Download citation
Download citation
link to html
Different extended packing motifs of dichlorido[2-(pyridin-2-yl)-1,10-phenanthroline]copper(II), [CuCl2(C17H11N3)], are obtained, depending on the crystallization conditions. A triclinic form, (I), is obtained from di­methyl­formamide–diethyl ether or methanol, whereas crystallization from di­methyl­formamide–water yields a monoclinic form, (II). In each case, the CuII centre is in a five-coordinate distorted square-pyramidal geometry. The extended packing for both forms can be described as a highly offset π-stacking arrangement, with inter­layer distances of 3.674 (3) and 3.679 (3) Å for forms (I) and (II), respectively. The reaction of diprotonated Pt(tmpip2NCN)Cl [tmpip2NCN = 2,6-bis­(2,2,6,6-tetra­methyl­piperidylmeth­yl)benzyl] with AgPF6 under acidic conditions, followed by the addition of 2-(pyridin-2-yl)-1,10-phenanthroline, results in a hydrogen-bonded cocrystal, 2,2,6,6-tetra­methyl-4-oxopiperidinium hexa­fluoro­phosphate–2-(pyridin-2-yl)-1,10-phenanthroline (1/1), C9H18NO+·PF6·C17H11N3, (III). The extended packing maximizes π–π inter­actions in a parallel face-to-face arrangement, with an inter­layer stacking distance of 3.4960 (14) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113009773/lg3106sup1.cif
Contains datablocks I, II, III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113009773/lg3106Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113009773/lg3106IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113009773/lg3106IIIsup4.hkl
Contains datablock III

CCDC references: 950355; 950356; 950357

Comment top

Our ongoing research efforts primarily focus on utilizing bi- and tridentate chelating imine-based ligands: (i) to tune the electronic nature of square-planar d8-electron and octahedral d6-electron late transition metals for promising multi-redox catalytic applications and to explore their photophysical properties (see, for example, Pt complexes: Chatterjee et al., 2012; Chatterjee, Krause, Connick et al., 2010; Chatterjee, Krause, Oliver et al., 2010; Green et al., 2005; Grove et al., 2008; Jude, Carroll & Connick, 2003; Jude, Krause Bauer & Connick, 2003; Pd complexes: Tastan et al., 2006); (ii) to bridge multiple metal centres to form more elaborate molecular architectures (Jude et al., 2005; Willison et al., 2008); and (iii) to continue our studies utilizing coinage metals (Collins et al., 2007). Our most recent focus has been the tridentate ligand 2-(pyridin-2-yl)-1,10-phenanthroline (php). We report here the synthesis and solid-state structure of Cu(php)Cl2 in both triclinic, (I), and monoclinic, (II), forms, obtained from different crystallization media. In addition, the neutral php ligand can act as a hydrogen-bond acceptor to an oxopiperidinium salt, as illustrated in 2,2,6,6-tetramethyl-4-oxopiperidinium hexafluorophosphate–2-(pyridin-2-yl)-1,10-phenanthroline (1/1), (III).

The crystallization medium plays a critical role in influencing the solid-state packing motifs that molecules adopt. Most often this is accomplished by solvents participating in close-contact interactions (e.g. hydrogen-bonding or ππ interactions) with the complex of interest, or residing in channels or cavities created by the surrounding complexes, as found for vapour- and anion-sensing crystals (Grove et al., 2008; Taylor, 2011). However, there can be instances, as in the present study, where the solvent, instead of affecting the close contacts, modifies the extended motif adopted. These differences in packing can be attributed to differences in the physical properties (e.g. electronegativity and pKa) introduced by the new solvent (Aakeröy et al., 2009, 2010).

The reaction of CuCl2.2H2O with php results in the formation of Cu(php)Cl2. Two crystallographic forms of Cu(php)Cl2 are obtained, depending on the crystallization conditions, viz. a triclinic form, (I) (Fig. 1a), when dimethylformamide–diethyl ether [Solvent ratio?] or methanol solutions were used, or a monoclinic form, (II) (Fig. 1b), when dimethylformamide–water [Solvent ratio?] was the solvent system. In each case, the CuII centre is in a five-coordinate distorted square-pyramidal geometry [τ = 0.11 for (I) and 0.03 for (II); Addison et al., 1984]. Atom Cu1 of (I) is 0.3915 (9) Å out of the basal plane (N1—N2—N3—Cl1), while for (II) the corresponding distance is 0.3544 (12) Å. Additionally, forms (I) and (II) both have an elongated Cu—Clapical bond (see Cu1—Cl2 distances summarized in Table 1), generally seen with square-pyramidal complexes (Addison et al., 1984). The disposition (dihedral angle, α) of the pyridine ring with respect to the phenanthroline system is relatively small, viz. 3.41 (8)° from coplanarity for (I) and 5.96 (13)° for (II) (Fig. 1c). Similarly, Ng (2004) and Wang et al., (2004) reported a distorted square-pyramidal geometry (τ = 0.02), with atom Cu1 above the basal plane (0.224 Å) and an elongated Cu—Clapical bond length [2.396 (1) Å], for Cu(dppt)Cl2 [dppt = 3-(1,10-phenanthrolin-2-yl)-5,6-diphenyl-1,2,4-triazine]. For Cu(dppt)Cl2, the corresponding relationship (α) between the phenanthroline system and triazine ring is 4.5°. The extended packing of forms (I) and (II) (Fig. 2) is a highly-offset π-stacking arrangement, with interlayer distances of 3.674 (3) and 3.679 (3) Å, respectively (the centroid of the pyridine ring stacks above the mid-point of the C12—C13 bond). Such an arrangement is indicative of a high degree of C—H···π attraction (Janiak, 2000).

Cocrystallization of 2,2,6,6-tetramethyl-4-oxopiperidinium hexafluorophosphate with php forms 2,2,6,6-tetramethyl-4-oxopiperidinium hexafluorophosphate–2-(pyridin-2-yl)-1,10-phenanthroline (1/1), (III), which is stabilized by two hydrogen bonds (Table 2) between the protonated N atom (N4) of the oxopiperidinium cation and two N atoms (N1 and N3) of the neutral php molecule (Fig. 3). The cation adopts the expected chair conformation, as reported by Simpson (1992) for 2,2,6,6-tetramethyl-4-oxopiperidinium hexafluorophosphate, by Breitung et al. (2003) for 2,2,6,6-tetramethyl-4-oxopiperidinium trifluoroacetate and by Campana et al., (1998) for 2,2,6,6-tetramethyl-4-oxopiperidinium bis(pentafluorophenyl)phosphinate. The pyridine ring is rotated 10.97 (12)° out of the phenanthroline plane to accommodate the hydrogen bonding to the oxopiperidinium cation. The extended packing (Fig. 4) maximizes a parallel face-to-face ππ stacking arrangement, with an interlayer stacking distance of 3.4960 (14) Å. The phenanthroline–phenanthroline centroid-to-centroid distance is 3.906 (2) Å. This arrangement is typical for aromatic nitrogen-containing ligands (Janiak, 2000; Miller et al., (1998)).

