 (2)0.0506 (7)
H9A0.43380.65400.30830.061*
O90.27267 (15)0.74094 (15)0.34257 (11)0.0484 (5)
O120.09929 (11)0.68830 (14)0.03988 (14)0.0434 (4)
O40.69399 (11)0.40918 (12)0.01921 (12)0.0323 (3)
O50.70566 (13)0.76626 (14)0.34045 (11)0.0398 (4)
O20.82668 (11)1.08493 (12)0.00308 (12)0.0341 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.01965 (14)0.01808 (16)0.01777 (14)0.00002 (11)0.00090 (10)0.00093 (12)
Mn20.01980 (14)0.01772 (16)0.01700 (14)0.00074 (11)0.00027 (10)0.00025 (12)
C10.0289 (11)0.0307 (13)0.0317 (11)0.0042 (9)0.0021 (9)0.0091 (9)
C20.0247 (10)0.0310 (13)0.0470 (13)0.0017 (9)0.0031 (9)0.0091 (11)
C30.0340 (11)0.0344 (13)0.0258 (11)0.0036 (9)0.0009 (9)0.0028 (9)
C40.0331 (11)0.0354 (14)0.0263 (11)0.0033 (9)0.0008 (9)0.0007 (10)
C50.0327 (11)0.0253 (13)0.0331 (12)0.0026 (9)0.0112 (9)0.0025 (10)
C60.0292 (10)0.0258 (13)0.0311 (11)0.0003 (9)0.0057 (8)0.0002 (9)
O10.0227 (7)0.0363 (10)0.0605 (11)0.0049 (7)0.0085 (7)0.0051 (8)
O30.0583 (11)0.0611 (13)0.0190 (7)0.0092 (9)0.0026 (7)0.0022 (8)
O60.0217 (7)0.0407 (10)0.0494 (10)0.0021 (7)0.0007 (6)0.0142 (8)
O70.0206 (7)0.0386 (10)0.0396 (9)0.0011 (6)0.0015 (6)0.0145 (7)
O80.0554 (10)0.0206 (10)0.0514 (10)0.0099 (7)0.0206 (8)0.0036 (8)
O100.0364 (8)0.0184 (9)0.0546 (10)0.0021 (6)0.0109 (7)0.0004 (7)
O110.0583 (11)0.0649 (13)0.0188 (7)0.0191 (9)0.0029 (7)0.0014 (8)
N30.0562 (13)0.0376 (13)0.0401 (11)0.0027 (10)0.0121 (10)0.0151 (10)
N40.0451 (11)0.0330 (12)0.0451 (12)0.0090 (9)0.0085 (9)0.0052 (10)
C100.0537 (15)0.0389 (15)0.0449 (15)0.0131 (12)0.0010 (12)0.0001 (12)
C110.0516 (14)0.0408 (15)0.0343 (12)0.0051 (12)0.0049 (11)0.0080 (12)
C120.0502 (15)0.0608 (19)0.0365 (14)0.0022 (14)0.0072 (11)0.0017 (13)
N10.0388 (11)0.0623 (17)0.0479 (13)0.0077 (11)0.0166 (10)0.0241 (12)
N20.0453 (11)0.0487 (14)0.0355 (11)0.0025 (10)0.0133 (9)0.0019 (10)
C70.0681 (18)0.062 (2)0.0459 (16)0.0029 (16)0.0002 (14)0.0136 (15)
C80.0467 (14)0.0455 (17)0.0645 (19)0.0129 (13)0.0068 (13)0.0011 (15)
C90.0419 (14)0.0439 (17)0.0660 (18)0.0080 (12)0.0015 (13)0.0039 (15)
O90.0646 (11)0.0613 (13)0.0196 (7)0.0174 (9)0.0079 (7)0.0024 (8)
O120.0210 (7)0.0374 (10)0.0717 (12)0.0002 (7)0.0013 (7)0.0035 (9)
O40.0349 (8)0.0199 (9)0.0415 (9)0.0036 (6)0.0093 (6)0.0031 (7)
O50.0520 (10)0.0488 (11)0.0183 (7)0.0084 (8)0.0027 (7)0.0005 (7)
O20.0347 (8)0.0176 (8)0.0495 (9)0.0001 (6)0.0110 (7)0.0002 (7)
Geometric parameters (Å, º) top
Mn1—O12.1430 (14)C5—O21.249 (2)
Mn1—O32.1594 (16)C5—H50.9300
Mn1—O62.1728 (14)C6—O101.238 (2)
Mn1—O2i2.1801 (16)C6—O41.247 (2)
Mn1—O4ii2.1828 (16)C6—H60.9300
Mn1—O5iii2.1996 (15)N3—C121.318 (3)
Mn1—Mn26.1727 (13)N3—C101.343 (3)
Mn2—O12iv2.1489 (15)N3—H3A0.8600
Mn2—O102.1531 (16)N4—C121.329 (3)
Mn2—O9v2.1629 (15)N4—C111.350 (3)
Mn2—O112.1675 (15)N4—H4A0.8600
Mn2—O82.1839 (17)C10—C111.331 (4)
Mn2—O72.2053 (14)C10—H10A0.9300
Mn2—Mn1iv6.1598 (13)C11—H11A0.9300
Mn2—Mn1i6.2318 (13)C12—H12A0.9300
Mn2—Mn1ii6.2454 (13)N1—C91.301 (3)
Mn2—Mn1v6.4073 (13)N1—C71.344 (4)
Mn2—Mn1vi6.4430 (14)N1—H1A0.8600