Related literature top

For related literature, see: Aakeröy et al. (2009, 2010); Addison et al. (1984); Breitung et al. (2003); Campana et al. (1998); Chatterjee et al. (2012); Chatterjee, Krause, Connick, Genre, Rodrigue-Witchel & Reber (2010); Chatterjee, Krause, Oliver & Connick (2010); Collins et al. (2007); Green et al. (2005); Grove et al. (2008); Janiak (2000); Jude et al. (2002, 2005); Jude, Carroll & Connick (2003); Jude, Krause Bauer & Connick (2003); Miller et al. (1998); Moore et al. (2002); Ng (2004); Simpson (1992); Tastan et al. (2006); Taylor (2011); Wang et al. (2004); Willison et al. (2008).

Experimental top

2-(Pyridin-2-yl)-1,10-phenanthroline (php) was prepared using a modification of the procedure of Moore et al. (2002). Under an inert argon atmosphere, 1.2 equivalents of n-butyllithium solution (1.6M in hexanes) was added to a stirred solution of 2-bromopyridine (6.7 mmol) in tetrahydrofuran (THF) at 195 K. After stirring for 30 min, the red solution was cannula-transferred to a tetrahydrofuran solution of 1,10-phenanthroline (5.70 mmol), stirred for an additional 6 h and then quenched with water. The organics were extracted into dichloromethane and oxidized with an excess of MnO2. After standing overnight, the solution was filtered, dried with Na2SO4 and concentrated to a yellow oil. The crude product was purified by column chromatography (silica gel, 8:1 v/v THF–hexane). An off-white solid was obtained and further purified via recrystallization from dichloromethane–hexane [Solvent ratio?].

Pt(tmpip2NCN)Cl was prepared by substituting 2,2,6,6-tetramethylpiperidine as the ligand reagent in the procedure originally described by Jude et al. (2002) for Pt(pip2NCN)Cl.

Copper(II) chloride dihydrate and php were added to a methanol–acetonitrile solution (0.2 mmol of each reactant, 25 ml of each solvent). After refluxing for 4 h, a precipitate was obtained. The crude product, Cu(php)Cl2, was filtered off and washed with diethyl ether. X-ray quality crystals of (I) were grown from either dimethylformamide–diethyl ether [Solvent ratio?] or methanol solutions. Polymorph (II) was obtained when dimethylformamide–water [Solvent ratio?] were the crystallization solvents.

Solvated salt (III) was obtained during the reaction of Pt(tmpip2NCN)Cl with AgPF6 and php under acidic conditions. Trifluoroacetic acid (2 equivalents) was added to an acetonitrile solution [Volume?] of Pt(tmpip2NCN)Cl [How much?]. AgPF6 [How much?] was added to this mixture, followed by the addition of php [How much?]. Crystals of (III) were harvested from an acetone–diethyl ether solution [Solvent ratio?].

Refinement top

The N-bound H atoms of (III) were located directly from the difference map and the positions were refined. All remaining H atoms for (I), (II) and (III) were either located from the difference map or calculated based on geometric criteria, and treated with a riding model, with C—H = 0.99 for CH2, 0.98 for CH3 and 0.95 Å for aromatic, and with Uiso(H) = kUeq(C,N), where k = 1.5 for methyl H atoms or 1.2 for all others.

Computing details top

Data collection: SMART (Bruker, 2003) for (I), (II); APEX2 (Bruker, 2009) for (III). For all compounds, cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003) and SADABS (Sheldrick, 2008a); program(s) used to solve structure: SHELXTL (Sheldrick, 2008b); program(s) used to refine structure: SHELXTL (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b) and DIAMOND (Brandenburg, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. The structure of (a) triclinic form (I) and (b) monoclinic form (II) of Cu(php)Cl2, showing the atomic labelling scheme and 50% probability displacement ellipsoids. (c) An overlay showing the differences between forms (I) (red atoms in the electronic version of the paper) and (II) (blue atoms).
[Figure 2] Fig. 2. The highly-offset π-stacking arrangement in (I), viewed in the bc plane. The C12—C13 bond is shown as a thicker line (red in the electronic version of the paper). All H atoms have been omitted for clarity. The π-stacking arrangement of (II) is similar.
[Figure 3] Fig. 3. The molecular structure of (III), showing the atomic labelling scheme and 50% probability displacement ellipsoids. N—H···N hydrogen bonding is shown as dashed lines.
[Figure 4] Fig. 4. The offset face-to-face ππ stacking of (III), viewed in the bc plane. Only H atoms involved in hydrogen bonding (dashed lines) are shown.
(I) Dichlorido[2-(pyridin-2-yl)-1,10-phenanthroline]copper(II) top
Crystal data top
[CuCl2(C17H11N3)]Z = 2
Mr = 391.73F(000) = 394
Triclinic, P1Dx = 1.750 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 7.4523 (2) ÅCell parameters from 4986 reflections
b = 8.8189 (2) Åθ = 3.8–67.2°
c = 12.1288 (3) ŵ = 5.38 mm1
α = 103.263 (1)°T = 150 K
β = 99.042 (1)°Rectangular block, green
γ = 101.361 (1)°0.25 × 0.11 × 0.10 mm
V = 743.36 (3) Å3
Data collection top
Bruker SMART6000 CCD area-detector
diffractometer
2545 independent reflections
Radiation source: fine-focus sealed tube2401 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Detector resolution: 0.83 pixels mm-1θmax = 67.4°, θmin = 3.8°
ω scansh = 88
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
k = 1010
Tmin = 0.346, Tmax = 0.615l = 1413
6228 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0451P)2 + 0.937P]
where P = (Fo2 + 2Fc2)/3
2545 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.78 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[CuCl2(C17H11N3)]γ = 101.361 (1)°
Mr = 391.73V = 743.36 (3) Å3
Triclinic, P1Z = 2
a = 7.4523 (2) ÅCu Kα radiation
b = 8.8189 (2) ŵ = 5.38 mm1
c = 12.1288 (3) ÅT = 150 K
α = 103.263 (1)°0.25 × 0.11 × 0.10 mm
β = 99.042 (1)°
Data collection top
Bruker SMART6000 CCD area-detector
diffractometer
2545 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
2401 reflections with I > 2σ(I)
Tmin = 0.346, Tmax = 0.615Rint = 0.015
6228 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.06Δρmax = 0.78 e Å3
2545 reflectionsΔρmin = 0.35 e Å3
208 parameters
Special details top

Experimental. A suitable crystal was mounted in a loop with paratone-N and transferred immediately to the goniostat bathed in a cold stream.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.49190 (5)0.76181 (4)0.28255 (3)0.01994 (13)
Cl10.30191 (8)0.54665 (7)0.31009 (5)0.02607 (16)
Cl20.73570 (8)0.66442 (7)0.19669 (5)0.02433 (16)
N10.3295 (3)0.7717 (2)0.12892 (18)0.0210 (4)
N20.5591 (3)0.9944 (2)0.29969 (17)0.0195 (4)
N30.6562 (3)0.8522 (2)0.44928 (18)0.0197 (4)
C10.2186 (3)0.6548 (3)0.0409 (2)0.0246 (5)
H10.20370.54680.04500.030*
C20.1227 (4)0.6853 (3)0.0580 (2)0.0267 (6)
H20.04450.59900.11940.032*
C30.1427 (4)0.8411 (3)0.0655 (2)0.0263 (6)
H30.07490.86300.13080.032*
C40.2644 (3)0.9682 (3)0.0245 (2)0.0231 (5)
C50.3542 (3)0.9250 (3)0.1192 (2)0.0204 (5)
C60.3085 (4)1.1340 (3)0.0255 (2)0.0277 (6)
H60.24891.16490.03810.033*
C70.4329 (4)1.2497 (3)0.1143 (2)0.0265 (6)
H70.45851.35820.11090.032*
C80.5250 (3)1.2092 (3)0.2124 (2)0.0214 (5)
C90.4824 (3)1.0467 (3)0.2121 (2)0.0189 (5)
C100.6560 (4)1.3158 (3)0.3099 (2)0.0232 (5)
H100.69271.42660.31360.028*
C110.7310 (3)1.2598 (3)0.4000 (2)0.0223 (5)
H110.81801.33160.46580.027*
C120.6768 (3)1.0952 (3)0.3930 (2)0.0193 (5)
C130.7359 (3)1.0130 (3)0.4811 (2)0.0194 (5)
C140.8588 (3)1.0893 (3)0.5866 (2)0.0222 (5)
H140.91171.20180.60710.027*
C150.9033 (3)0.9978 (3)0.6618 (2)0.0237 (5)
H150.98801.04680.73440.028*
C160.8220 (3)0.8339 (3)0.6293 (2)0.0239 (5)
H160.84990.76940.67950.029*
C170.6993 (3)0.7656 (3)0.5224 (2)0.0218 (5)
H170.64400.65350.50050.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0215 (2)0.01345 (19)0.0226 (2)0.00126 (14)0.00109 (14)0.00543 (14)
Cl10.0278 (3)0.0175 (3)0.0300 (3)0.0009 (2)0.0029 (2)0.0084 (2)
Cl20.0247 (3)0.0187 (3)0.0287 (3)0.0050 (2)0.0056 (2)0.0049 (2)
N10.0196 (10)0.0192 (10)0.0226 (10)0.0021 (8)0.0035 (8)0.0055 (8)
N20.0190 (10)0.0166 (10)0.0235 (10)0.0037 (8)0.0050 (8)0.0067 (8)
N30.0190 (10)0.0160 (9)0.0234 (10)0.0037 (8)0.0035 (8)0.0050 (8)
C10.0217 (12)0.0210 (12)0.0280 (13)0.0002 (10)0.0034 (10)0.0060 (10)
C20.0208 (12)0.0301 (14)0.0244 (13)0.0013 (11)0.0014 (10)0.0045 (11)
C30.0204 (12)0.0343 (14)0.0261 (13)0.0073 (11)0.0049 (10)0.0115 (11)
C40.0203 (12)0.0276 (13)0.0250 (13)0.0081 (10)0.0081 (10)0.0097 (10)
C50.0185 (11)0.0203 (12)0.0239 (12)0.0051 (10)0.0069 (9)0.0067 (10)
C60.0291 (14)0.0324 (14)0.0288 (14)0.0139 (12)0.0085 (11)0.0152 (11)
C70.0306 (14)0.0233 (13)0.0308 (14)0.0103 (11)0.0100 (11)0.0117 (11)
C80.0226 (12)0.0194 (12)0.0262 (13)0.0081 (10)0.0090 (10)0.0088 (10)
C90.0184 (11)0.0192 (11)0.0209 (12)0.0057 (10)0.0074 (9)0.0058 (9)
C100.0285 (13)0.0148 (11)0.0270 (13)0.0052 (10)0.0082 (10)0.0055 (10)
C110.0230 (12)0.0183 (12)0.0242 (13)0.0033 (10)0.0047 (10)0.0043 (10)
C120.0176 (11)0.0188 (11)0.0221 (12)0.0047 (9)0.0053 (9)0.0058 (9)
C130.0171 (11)0.0173 (11)0.0252 (12)0.0055 (9)0.0066 (9)0.0060 (9)
C140.0192 (12)0.0182 (11)0.0268 (13)0.0025 (10)0.0058 (10)0.0023 (10)
C150.0190 (12)0.0264 (13)0.0227 (12)0.0037 (10)0.0025 (10)0.0039 (10)
C160.0224 (12)0.0249 (13)0.0257 (13)0.0066 (10)0.0039 (10)0.0093 (10)
C170.0233 (12)0.0180 (11)0.0250 (13)0.0039 (10)0.0055 (10)0.0081 (10)
Geometric parameters (Å, º) top
Cu1—N21.967 (2)C6—C71.368 (4)
Cu1—N32.079 (2)C6—H60.9500
Cu1—N12.086 (2)C7—C81.431 (4)
Cu1—Cl12.2578 (6)C7—H70.9500
Cu1—Cl22.4336 (7)C8—C91.404 (3)
N1—C11.330 (3)C8—C101.415 (4)
N1—C51.362 (3)C10—C111.384 (4)
N2—C121.326 (3)C10—H100.9500
N2—C91.344 (3)C11—C121.407 (3)
N3—C171.339 (3)C11—H110.9500
N3—C131.363 (3)C12—C131.482 (3)
C1—C21.407 (4)C13—C141.386 (4)
C1—H10.9500C14—C151.394 (4)
C2—C31.378 (4)C14—H140.9500
C2—H20.9500C15—C161.389 (4)
C3—C41.414 (4)C15—H150.9500
C3—H30.9500C16—C171.390 (4)
C4—C51.405 (4)C16—H160.9500
C4—C61.430 (4)C17—H170.9500
C5—C91.427 (3)
N2—Cu1—N377.19 (8)C7—C6—H6118.7
N2—Cu1—N179.82 (8)C4—C6—H6118.7
N3—Cu1—N1156.19 (8)C6—C7—C8120.7 (2)
N2—Cu1—Cl1149.32 (6)C6—C7—H7119.6
N3—Cu1—Cl198.41 (6)C8—C7—H7119.6
N1—Cu1—Cl198.20 (6)C9—C8—C10116.2 (2)
N2—Cu1—Cl2104.08 (6)C9—C8—C7117.0 (2)
N3—Cu1—Cl294.90 (6)C10—C8—C7126.8 (2)
N1—Cu1—Cl296.58 (6)N2—C9—C8122.3 (2)
Cl1—Cu1—Cl2106.56 (2)N2—C9—C5115.0 (2)