C1—O61.242 (2)N2—C91.312 (3)
C1—O71.247 (2)N2—C81.340 (3)
C1—H10.9300N2—H2A0.8600
C2—O11.213 (2)C7—C81.338 (4)
C2—O121.235 (2)C7—H7A0.9300
C2—H20.9300C8—H8A0.9300
C3—O91.224 (3)C9—H9A0.9300
C3—O31.234 (2)O9—Mn2vii2.1629 (15)
C3—H30.9300O12—Mn2viii2.1489 (15)
C4—O111.226 (3)O4—Mn1ii2.1828 (16)
C4—O51.247 (2)O5—Mn1vi2.1996 (15)
C4—H40.9300O2—Mn1i2.1801 (16)
C5—O81.218 (3)
O1—Mn1—O397.35 (7)Mn1i—Mn2—Mn1v88.228 (5)
O1—Mn1—O6171.86 (6)Mn1ii—Mn2—Mn1v88.111 (5)
O3—Mn1—O690.75 (7)O12iv—Mn2—Mn1vi79.87 (6)
O1—Mn1—O2i88.95 (6)O10—Mn2—Mn1vi95.11 (5)
O3—Mn1—O2i96.47 (7)O9v—Mn2—Mn1vi168.68 (5)
O6—Mn1—O2i89.34 (6)O11—Mn2—Mn1vi13.27 (5)
O1—Mn1—O4ii91.01 (6)O8—Mn2—Mn1vi85.78 (5)
O3—Mn1—O4ii81.58 (6)O7—Mn2—Mn1vi101.19 (5)
O6—Mn1—O4ii90.97 (6)Mn1iv—Mn2—Mn1vi91.20 (3)
O2i—Mn1—O4ii178.03 (6)Mn1—Mn2—Mn1vi88.47 (3)
O1—Mn1—O5iii82.24 (7)Mn1i—Mn2—Mn1vi91.897 (5)
O3—Mn1—O5iii173.05 (7)Mn1ii—Mn2—Mn1vi91.772 (5)
O6—Mn1—O5iii89.82 (7)Mn1v—Mn2—Mn1vi179.838 (8)
O2i—Mn1—O5iii90.47 (6)O6—C1—O7125.5 (2)
O4ii—Mn1—O5iii91.48 (6)O6—C1—H1117.3
O1—Mn1—Mn2158.37 (5)O7—C1—H1117.3
O3—Mn1—Mn278.42 (5)O1—C2—O12128.5 (2)
O6—Mn1—Mn225.38 (4)O1—C2—H2115.8
O2i—Mn1—Mn2112.53 (4)O12—C2—H2115.8
O4ii—Mn1—Mn267.43 (4)O9—C3—O3125.8 (2)
O5iii—Mn1—Mn299.40 (5)O9—C3—H3117.1
O12iv—Mn2—O1090.10 (6)O3—C3—H3117.1
O12iv—Mn2—O9v91.36 (8)O11—C4—O5124.6 (2)
O10—Mn2—O9v92.02 (7)O11—C4—H4117.7
O12iv—Mn2—O1193.11 (7)O5—C4—H4117.7
O10—Mn2—O1194.33 (7)O8—C5—O2126.3 (2)
O9v—Mn2—O11172.22 (7)O8—C5—H5116.9
O12iv—Mn2—O889.97 (6)O2—C5—H5116.9
O10—Mn2—O8179.10 (6)O10—C6—O4125.3 (2)
O9v—Mn2—O887.08 (7)O10—C6—H6117.3
O11—Mn2—O886.55 (7)O4—C6—H6117.3
O12iv—Mn2—O7177.95 (6)C2—O1—Mn1134.38 (16)
O10—Mn2—O791.55 (6)C3—O3—Mn1143.36 (16)
O9v—Mn2—O787.37 (7)C1—O6—Mn1128.18 (14)
O11—Mn2—O787.98 (6)C1—O7—Mn2127.93 (14)
O8—Mn2—O788.36 (6)C5—O8—Mn2136.17 (15)
O12iv—Mn2—Mn1iv23.83 (5)C6—O10—Mn2130.92 (14)
O10—Mn2—Mn1iv110.05 (4)C4—O11—Mn2140.14 (15)
O9v—Mn2—Mn1iv78.08 (6)C12—N3—C10108.6 (2)
O11—Mn2—Mn1iv103.84 (6)C12—N3—H3A125.7
O8—Mn2—Mn1iv69.82 (5)C10—N3—H3A125.7
O7—Mn2—Mn1iv154.12 (4)C12—N4—C11108.0 (2)
O12iv—Mn2—Mn1157.05 (5)C12—N4—H4A126.0
O10—Mn2—Mn171.18 (4)C11—N4—H4A126.0
O9v—Mn2—Mn1102.17 (6)C11—C10—N3107.6 (2)
O11—Mn2—Mn175.75 (6)C11—C10—H10A126.2
O8—Mn2—Mn1108.95 (5)N3—C10—H10A126.2
O7—Mn2—Mn125.00 (4)C10—C11—N4107.5 (2)
Mn1iv—Mn2—Mn1178.753 (7)C10—C11—H11A126.2
O12iv—Mn2—Mn1i108.18 (5)N4—C11—H11A126.2
O10—Mn2—Mn1i161.33 (4)N3—C12—N4108.2 (2)
O9v—Mn2—Mn1i84.01 (5)N3—C12—H12A125.9
O11—Mn2—Mn1i88.55 (5)N4—C12—H12A125.9
O8—Mn2—Mn1i18.44 (4)C9—N1—C7109.4 (2)
O7—Mn2—Mn1i70.09 (4)C9—N1—H1A125.3
Mn1iv—Mn2—Mn1i87.035 (5)C7—N1—H1A125.3
Mn1—Mn2—Mn1i91.773 (5)C9—N2—C8108.5 (2)
O12iv—Mn2—Mn1ii67.94 (5)C9—N2—H2A125.8
O10—Mn2—Mn1ii22.18 (4)C8—N2—H2A125.8
O9v—Mn2—Mn1ii91.53 (5)C8—C7—N1106.3 (3)
O11—Mn2—Mn1ii96.05 (5)C8—C7—H7A126.9
O8—Mn2—Mn1ii157.84 (5)N1—C7—H7A126.9
O7—Mn2—Mn1ii113.69 (4)C7—C8—N2107.5 (2)
Mn1iv—Mn2—Mn1ii88.244 (5)C7—C8—H8A126.2
Mn1—Mn2—Mn1ii92.969 (5)N2—C8—H8A126.2
Mn1i—Mn2—Mn1ii174.079 (7)N1—C9—N2108.3 (3)