C1—N1—C5117.8 (2)C8—C9—C5122.7 (2)
C1—N1—Cu1130.54 (17)C11—C10—C8120.5 (2)
C5—N1—Cu1111.57 (16)C11—C10—H10119.8
C12—N2—C9121.4 (2)C8—C10—H10119.8
C12—N2—Cu1121.50 (16)C10—C11—C12119.2 (2)
C9—N2—Cu1117.11 (16)C10—C11—H11120.4
C17—N3—C13118.6 (2)C12—C11—H11120.4
C17—N3—Cu1125.89 (16)N2—C12—C11120.3 (2)
C13—N3—Cu1115.32 (16)N2—C12—C13112.3 (2)
N1—C1—C2122.3 (2)C11—C12—C13127.4 (2)
N1—C1—H1118.9N3—C13—C14122.2 (2)
C2—C1—H1118.9N3—C13—C12113.4 (2)
C3—C2—C1119.7 (2)C14—C13—C12124.4 (2)
C3—C2—H2120.2C13—C14—C15118.7 (2)
C1—C2—H2120.2C13—C14—H14120.7
C2—C3—C4119.7 (2)C15—C14—H14120.7
C2—C3—H3120.2C16—C15—C14119.1 (2)
C4—C3—H3120.2C16—C15—H15120.5
C5—C4—C3116.2 (2)C14—C15—H15120.5
C5—C4—C6117.8 (2)C15—C16—C17119.1 (2)
C3—C4—C6126.0 (2)C15—C16—H16120.5
N1—C5—C4124.3 (2)C17—C16—H16120.5
N1—C5—C9116.5 (2)N3—C17—C16122.3 (2)
C4—C5—C9119.2 (2)N3—C17—H17118.8
C7—C6—C4122.6 (2)C16—C17—H17118.8
N2—Cu1—N1—C1177.0 (2)C4—C6—C7—C80.5 (4)
N3—Cu1—N1—C1167.8 (2)C6—C7—C8—C90.4 (4)
Cl1—Cu1—N1—C134.0 (2)C6—C7—C8—C10179.9 (2)
Cl2—Cu1—N1—C173.8 (2)C12—N2—C9—C81.6 (4)
N2—Cu1—N1—C50.87 (16)Cu1—N2—C9—C8177.59 (18)
N3—Cu1—N1—C516.0 (3)C12—N2—C9—C5178.2 (2)
Cl1—Cu1—N1—C5149.84 (15)Cu1—N2—C9—C52.6 (3)
Cl2—Cu1—N1—C5102.31 (16)C10—C8—C9—N20.8 (4)
N3—Cu1—N2—C125.09 (18)C7—C8—C9—N2179.5 (2)
N1—Cu1—N2—C12178.9 (2)C10—C8—C9—C5179.4 (2)
Cl1—Cu1—N2—C1290.0 (2)C7—C8—C9—C50.2 (4)
Cl2—Cu1—N2—C1286.81 (18)N1—C5—C9—N21.8 (3)
N3—Cu1—N2—C9175.74 (19)C4—C5—C9—N2179.0 (2)
N1—Cu1—N2—C91.94 (17)N1—C5—C9—C8178.4 (2)
Cl1—Cu1—N2—C990.9 (2)C4—C5—C9—C80.8 (4)
Cl2—Cu1—N2—C992.36 (17)C9—C8—C10—C111.8 (4)
N2—Cu1—N3—C17179.8 (2)C7—C8—C10—C11178.5 (2)
N1—Cu1—N3—C17164.5 (2)C8—C10—C11—C120.6 (4)
Cl1—Cu1—N3—C1730.7 (2)C9—N2—C12—C112.9 (4)
Cl2—Cu1—N3—C1776.9 (2)Cu1—N2—C12—C11176.24 (18)
N2—Cu1—N3—C135.16 (16)C9—N2—C12—C13176.9 (2)
N1—Cu1—N3—C1320.4 (3)Cu1—N2—C12—C134.0 (3)
Cl1—Cu1—N3—C13154.25 (16)C10—C11—C12—N21.8 (4)
Cl2—Cu1—N3—C1398.19 (16)C10—C11—C12—C13177.9 (2)
C5—N1—C1—C22.4 (4)C17—N3—C13—C140.3 (4)
Cu1—N1—C1—C2178.36 (18)Cu1—N3—C13—C14175.75 (18)
N1—C1—C2—C30.0 (4)C17—N3—C13—C12179.9 (2)
C1—C2—C3—C42.2 (4)Cu1—N3—C13—C124.7 (3)
C2—C3—C4—C51.9 (4)N2—C12—C13—N30.7 (3)
C2—C3—C4—C6175.8 (3)C11—C12—C13—N3179.0 (2)
C1—N1—C5—C42.7 (4)N2—C12—C13—C14179.7 (2)
Cu1—N1—C5—C4179.39 (19)C11—C12—C13—C140.6 (4)
C1—N1—C5—C9176.5 (2)N3—C13—C14—C150.6 (4)
Cu1—N1—C5—C90.2 (3)C12—C13—C14—C15179.9 (2)
C3—C4—C5—N10.5 (4)C13—C14—C15—C160.6 (4)
C6—C4—C5—N1178.4 (2)C14—C15—C16—C170.3 (4)
C3—C4—C5—C9178.6 (2)C13—N3—C17—C160.0 (4)
C6—C4—C5—C90.7 (3)Cu1—N3—C17—C16174.91 (18)
C5—C4—C6—C70.1 (4)C15—C16—C17—N30.0 (4)
C3—C4—C6—C7177.7 (2)
(II) Dichlorido[2-(pyridin-2-yl)-1,10-phenanthroline]copper(II) top
Crystal data top
[CuCl2(C17H11N3)]F(000) = 788
Mr = 391.73Dx = 1.758 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 5694 reflections
a = 11.8630 (2) Åθ = 3.9–67.0°
b = 7.7022 (2) ŵ = 5.41 mm1
c = 16.8882 (3) ÅT = 150 K
β = 106.424 (1)°Plate, green
V = 1480.13 (5) Å30.13 × 0.11 × 0.03 mm
Z = 4
Data collection top
Bruker SMART6000 CCD area-detector
diffractometer
2578 independent reflections
Radiation source: fine-focus sealed tube2184 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 0.83 pixels mm-1θmax = 67.2°, θmin = 3.9°
ω scansh = 1413
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
k = 99
Tmin = 0.540, Tmax = 0.855l = 2020
11084 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0548P)2 + 1.8743P]
where P = (Fo2 + 2Fc2)/3
2578 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.88 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[CuCl2(C17H11N3)]V = 1480.13 (5) Å3
Mr = 391.73Z = 4
Monoclinic, P21/cCu Kα radiation
a = 11.8630 (2) ŵ = 5.41 mm1
b = 7.7022 (2) ÅT = 150 K
c = 16.8882 (3) Å0.13 × 0.11 × 0.03 mm
β = 106.424 (1)°
Data collection top
Bruker SMART6000 CCD area-detector
diffractometer
2578 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
2184 reflections with I > 2σ(I)
Tmin = 0.540, Tmax = 0.855Rint = 0.033
11084 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.05Δρmax = 0.88 e Å3
2578 reflectionsΔρmin = 0.27 e Å3
208 parameters
Special details top

Experimental. A suitable crystal was mounted in a loop with paratone-N and transferred immediately to the goniostat bathed in a cold stream.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.28679 (4)0.06985 (6)0.38472 (2)0.02167 (16)
Cl10.31047 (7)0.03508 (12)0.26680 (5)0.0326 (2)
Cl20.17784 (7)0.33979 (10)0.34226 (5)0.0275 (2)
N10.1514 (2)0.0974 (3)0.39344 (15)0.0230 (6)
N20.3065 (2)0.0787 (3)0.50377 (15)0.0196 (5)
N30.4484 (2)0.1979 (3)0.43012 (15)0.0213 (6)
C10.0751 (3)0.1909 (4)0.3366 (2)0.0263 (7)
H10.07910.18720.28120.032*
C20.0113 (3)0.2951 (4)0.3553 (2)0.0293 (8)
H20.06440.35980.31290.035*
C30.0191 (3)0.3032 (4)0.4350 (2)0.0298 (8)
H30.07670.37460.44800.036*
C40.0592 (3)0.2046 (4)0.4973 (2)0.0250 (7)
C50.1420 (3)0.1037 (4)0.47223 (19)0.0226 (7)
C60.0604 (3)0.1979 (5)0.5820 (2)0.0307 (8)
H60.00480.26500.59970.037*
C70.1389 (3)0.0982 (5)0.6387 (2)0.0316 (8)
H70.13520.09510.69410.038*
C80.2275 (3)0.0028 (5)0.61566 (18)0.0242 (7)
C90.2259 (3)0.0037 (4)0.53253 (18)0.0204 (6)
C100.3153 (3)0.1064 (5)0.66792 (19)0.0268 (7)
H100.31670.12130.72400.032*
C110.3995 (3)0.1867 (4)0.63830 (19)0.0263 (7)
H110.46020.25350.67400.032*
C120.3937 (3)0.1676 (4)0.55444 (18)0.0197 (6)
C130.4785 (3)0.2353 (4)0.51206 (18)0.0209 (6)
C140.5796 (3)0.3266 (4)0.55127 (19)0.0230 (7)
H140.59990.34770.60900.028*
C150.6509 (3)0.3870 (4)0.5039 (2)0.0253 (7)
H150.72020.45110.52890.030*
C160.6191 (3)0.3519 (4)0.4200 (2)0.0262 (7)
H160.66570.39310.38650.031*
C170.5187 (3)0.2563 (4)0.38587 (19)0.0244 (7)
H170.49830.23060.32850.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0230 (3)0.0282 (3)0.0145 (2)0.0017 (2)0.00656 (18)0.00065 (18)
Cl10.0371 (4)0.0436 (5)0.0201 (4)0.0008 (4)0.0130 (3)0.0071 (3)
Cl20.0266 (4)0.0295 (4)0.0243 (4)0.0050 (3)0.0038 (3)0.0022 (3)
N10.0220 (13)0.0259 (14)0.0216 (13)0.0056 (12)0.0071 (11)0.0004 (11)
N20.0206 (12)0.0219 (13)0.0167 (12)0.0034 (11)0.0061 (10)0.0005 (10)
N30.0204 (13)0.0257 (14)0.0186 (13)0.0042 (11)0.0066 (10)0.0022 (11)
C10.0282 (17)0.0262 (18)0.0230 (16)0.0061 (15)0.0051 (13)0.0019 (13)
C20.0249 (17)0.0269 (18)0.0328 (18)0.0011 (15)0.0028 (14)0.0064 (15)
C30.0232 (16)0.0238 (18)0.041 (2)0.0025 (15)0.0066 (14)0.0050 (15)
C40.0192 (15)0.0241 (17)0.0315 (17)0.0063 (14)0.0071 (13)0.0049 (14)
C50.0207 (15)0.0232 (16)0.0233 (16)0.0067 (14)0.0053 (12)0.0038 (13)
C60.0278 (17)0.0304 (19)0.0383 (19)0.0037 (16)0.0165 (15)0.0077 (16)
C70.0331 (18)0.037 (2)0.0287 (18)0.0093 (16)0.0152 (15)0.0079 (15)
C80.0250 (16)0.0272 (17)0.0232 (16)0.0084 (14)0.0114 (13)0.0049 (14)
C90.0189 (15)0.0211 (15)0.0213 (15)0.0068 (13)0.0059 (12)0.0037 (13)
C100.0305 (17)0.0355 (19)0.0155 (15)0.0096 (15)0.0085 (13)0.0007 (14)
C110.0276 (16)0.0307 (18)0.0192 (15)0.0021 (15)0.0043 (13)0.0056 (14)
C120.0194 (15)0.0191 (16)0.0203 (15)0.0050 (13)0.0053 (12)0.0017 (12)
C130.0241 (16)0.0207 (16)0.0197 (15)0.0071 (13)0.0089 (12)0.0016 (12)
C140.0259 (16)0.0221 (16)0.0213 (15)0.0043 (14)0.0075 (13)0.0012 (12)
C150.0206 (15)0.0215 (16)0.0327 (18)0.0027 (14)0.0058 (13)0.0013 (14)
C160.0251 (16)0.0266 (17)0.0308 (17)0.0056 (14)0.0144 (14)0.0075 (14)
C170.0263 (16)0.0293 (18)0.0189 (15)0.0088 (14)0.0087 (13)0.0051 (13)
Geometric parameters (Å, º) top
Cu1—N21.959 (2)C6—C71.366 (5)
Cu1—N12.096 (3)C6—H60.9500
Cu1—N32.099 (3)C7—C81.447 (5)
Cu1—Cl12.2393 (8)C7—H70.9500
Cu1—Cl22.4461 (9)C8—C91.399 (4)
N1—C11.330 (4)C8—C101.407 (5)
N1—C51.367 (4)C10—C111.383 (5)
N2—C121.331 (4)C10—H100.9500
N2—C91.347 (4)C11—C121.406 (4)
N3—C171.344 (4)C11—H110.9500
N3—C131.359 (4)C12—C131.485 (4)
C1—C21.406 (5)C13—C141.386 (4)
C1—H10.9500C14—C151.398 (4)
C2—C31.377 (5)C14—H140.9500
C2—H20.9500C15—C161.386 (5)
C3—C41.412 (5)C15—H150.9500
C3—H30.9500C16—C171.380 (5)
C4—C51.408 (4)C16—H160.9500
C4—C61.428 (5)C17—H170.9500
C5—C91.431 (5)
N2—Cu1—N179.66 (10)C7—C6—H6118.9
N2—Cu1—N377.14 (10)C4—C6—H6118.9
N1—Cu1—N3154.42 (10)C6—C7—C8121.2 (3)
N2—Cu1—Cl1156.48 (8)C6—C7—H7119.4
N1—Cu1—Cl197.58 (7)C8—C7—H7119.4
N3—Cu1—Cl199.38 (7)C9—C8—C10116.6 (3)
N2—Cu1—Cl299.86 (8)C9—C8—C7116.4 (3)
N1—Cu1—Cl2101.03 (7)C10—C8—C7127.0 (3)
N3—Cu1—Cl293.44 (7)N2—C9—C8122.3 (3)
Cl1—Cu1—Cl2103.58 (3)N2—C9—C5114.7 (3)