O12iv—Mn2—Mn1v100.19 (6)N1—C9—H9A125.8
O10—Mn2—Mn1v84.74 (5)N2—C9—H9A125.8
O9v—Mn2—Mn1v11.46 (5)C3—O9—Mn2vii141.63 (16)
O11—Mn2—Mn1v166.66 (5)C2—O12—Mn2viii134.15 (17)
O8—Mn2—Mn1v94.37 (5)C6—O4—Mn1ii134.09 (14)
O7—Mn2—Mn1v78.76 (5)C4—O5—Mn1vi139.75 (15)
Mn1iv—Mn2—Mn1v88.91 (3)C5—O2—Mn1i129.88 (14)
Mn1—Mn2—Mn1v91.42 (3)
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+1, z; (iii) x1/2, y+3/2, z1/2; (iv) x+1, y, z; (v) x+1/2, y+3/2, z1/2; (vi) x+1/2, y+3/2, z+1/2; (vii) x1/2, y+3/2, z+1/2; (viii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O7vii0.861.922.781 (3)179
N4—H4A···O5ix0.861.992.842 (3)172
N1—H1A···O4ii0.861.992.820 (3)162
N2—H2A···O2x0.861.932.780 (3)168
C9—H9A···O90.932.313.140 (3)148
C11—H11A···O12xi0.932.413.286 (3)157
Symmetry codes: (ii) x+1, y+1, z; (vii) x1/2, y+3/2, z+1/2; (ix) x+1/2, y1/2, z+1/2; (x) x+3/2, y1/2, z+1/2; (xi) x, y+1, z.
(I_HT) Poly[1H-imidazol-3-ium [tri-µ2-formato-manganese(II)]] top
Crystal data top
(C3H5N2)[Mn(CHO2)3]Dx = 1.713 Mg m3
Mr = 259.08Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P421mCell parameters from 4770 reflections
Hall symbol: P -4 2abθ = 3.2–27.4°
a = 8.8324 (12) ŵ = 1.33 mm1
c = 6.4406 (13) ÅT = 453 K
V = 502.44 (14) Å3Block, colorless
Z = 20.5 × 0.45 × 0.45 mm
F(000) = 262
Data collection top
Rigaku Rapid
diffractometer
623 independent reflections
Radiation source: rotating anode460 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
ω scansθmax = 27.4°, θmin = 3.2°
Absorption correction: multi-scan
(RAPID-AUTO; Rigaku, 2000)
h = 1011
Tmin = 0.462, Tmax = 0.551k = 1111
4803 measured reflectionsl = 88
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.085P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
623 reflectionsΔρmax = 0.28 e Å3
66 parametersΔρmin = 0.33 e Å3
30 restraintsAbsolute structure: Flack (1983), 247 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.3 (2)
Crystal data top
(C3H5N2)[Mn(CHO2)3]Z = 2
Mr = 259.08Mo Kα radiation
Tetragonal, P421mµ = 1.33 mm1
a = 8.8324 (12) ÅT = 453 K
c = 6.4406 (13) Å0.5 × 0.45 × 0.45 mm
V = 502.44 (14) Å3
Data collection top
Rigaku Rapid
diffractometer
623 independent reflections
Absorption correction: multi-scan
(RAPID-AUTO; Rigaku, 2000)
460 reflections with I > 2σ(I)
Tmin = 0.462, Tmax = 0.551Rint = 0.076
4803 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.135Δρmax = 0.28 e Å3
S = 1.09Δρmin = 0.33 e Å3
623 reflectionsAbsolute structure: Flack (1983), 247 Friedel pairs
66 parametersAbsolute structure parameter: 0.3 (2)
30 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Compared with the metal atom Mn1, the coordinated O atoms show relatively larger ADP, and thus an alert B related to this is given when checked the cif file with PLATON. This indicates possible disorder of the coordinated O1 atom. However, we didn't try to model this disorder because it is not a typical disorder with easily distinguishable two sites. The imidazolium cation is modeled with fourfold disorder, its geometry and ADP have to be constrained. The crystal structure was refined with two inversion domains. The detail of the command used for this purpose is attached at the end of this cif.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.50000.50000.50000.0341 (4)