C1—N1—C5117.2 (3)C8—C9—C5122.9 (3)
C1—N1—Cu1131.4 (2)C11—C10—C8120.6 (3)
C5—N1—Cu1111.4 (2)C11—C10—H10119.7
C12—N2—C9120.8 (3)C8—C10—H10119.7
C12—N2—Cu1121.5 (2)C10—C11—C12118.9 (3)
C9—N2—Cu1117.6 (2)C10—C11—H11120.6
C17—N3—C13118.0 (3)C12—C11—H11120.6
C17—N3—Cu1126.9 (2)N2—C12—C11120.6 (3)
C13—N3—Cu1114.9 (2)N2—C12—C13112.4 (3)
N1—C1—C2122.5 (3)C11—C12—C13127.0 (3)
N1—C1—H1118.7N3—C13—C14122.5 (3)
C2—C1—H1118.7N3—C13—C12113.5 (3)
C3—C2—C1120.0 (3)C14—C13—C12124.1 (3)
C3—C2—H2120.0C13—C14—C15118.5 (3)
C1—C2—H2120.0C13—C14—H14120.8
C2—C3—C4119.5 (3)C15—C14—H14120.8
C2—C3—H3120.3C16—C15—C14119.1 (3)
C4—C3—H3120.3C16—C15—H15120.4
C5—C4—C3116.2 (3)C14—C15—H15120.4
C5—C4—C6118.1 (3)C17—C16—C15118.9 (3)
C3—C4—C6125.7 (3)C17—C16—H16120.5
N1—C5—C4124.6 (3)C15—C16—H16120.5
N1—C5—C9116.2 (3)N3—C17—C16122.9 (3)
C4—C5—C9119.2 (3)N3—C17—H17118.5
C7—C6—C4122.2 (3)C16—C17—H17118.5
N2—Cu1—N1—C1177.6 (3)C4—C6—C7—C81.7 (5)
N3—Cu1—N1—C1152.4 (3)C6—C7—C8—C91.8 (5)
Cl1—Cu1—N1—C121.2 (3)C6—C7—C8—C10178.0 (3)
Cl2—Cu1—N1—C184.3 (3)C12—N2—C9—C81.5 (4)
N2—Cu1—N1—C54.2 (2)Cu1—N2—C9—C8176.2 (2)
N3—Cu1—N1—C529.3 (4)C12—N2—C9—C5175.9 (3)
Cl1—Cu1—N1—C5160.51 (19)Cu1—N2—C9—C56.4 (3)
Cl2—Cu1—N1—C594.0 (2)C10—C8—C9—N22.6 (5)
N1—Cu1—N2—C12176.5 (2)C7—C8—C9—N2177.2 (3)
N3—Cu1—N2—C127.3 (2)C10—C8—C9—C5179.8 (3)
Cl1—Cu1—N2—C1291.3 (3)C7—C8—C9—C50.0 (5)
Cl2—Cu1—N2—C1284.0 (2)N1—C5—C9—N22.5 (4)
N1—Cu1—N2—C95.8 (2)C4—C5—C9—N2175.5 (3)
N3—Cu1—N2—C9175.0 (2)N1—C5—C9—C8179.9 (3)
Cl1—Cu1—N2—C991.0 (3)C4—C5—C9—C81.9 (5)
Cl2—Cu1—N2—C993.7 (2)C9—C8—C10—C114.3 (5)
N2—Cu1—N3—C17179.6 (3)C7—C8—C10—C11175.5 (3)
N1—Cu1—N3—C17154.2 (3)C8—C10—C11—C122.0 (5)
Cl1—Cu1—N3—C1723.3 (3)C9—N2—C12—C114.0 (4)
Cl2—Cu1—N3—C1781.1 (3)Cu1—N2—C12—C11173.6 (2)
N2—Cu1—N3—C135.7 (2)C9—N2—C12—C13175.0 (3)
N1—Cu1—N3—C1331.0 (4)Cu1—N2—C12—C137.4 (3)
Cl1—Cu1—N3—C13161.9 (2)C10—C11—C12—N22.2 (5)
Cl2—Cu1—N3—C1393.7 (2)C10—C11—C12—C13176.6 (3)
C5—N1—C1—C21.0 (4)C17—N3—C13—C141.7 (4)
Cu1—N1—C1—C2179.2 (2)Cu1—N3—C13—C14176.9 (2)
N1—C1—C2—C30.1 (5)C17—N3—C13—C12178.9 (3)
C1—C2—C3—C40.8 (5)Cu1—N3—C13—C123.6 (3)
C2—C3—C4—C50.4 (4)N2—C12—C13—N32.0 (4)
C2—C3—C4—C6178.9 (3)C11—C12—C13—N3179.2 (3)
C1—N1—C5—C41.5 (4)N2—C12—C13—C14177.5 (3)
Cu1—N1—C5—C4180.0 (2)C11—C12—C13—C141.4 (5)
C1—N1—C5—C9179.3 (3)N3—C13—C14—C152.1 (5)
Cu1—N1—C5—C92.1 (3)C12—C13—C14—C15178.5 (3)
C3—C4—C5—N10.8 (5)C13—C14—C15—C160.8 (5)
C6—C4—C5—N1179.8 (3)C14—C15—C16—C170.9 (5)
C3—C4—C5—C9178.6 (3)C13—N3—C17—C160.1 (5)
C6—C4—C5—C92.0 (4)Cu1—N3—C17—C16174.5 (2)
C5—C4—C6—C70.3 (5)C15—C16—C17—N31.4 (5)
C3—C4—C6—C7179.6 (3)
(III) 2,2,6,6-Tetramethyl-4-oxopiperidinium hexafluorophosphate–2-(pyridin-2-yl)-1,10-phenanthroline top
Crystal data top
C9H18NO+·PF6·C17H11N3F(000) = 1160
Mr = 558.50Dx = 1.472 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.77490 Å
Hall symbol: -P 2ybcCell parameters from 9159 reflections
a = 8.1051 (10) Åθ = 2.6–29.0°
b = 21.714 (3) ŵ = 0.23 mm1
c = 14.4087 (19) ÅT = 183 K
β = 96.337 (3)°Block, light yellow
V = 2520.3 (6) Å30.07 × 0.07 × 0.05 mm
Z = 4
Data collection top
Bruker Platinum 200
diffractometer
5080 independent reflections
Radiation source: synchrotron4268 reflections with I > 2σ(I)
Si-<111> channel-cut crystal monochromatorRint = 0.040
ω scansθmax = 29.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 710
Tmin = 0.984, Tmax = 0.989k = 2127
26509 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: mixed
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0836P)2 + 0.9747P]
where P = (Fo2 + 2Fc2)/3
5080 reflections(Δ/σ)max = 0.001
353 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C9H18NO+·PF6·C17H11N3V = 2520.3 (6) Å3
Mr = 558.50Z = 4
Monoclinic, P21/cSynchrotron radiation, λ = 0.77490 Å
a = 8.1051 (10) ŵ = 0.23 mm1
b = 21.714 (3) ÅT = 183 K
c = 14.4087 (19) Å0.07 × 0.07 × 0.05 mm
β = 96.337 (3)°
Data collection top
Bruker Platinum 200
diffractometer
5080 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
4268 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.989Rint = 0.040
26509 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.71 e Å3
5080 reflectionsΔρmin = 0.24 e Å3
353 parameters
Special details top