C10.7225 (6)0.2225 (6)0.515 (3)0.096 (4)
H10.79530.29530.54940.115*
O10.6013 (3)0.2766 (3)0.4996 (9)0.0804 (11)
C20.50000.50001.00000.115 (6)
H20.43630.58811.00000.138*0.25
O20.5374 (13)0.503 (6)0.8329 (9)0.089 (6)0.50
N20.6237 (16)0.0341 (17)0.886 (2)0.066 (6)0.25
H2A0.71210.03780.81670.080*0.25
C50.5974 (17)0.027 (2)1.0868 (16)0.066 (9)0.25
H5A0.67250.06981.17700.079*0.25
N10.4404 (19)0.0133 (17)1.1306 (17)0.051 (7)0.25
H1A0.39390.04341.24790.062*0.25
C40.3698 (14)0.056 (2)0.957 (2)0.117 (11)0.25
H4A0.26390.07910.94410.140*0.25
C30.483 (2)0.085 (2)0.8058 (17)0.109 (10)0.25
H3A0.46730.13170.67270.131*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0352 (4)0.0352 (4)0.0319 (5)0.0000.0000.000
C10.054 (2)0.054 (2)0.178 (12)0.013 (3)0.054 (6)0.054 (6)
O10.0628 (18)0.0498 (16)0.128 (3)0.0147 (14)0.013 (3)0.012 (3)
C20.149 (10)0.149 (10)0.047 (8)0.0000.0000.000
O20.098 (13)0.138 (10)0.030 (4)0.010 (12)0.006 (4)0.024 (15)
N20.035 (9)0.038 (10)0.126 (14)0.019 (6)0.012 (10)0.014 (9)
C50.077 (17)0.049 (16)0.072 (13)0.027 (12)0.033 (13)0.048 (10)
N10.054 (12)0.049 (14)0.051 (6)0.024 (12)0.026 (6)0.032 (8)
C40.091 (17)0.111 (18)0.15 (2)0.014 (15)0.056 (16)0.075 (16)
C30.114 (19)0.054 (13)0.16 (2)0.043 (13)0.057 (18)0.026 (15)
Geometric parameters (Å, º) top
Mn1—O1i2.166 (3)C5—N11.4200
Mn1—O1ii2.166 (3)C5—C5viii1.553 (15)
Mn1—O12.166 (3)C5—C5xi1.79 (2)
Mn1—O1iii2.166 (3)C5—C3viii1.815 (3)
Mn1—O2ii2.170 (6)C5—N2xii1.94 (3)
Mn1—O2iii2.170 (6)C5—H5A0.9600
Mn1—O22.170 (6)N1—C5xi0.564 (18)
Mn1—O2i2.170 (6)N1—N1viii0.58 (2)
Mn1—Mn1iv6.2455 (9)N1—N1xii0.91 (4)
Mn1—Mn1v6.2455 (9)N1—C5viii1.058 (7)
Mn1—Mn1vi6.2454 (9)N1—N1xi1.08 (4)
Mn1—Mn1vii6.2454 (9)N1—C5xii1.1021
C1—O1viii1.177 (4)N1—C41.4200
C1—O11.177 (4)N1—N2xi1.68 (3)
C1—H10.9346N1—C4xii1.69 (2)
C2—O2i1.126 (7)N1—C4viii1.83 (2)
C2—O21.126 (7)N1—N2xii1.87 (2)
C2—O2ix1.126 (7)N1—H1A0.9000
C2—O2x1.126 (7)C4—N2xi0.92 (3)
C2—H20.9600C4—C5xi0.922 (9)
O2—O2i0.66 (2)C4—C4xii0.93 (4)
N2—C3viii0.765 (4)C4—C3xii1.1066 (14)
N2—C4xi0.92 (2)C4—C5viii1.290 (5)
N2—N2viii1.12 (3)C4—C31.4200
N2—C31.4200C4—N2viii1.63 (2)
N2—C51.4200C4—N1xii1.69 (2)
N2—C3xi1.51 (3)C4—N1viii1.833 (17)
N2—C4viii1.635 (10)C4—N2xii1.858 (19)
N2—N1xi1.684 (14)C4—H4A0.9600
N2—C4xii1.858 (10)C3—N2viii0.765 (14)
N2—N1xii1.867 (12)C3—C3xii0.85 (4)
N2—C3xii1.92 (3)C3—C4xii1.1066 (12)
N2—C5xii1.94 (3)C3—C3viii1.28 (4)
N2—H2A0.9000C3—N2xi1.51 (3)
C5—N1xi0.564 (15)C3—C3xi1.54 (4)
C5—C5xii0.88 (4)C3—C5viii1.8149 (12)
C5—C4xi0.921 (8)C3—N2xii1.92 (3)
C5—N1viii1.058 (10)C3—C5xi2.012 (15)
C5—N1xii1.1021C3—H3A0.9600
C5—C4viii1.290 (8)
O1i—Mn1—O1ii89.999 (1)C5xi—C5—N2xii62.6 (6)
O1i—Mn1—O1179.9 (3)C3viii—C5—N2xii47.2 (10)
O1ii—Mn1—O190.001 (1)N1xi—C5—H5A110.8
O1i—Mn1—O1iii90.001 (2)C5xii—C5—H5A102.1
O1ii—Mn1—O1iii179.9 (3)C4xi—C5—H5A102.8
O1—Mn1—O1iii90.000 (1)N1viii—C5—H5A111.7
O1i—Mn1—O2ii81.7 (6)N1xii—C5—H5A125.7
O1ii—Mn1—O2ii87.1 (13)C4viii—C5—H5A108.0
O1—Mn1—O2ii98.2 (6)N1—C5—H5A126.0
O1iii—Mn1—O2ii93.0 (12)N2—C5—H5A126.0
O1i—Mn1—O2iii98.2 (6)C5viii—C5—H5A140.2
O1ii—Mn1—O2iii93.0 (12)C5xi—C5—H5A140.5
O1—Mn1—O2iii81.7 (6)C3viii—C5—H5A131.5
O1iii—Mn1—O2iii87.1 (13)N2xii—C5—H5A130.1
O2ii—Mn1—O2iii17.6 (6)C5xi—N1—N1viii149.9 (11)
O1i—Mn1—O293.0 (12)C5xi—N1—N1xii88 (4)
O1ii—Mn1—O281.7 (6)N1viii—N1—N1xii90.0
O1—Mn1—O287.1 (13)C5xi—N1—C5viii56 (4)
O1iii—Mn1—O298.2 (6)N1viii—N1—C5viii117.4 (7)
O2ii—Mn1—O2167.6 (4)N1xii—N1—C5viii32.2 (6)
O2iii—Mn1—O2167.6 (4)C5xi—N1—N1xi116 (4)
O1i—Mn1—O2i87.1 (13)N1viii—N1—N1xi57.6 (16)
O1ii—Mn1—O2i98.2 (6)N1xii—N1—N1xi32.4 (16)
O1—Mn1—O2i93.0 (12)C5viii—N1—N1xi62.1 (13)
O1iii—Mn1—O2i81.7 (6)C5xi—N1—C5xii135.0 (11)
O2ii—Mn1—O2i167.6 (4)N1viii—N1—C5xii14.88 (13)
O2iii—Mn1—O2i167.6 (4)N1xii—N1—C5xii89 (2)
O2—Mn1—O2i17.6 (6)C5viii—N1—C5xii111 (2)
O1i—Mn1—Mn1iv69.39 (8)N1xi—N1—C5xii58.1 (12)
O1ii—Mn1—Mn1iv20.60 (8)C5xi—N1—C5122 (3)
O1—Mn1—Mn1iv110.60 (8)N1viii—N1—C541.4
O1iii—Mn1—Mn1iv159.40 (8)N1xii—N1—C550.9
O2ii—Mn1—Mn1iv84.3 (10)C5viii—N1—C576.0 (7)
O2iii—Mn1—Mn1iv95.7 (10)N1xi—N1—C520.9 (13)
O2—Mn1—Mn1iv83.3 (9)C5xii—N1—C538 (2)
O2i—Mn1—Mn1iv96.7 (9)C5xi—N1—C422.0 (11)
O1i—Mn1—Mn1v110.61 (8)N1viii—N1—C4128.0
O1ii—Mn1—Mn1v159.40 (8)N1xii—N1—C490.3
O1—Mn1—Mn1v69.40 (8)C5viii—N1—C460.7 (4)
O1iii—Mn1—Mn1v20.60 (8)N1xi—N1—C4109.6 (9)
O2ii—Mn1—Mn1v95.7 (10)C5xii—N1—C4113.2
O2iii—Mn1—Mn1v84.3 (10)C5—N1—C4108.0
O2—Mn1—Mn1v96.7 (9)C5xi—N1—N2xi53.2 (18)
O2i—Mn1—Mn1v83.3 (9)N1viii—N1—N2xi99.3 (10)
Mn1iv—Mn1—Mn1v180.0N1xii—N1—N2xi108.4 (11)
O1i—Mn1—Mn1vi159.39 (8)C5viii—N1—N2xi86.7 (10)
O1ii—Mn1—Mn1vi69.40 (8)N1xi—N1—N2xi110.6 (11)
O1—Mn1—Mn1vi20.60 (8)C5xii—N1—N2xi85.4 (11)
O1iii—Mn1—Mn1vi110.60 (8)C5—N1—N2xi97.7 (11)
O2ii—Mn1—Mn1vi96.7 (9)C4—N1—N2xi33.1 (9)
O2iii—Mn1—Mn1vi83.3 (9)C5xi—N1—C4xii38 (3)
O2—Mn1—Mn1vi84.3 (10)N1viii—N1—C4xii121.2 (4)
O2i—Mn1—Mn1vi95.7 (10)N1xii—N1—C4xii57.1 (11)
Mn1iv—Mn1—Mn1vi90.0C5viii—N1—C4xii29.0 (9)
Mn1v—Mn1—Mn1vi90.0N1xi—N1—C4xii79.5 (14)
O1i—Mn1—Mn1vii20.61 (8)C5xii—N1—C4xii108.8 (13)
O1ii—Mn1—Mn1vii110.60 (8)C5—N1—C4xii85.1 (7)
O1—Mn1—Mn1vii159.40 (8)C4—N1—C4xii33.2 (11)
O1iii—Mn1—Mn1vii69.40 (8)N2xi—N1—C4xii57.9 (7)
O2ii—Mn1—Mn1vii83.3 (9)C5xi—N1—C4viii112.3 (7)
O2iii—Mn1—Mn1vii96.7 (9)N1viii—N1—C4viii37.6 (5)
O2—Mn1—Mn1vii95.7 (10)N1xii—N1—C4viii90.3
O2i—Mn1—Mn1vii84.3 (10)C5viii—N1—C4viii101.9 (6)
Mn1iv—Mn1—Mn1vii90.0N1xi—N1—C4viii65.1 (11)
Mn1v—Mn1—Mn1vii90.0C5xii—N1—C4viii22.8 (5)
Mn1vi—Mn1—Mn1vii180.0C5—N1—C4viii44.5 (2)
O1viii—C1—O1137.0 (7)C4—N1—C4viii90.4 (5)
O1viii—C1—H1111.5N2xi—N1—C4viii63.6 (7)
O1—C1—H1111.5C4xii—N1—C4viii90.5 (4)
C1—O1—Mn1138.2 (4)C5xi—N1—N2xii88.7 (15)
O2i—C2—O234.3 (12)N1viii—N1—N2xii63.0 (9)
O2i—C2—O2ix155.9 (8)N1xii—N1—N2xii106.5 (9)
O2—C2—O2ix156.0 (8)C5viii—N1—N2xii103.0 (10)
O2i—C2—O2x155.9 (8)N1xi—N1—N2xii89.8 (10)