Experimental. A suitable crystal was mounted in a loop with paratone-N and transferred immediately to the goniostat bathed in a cold stream.

ABSMU01_ALERT_1_G Calculation of _exptl_absorpt_correction_mu not performed for this radiation type.

NOTE FROM AUTHORS: Synchrotron Radiation at 0.7749 Å wavelength was used in the experiment and is properly documented.

PLAT984_ALERT_1_G The C-f'= -0.002 Deviates from the B&C-Value 0.004 A nd 5 other PLAT984 Alerts More ···

NOTE FROM AUTHORS: Scattering Factors for a wavelength of 0.77490 Å were calculated using the Brennan method as employed in the WCROMER program (using the Brennan method as employed in the XDISP program calculates identical values). Reference L. Kissel & R. H. Pratt, Acta Cryst A (1990), A46, 170–175 is documented.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

H atoms on N4 were located directly from the difference map and their positions refined. All remaining H atoms were either located or calculated and treated with a riding model. Isotropic displacement parameters were defined as a*Ueq of the adjacent atom (a = 1.5 for methyls and 1.2 for all others).

PLAT906_ALERT_3_C Large K value in the Analysis of Variance··· 3.485

NOTE FROM AUTHORS: Section take from. lst file, there is no K value as given in the alert. Analysis of variance for reflections employed in refinement K = Mean[Fo2] / Mean[Fc2] for group

Fc/Fc(max) 0.000 0.006 0.011 0.017 0.023 0.030 0.040 0.053 0.076 0.120 1.000

Number in group 598. 460. 507. 479. 503. 529. 477. 520. 498. 509.

GooF 1.012 1.119 1.084 1.096 0.966 1.131 0.973 1.090 1.107 0.996

K 2.702 1.323 1.122 1.072 1.035 1.031 1.013 0.992 0.998 1.027

Resolution(A) 0.80 0.83 0.86 0.90 0.95 1.01 1.09 1.20 1.37 1.73 inf

Number in group 520. 497. 508. 521. 505. 494. 509. 512. 508. 506.