O2—C2—O2x156.0 (8)C5xii—N1—N2xii49.3 (5)
O2ix—C2—O2x34.3 (12)C5—N1—N2xii70.7 (9)
O2i—C2—H281.2C4—N1—N2xii67.3 (9)
O2—C2—H298.8N2xi—N1—N2xii36.3 (11)
O2ix—C2—H275.4C4xii—N1—N2xii80.3 (7)
O2x—C2—H2104.6C4viii—N1—N2xii28.8 (7)
O2i—O2—C272.9 (6)C5xi—N1—H1A109.6
O2i—O2—Mn181.2 (3)N1viii—N1—H1A96.5
C2—O2—Mn1154.1 (9)N1xii—N1—H1A122.1
C3viii—N2—C4xi82 (2)C5viii—N1—H1A128.4
C3viii—N2—N2viii96 (2)N1xi—N1—H1A120.7
C4xi—N2—N2viii131.0 (15)C5xii—N1—H1A109.4
C3viii—N2—C364 (3)C5—N1—H1A126.0
C4xi—N2—C3120.8 (19)C4—N1—H1A126.0
N2viii—N2—C332.4 (7)N2xi—N1—H1A126.8
C3viii—N2—C5108.6 (5)C4xii—N1—H1A141.7
C4xi—N2—C539.6 (7)C4viii—N1—H1A126.9
N2viii—N2—C598.8 (5)N2xii—N1—H1A127.5
C3—N2—C5108.0N2xi—C4—C5xi101 (2)
C3viii—N2—C3xi22.8 (5)N2xi—C4—C4xii125 (2)
C4xi—N2—C3xi66.6 (16)C5xi—C4—C4xii89 (2)
N2viii—N2—C3xi93.0 (12)N2xi—C4—C3xii43.1 (9)
C3—N2—C3xi63.3 (15)C5xi—C4—C3xii126.7 (11)
C5—N2—C3xi86.8 (5)C4xii—C4—C3xii88 (2)
C3viii—N2—C4viii60.2 (9)N2xi—C4—C5viii121.5 (18)
C4xi—N2—C4viii27.8 (15)C5xi—C4—C5viii43 (2)
N2viii—N2—C4viii111.7 (8)C4xii—C4—C5viii45.6 (2)
C3—N2—C4viii93.7 (8)C3xii—C4—C5viii114 (2)
C5—N2—C4viii49.36 (11)N2xi—C4—C377 (2)
C3xi—N2—C4viii41.0 (6)C5xi—C4—C3116.8 (17)
C3viii—N2—N1xi114.7 (15)C4xii—C4—C351.2
C4xi—N2—N1xi57.5 (11)C3xii—C4—C337 (2)
N2viii—N2—N1xi80.7 (7)C5viii—C4—C383.9 (2)
C3—N2—N1xi94.6 (8)N2xi—C4—N189.4 (17)
C5—N2—N1xi18.5 (8)C5xi—C4—N113.2 (12)
C3xi—N2—N1xi91.9 (16)C4xii—C4—N189.7
C4viii—N2—N1xi61.2 (15)C3xii—C4—N1113.6
C3viii—N2—C4xii93 (3)C5viii—C4—N145.6 (4)
C4xi—N2—C4xii109.1 (17)C3—C4—N1108.0
N2viii—N2—C4xii21.9 (6)N2xi—C4—N2viii97 (3)
C3—N2—C4xii36.5 (3)C5xi—C4—N2viii94 (2)
C5—N2—C4xii79.0 (4)C4xii—C4—N2viii27.6 (8)
C3xi—N2—C4xii82.5 (16)C3xii—C4—N2viii63 (2)
C4viii—N2—C4xii91.4 (10)C5viii—C4—N2viii56.6 (5)
N1xi—N2—C4xii62.1 (7)C3—C4—N2viii27.9 (5)
C3viii—N2—N1xii114.2 (17)N1—C4—N2viii89.3 (5)
C4xi—N2—N1xii73.6 (12)N2xi—C4—N1xii107.3 (12)
N2viii—N2—N1xii63.0 (5)C5xi—C4—N1xii33.8 (11)
C3—N2—N1xii79.1 (4)C4xii—C4—N1xii57.1 (12)
C5—N2—N1xii36.1 (3)C3xii—C4—N1xii108.6 (13)
C3xi—N2—N1xii92.7 (15)C5viii—C4—N1xii15.4 (11)
C4viii—N2—N1xii71.3 (13)C3—C4—N1xii85.5 (8)
N1xi—N2—N1xii17.8 (6)N1—C4—N1xii32.6 (12)
C4xii—N2—N1xii44.8 (2)N2viii—C4—N1xii60.8 (10)
C3viii—N2—C3xii49 (2)N2xi—C4—N1viii77.6 (18)
C4xi—N2—C3xii97 (2)C5xi—C4—N1viii27.6 (8)
N2viii—N2—C3xii51.4 (7)C4xii—C4—N1viii89.7
C3—N2—C3xii24.1 (9)C3xii—C4—N1viii99.3 (4)
C5—N2—C3xii93.3 (6)C5viii—C4—N1viii50.5 (5)
C3xi—N2—C3xii41.6 (16)C3—C4—N1viii97.1 (3)
C4viii—N2—C3xii69.8 (9)N1—C4—N1viii14.4 (4)
N1xi—N2—C3xii85.4 (10)N2viii—C4—N1viii82.8 (6)
C4xii—N2—C3xii44.1 (6)N1xii—C4—N1viii35.3 (11)
N1xii—N2—C3xii74.6 (8)N2xi—C4—N2xii27.0 (11)
C3viii—N2—C5xii84.4 (9)C5xi—C4—N2xii80.8 (17)
C4xi—N2—C5xii34.6 (14)C4xii—C4—N2xii106.3 (9)
N2viii—N2—C5xii96.4 (5)C3xii—C4—N2xii49.7 (5)
C3—N2—C5xii92.7 (6)C5viii—C4—N2xii94.5 (10)
C5—N2—C5xii24.8 (9)C3—C4—N2xii70.4 (10)
C3xi—N2—C5xii62.1 (9)N1—C4—N2xii67.9 (10)
C4viii—N2—C5xii28.3 (9)N2viii—C4—N2xii80.7 (13)
N1xi—N2—C5xii33.0 (7)N1xii—C4—N2xii80.5 (6)
C4xii—N2—C5xii74.5 (8)N1viii—C4—N2xii54.3 (11)
N1xii—N2—C5xii43.8 (6)N2xi—C4—H4A101.6
C3xii—N2—C5xii73.0 (8)C5xi—C4—H4A116.4
C3viii—N2—H2A94.1C4xii—C4—H4A122.6
C4xi—N2—H2A102.9C3xii—C4—H4A109.8
N2viii—N2—H2A126.0C5viii—C4—H4A133.2
C3—N2—H2A124.6C3—C4—H4A126.0
C5—N2—H2A127.4N1—C4—H4A126.0
C3xi—N2—H2A113.5N2viii—C4—H4A139.7
C4viii—N2—H2A119.2N1xii—C4—H4A141.6
N1xi—N2—H2A139.4N1viii—C4—H4A136.0
C4xii—N2—H2A147.9N2xii—C4—H4A127.2
N1xii—N2—H2A150.2N2viii—C3—C3xii136.9 (6)
C3xii—N2—H2A134.6N2viii—C3—C4xii55.3 (19)
C5xii—N2—H2A137.4C3xii—C3—C4xii91.9 (19)
N1xi—C5—C5xii92 (5)N2viii—C3—C3viii84 (2)
N1xi—C5—C4xi144.8 (18)C3xii—C3—C3viii90.0
C5xii—C5—C4xi91 (2)C4xii—C3—C3viii118.3
N1xi—C5—N1viii59 (5)N2viii—C3—N252 (2)
C5xii—C5—N1viii32.2 (8)C3xii—C3—N2113.2
C4xi—C5—N1viii117 (2)C4xii—C3—N293.9 (8)
N1xi—C5—N1xii15.2 (9)C3viii—C3—N232.4
C5xii—C5—N1xii91 (2)N2viii—C3—C491.9 (15)
C4xi—C5—N1xii129.7 (11)C3xii—C3—C451.2
N1viii—C5—N1xii60 (2)C4xii—C3—C440.7 (19)
N1xi—C5—C4viii127 (4)C3viii—C3—C4111.7
C5xii—C5—C4viii45.6 (4)N2—C3—C4108.0
C4xi—C5—C4viii46 (2)N2viii—C3—N2xi116.6 (13)
N1viii—C5—C4viii73.7 (5)C3xii—C3—N2xi20.3 (9)
N1xii—C5—C4viii118 (2)C4xii—C3—N2xi76 (2)
N1xi—C5—N143 (4)C3viii—C3—N2xi87.0 (11)
C5xii—C5—N150.9N2—C3—N2xi101.5 (10)
C4xi—C5—N1120.8 (18)C4—C3—N2xi36.5 (11)
N1viii—C5—N121.2 (10)N2viii—C3—C3xi109 (2)
N1xii—C5—N140 (2)C3xii—C3—C3xi56.2 (15)
C4viii—C5—N185.0 (9)C4xii—C3—C3xi114.3 (12)
N1xi—C5—N2108 (2)C3viii—C3—C3xi33.8 (15)
C5xii—C5—N2112.6N2—C3—C3xi61.1 (13)
C4xi—C5—N239.5 (16)C4—C3—C3xi87.6 (11)
N1viii—C5—N2119.9 (5)N2xi—C3—C3xi55.6 (9)
N1xii—C5—N294.6 (8)N2viii—C3—C5viii47.9 (12)
C4viii—C5—N274.0 (3)C3xii—C3—C5viii90.4
N1—C5—N2108.0C4xii—C3—C5viii24.0 (5)
N1xi—C5—C5viii30.1 (9)C3viii—C3—C5viii94.3 (5)
C5xii—C5—C5viii90.0N2—C3—C5viii72.4 (4)
C4xi—C5—C5viii114.8 (11)C4—C3—C5viii45.0 (2)
N1viii—C5—C5viii62.6 (10)N2xi—C3—C5viii70.7 (10)
N1xii—C5—C5viii14.88 (11)C3xi—C3—C5viii93.8 (4)
C4viii—C5—C5viii107.5 (12)N2viii—C3—N2xii106.9 (13)
N1—C5—C5viii41.4C3xii—C3—N2xii42.7 (9)
N2—C5—C5viii81.2C4xii—C3—N2xii94.8 (16)
N1xi—C5—C5xi42 (3)C3viii—C3—N2xii51.4 (8)
C5xii—C5—C5xi60.4 (11)N2—C3—N2xii70.4 (9)
C4xi—C5—C5xi112.2 (15)C4—C3—N2xii65.5 (8)
N1viii—C5—C5xi35.1 (11)N2xi—C3—N2xii35.5 (11)
N1xii—C5—C5xi33.5 (13)C3xi—C3—N2xii22.1 (6)
C4viii—C5—C5xi85.2 (11)C5viii—C3—N2xii77.6 (8)
N1—C5—C5xi15.5 (7)N2viii—C3—C5xi73.4 (12)
N2—C5—C5xi93.3 (4)C3xii—C3—C5xi64.5 (9)
C5viii—C5—C5xi29.6 (11)C4xii—C3—C5xi35.9 (10)
N1xi—C5—C3viii115.8 (14)C3viii—C3—C5xi93.9 (6)
C5xii—C5—C3viii89.6N2—C3—C5xi84.3 (6)
C4xi—C5—C3viii29.2 (5)C4—C3—C5xi24.1 (7)
N1viii—C5—C3viii103.0 (6)N2xi—C3—C5xi44.8 (8)
N1xii—C5—C3viii100.5 (11)C3xi—C3—C5xi79.5 (7)
C4viii—C5—C3viii51.1 (4)C5viii—C3—C5xi26.0 (9)
N1—C5—C3viii97.9 (8)N2xii—C3—C5xi58.9 (7)
N2—C5—C3viii23.5 (2)N2viii—C3—H3A120.0
C5viii—C5—C3viii85.7 (11)C3xii—C3—H3A101.5
C5xi—C5—C3viii86.0 (10)C4xii—C3—H3A126.0
N1xi—C5—N2xii105 (3)C3viii—C3—H3A113.8
C5xii—C5—N2xii42.6 (10)N2—C3—H3A126.0
C4xi—C5—N2xii57.3 (18)C4—C3—H3A126.0