GooF 0.889 0.832 0.792 0.794 0.855 0.885 0.881 0.890 1.223 1.974

K 1.089 1.061 1.012 1.015 1.006 0.989 0.978 0.972 0.983 1.049

R1 0.123 0.102 0.096 0.076 0.067 0.051 0.041 0.040 0.042 0.052

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3383 (2)0.37795 (8)0.42059 (11)0.0444 (4)
N20.1358 (2)0.47411 (8)0.34893 (11)0.0409 (4)
N30.0176 (2)0.46422 (9)0.16884 (12)0.0493 (4)
C10.4361 (3)0.33277 (11)0.45669 (15)0.0500 (5)
H10.45000.29770.41880.060*
C20.5198 (3)0.33370 (12)0.54726 (16)0.0559 (6)
H20.58910.30040.56960.067*
C30.4995 (3)0.38352 (13)0.60249 (15)0.0566 (6)
H30.55320.38480.66450.068*
C40.3990 (3)0.43295 (12)0.56757 (13)0.0494 (5)
C50.3190 (2)0.42860 (10)0.47475 (13)0.0423 (4)
C60.3817 (3)0.48824 (14)0.62057 (16)0.0620 (7)
H60.43680.49120.68210.074*
C70.2889 (3)0.53604 (14)0.58487 (17)0.0614 (6)
H70.27980.57210.62130.074*
C80.2040 (3)0.53283 (11)0.49241 (14)0.0476 (5)
C90.2163 (2)0.47943 (10)0.43647 (13)0.0409 (4)
C100.1081 (3)0.58201 (11)0.45294 (16)0.0532 (5)
H100.09900.61880.48760.064*
C110.0276 (3)0.57699 (11)0.36433 (16)0.0512 (5)
H110.03700.61020.33700.061*
C120.0423 (2)0.52139 (10)0.31426 (14)0.0433 (4)
C130.0532 (2)0.51358 (10)0.22029 (14)0.0436 (4)
C140.1787 (3)0.55492 (11)0.18793 (16)0.0532 (5)
H140.20140.58980.22430.064*
C150.2705 (3)0.54452 (12)0.10163 (17)0.0575 (6)
H150.35750.57180.07920.069*
C160.2341 (3)0.49471 (11)0.04952 (16)0.0536 (5)
H160.29490.48660.00940.064*
C170.1055 (3)0.45629 (11)0.08540 (16)0.0539 (5)
H170.07830.42230.04850.065*
O10.1157 (2)0.22508 (9)0.03831 (12)0.0656 (5)
N40.1813 (2)0.35480 (8)0.23412 (11)0.0390 (4)
H4A0.237 (3)0.3666 (11)0.2906 (17)0.047*
H4B0.121 (3)0.3916 (11)0.2203 (16)0.047*
C180.0539 (2)0.30358 (10)0.24277 (14)0.0439 (5)
C190.0253 (3)0.28597 (11)0.14381 (14)0.0478 (5)
H19A0.09500.24880.14770.057*
H19B0.09800.31990.11810.057*
C200.1053 (3)0.27344 (11)0.07894 (14)0.0481 (5)
C210.2225 (3)0.32677 (11)0.07037 (14)0.0484 (5)
H21A0.15930.36190.04060.058*
H21B0.30690.31450.02920.058*
C220.3115 (2)0.34782 (10)0.16569 (13)0.0410 (4)
C230.0756 (3)0.33124 (12)0.30027 (17)0.0564 (6)
H23A0.12310.36830.26910.085*
H23B0.02260.34200.36260.085*
H23C0.16380.30110.30590.085*
C240.1317 (3)0.24728 (11)0.29362 (16)0.0528 (5)
H24A0.20900.22760.25500.079*
H24B0.04430.21800.30520.079*
H24C0.19190.26010.35320.079*
C250.3892 (3)0.41145 (11)0.15960 (16)0.0531 (5)
H25A0.44770.42250.22050.080*
H25B0.30190.44180.14180.080*
H25C0.46790.41090.11260.080*
C260.4476 (3)0.30214 (11)0.20081 (15)0.0503 (5)
H26A0.48910.31200.26560.076*
H26B0.53880.30480.16160.076*
H26C0.40210.26030.19780.076*
P10.31791 (7)0.66187 (3)0.11742 (4)0.04971 (19)
F10.12762 (17)0.64878 (8)0.08349 (10)0.0689 (4)
F20.26942 (19)0.68352 (8)0.21740 (9)0.0711 (4)
F30.36729 (18)0.64070 (8)0.01716 (10)0.0684 (4)
F40.2933 (2)0.73101 (8)0.08027 (12)0.0791 (5)
F50.3422 (2)0.59309 (8)0.15436 (12)0.0779 (5)
F60.50828 (18)0.67593 (9)0.15032 (14)0.0894 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0421 (9)0.0538 (10)0.0367 (8)0.0054 (8)0.0016 (6)0.0039 (7)
N20.0353 (8)0.0516 (10)0.0368 (8)0.0058 (7)0.0090 (6)0.0013 (7)
N30.0424 (9)0.0584 (11)0.0461 (9)0.0065 (8)0.0001 (7)0.0012 (8)
C10.0473 (12)0.0562 (13)0.0451 (11)0.0059 (10)0.0007 (9)0.0066 (9)
C20.0442 (11)0.0710 (15)0.0504 (12)0.0060 (11)0.0045 (9)0.0176 (11)
C30.0455 (11)0.0870 (17)0.0357 (10)0.0154 (12)0.0023 (8)0.0063 (10)
C40.0362 (10)0.0766 (15)0.0355 (10)0.0139 (10)0.0045 (7)0.0009 (9)
C50.0339 (9)0.0609 (12)0.0328 (9)0.0124 (9)0.0072 (7)0.0004 (8)
C60.0499 (13)0.096 (2)0.0402 (11)0.0183 (13)0.0071 (9)0.0095 (12)
C70.0503 (13)0.0810 (18)0.0552 (13)0.0150 (13)0.0156 (10)0.0189 (12)
C80.0373 (10)0.0632 (13)0.0443 (10)0.0117 (10)0.0137 (8)0.0088 (9)
C90.0322 (9)0.0550 (12)0.0370 (9)0.0099 (8)0.0100 (7)0.0033 (8)
C100.0454 (12)0.0581 (13)0.0584 (13)0.0076 (10)0.0162 (10)0.0134 (10)
C110.0431 (11)0.0535 (13)0.0586 (13)0.0008 (10)0.0120 (9)0.0032 (10)
C120.0342 (10)0.0522 (12)0.0448 (10)0.0039 (9)0.0109 (8)0.0008 (8)
C130.0375 (10)0.0498 (11)0.0445 (10)0.0020 (9)0.0096 (8)0.0038 (8)
C140.0565 (13)0.0515 (13)0.0521 (12)0.0101 (10)0.0091 (10)0.0045 (9)
C150.0517 (13)0.0637 (15)0.0564 (13)0.0114 (11)0.0027 (10)0.0156 (11)
C160.0497 (12)0.0620 (14)0.0471 (11)0.0015 (10)0.0036 (9)0.0092 (10)
C170.0535 (13)0.0600 (14)0.0462 (11)0.0061 (11)0.0035 (9)0.0014 (10)
O10.0653 (11)0.0733 (12)0.0578 (10)0.0019 (9)0.0047 (8)0.0229 (9)
N40.0341 (8)