N1viii—C5—N2xii60.2 (9)N2xi—C3—H3A120.9
N1xii—C5—N2xii94.2 (16)C3xi—C3—H3A116.5
C4viii—C5—N2xii23.9 (9)C5viii—C3—H3A149.1
N1—C5—N2xii65.5 (8)N2xii—C3—H3A129.6
N2—C5—N2xii70.0 (10)C5xi—C3—H3A149.5
C5viii—C5—N2xii83.6 (7)
Symmetry codes: (i) x+1, y+1, z; (ii) y+1, x, z+1; (iii) y, x+1, z+1; (iv) x+3/2, y+1/2, z+1; (v) x+1/2, y1/2, z+1; (vi) x+3/2, y1/2, z+1; (vii) x+1/2, y+1/2, z+1; (viii) y+1/2, x1/2, z; (ix) y+1, x, z+2; (x) y, x+1, z+2; (xi) x+1, y, z; (xii) y+1/2, x+1/2, z.

Experimental details

(I_RT)(I_HT)
Crystal data
Chemical formula(C3H5N2)[Mn(CHO2)3](C3H5N2)[Mn(CHO2)3]
Mr259.08259.08
Crystal system, space groupMonoclinic, P21/nTetragonal, P421m
Temperature (K)293453
a, b, c (Å)12.332 (3), 12.461 (3), 12.850 (3)8.8324 (12), 8.8324 (12), 6.4406 (13)
α, β, γ (°)90, 91.31 (3), 9090, 90, 90
V3)1974.1 (7)502.44 (14)
Z82
Radiation typeMo KαMo Kα
µ (mm1)1.351.33
Crystal size (mm)0.5 × 0.45 × 0.450.5 × 0.45 × 0.45
Data collection
DiffractometerRigaku Rapid
diffractometer
Rigaku Rapid
diffractometer
Absorption correctionMulti-scan
(RAPID-AUTO; Rigaku, 2000)
Multi-scan
(RAPID-AUTO; Rigaku, 2000)
Tmin, Tmax0.446, 0.5450.462, 0.551
No. of measured, independent and
observed [I > 2σ(I)] reflections
18874, 4488, 3025 4803, 623, 460
Rint0.0290.076
(sin θ/λ)max1)0.6480.646
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.072, 1.05 0.045, 0.135, 1.09
No. of reflections4488623
No. of parameters27166
No. of restraints030
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.350.28, 0.33
Absolute structure?Flack (1983), 247 Friedel pairs
Absolute structure parameter?0.3 (2)

Computer programs: RAPID-AUTO (Rigaku, 2000), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Putz, 2005), DIAMOND (Brandenburg & Putz, 2005).

Selected bond lengths (Å) for (I_RT) top
Mn1—O12.1430 (14)Mn2—O9v2.1629 (15)
Mn1—O32.1594 (16)Mn2—O112.1675 (15)
Mn1—O62.1728 (14)Mn2—O82.1839 (17)
Mn1—O2i2.1801 (16)Mn2—O72.2053 (14)
Mn1—O4ii2.1828 (16)Mn2—Mn1iv6.1598 (13)
Mn1—O5iii2.1996 (15)Mn2—Mn1i6.2318 (13)
Mn1—Mn26.1727 (13)Mn2—Mn1ii6.2454 (13)
Mn2—O12iv2.1489 (15)Mn2—Mn1v6.4073 (13)
Mn2—O102.1531 (16)Mn2—Mn1vi6.4430 (14)
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+1, z; (iii) x1/2, y+3/2, z1/2; (iv) x+1, y, z; (v) x+1/2, y+3/2, z1/2; (vi) x+1/2, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (I_RT) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O7vii0.861.922.781 (3)179
N4—H4A···O5viii0.861.992.842 (3)172
N1—H1A···O4ii0.861.992.820 (3)162
N2—H2A···O2ix0.861.932.780 (3)168
C9—H9A···O90.932.313.140 (3)148
C11—H11A···O12x0.932.413.286 (3)157
Symmetry codes: (ii) x+1, y+1, z; (vii) x1/2, y+3/2, z+1/2; (viii) x+1/2, y1/2, z+1/2; (ix) x+3/2, y1/2, z+1/2; (x) x, y+1, z.
Selected bond lengths (Å) for (I_HT) top
Mn1—Mn1i6.2455 (9)Mn1—Mn1iii6.2454 (9)
Mn1—Mn1ii6.2455 (9)Mn1—Mn1iv6.2454 (9)
Symmetry codes: (i) x+3/2, y+1/2, z+1; (ii) x+1/2, y1/2, z+1; (iii) x+3/2, y1/2, z+1; (iv) x+1/2, y+1/2, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds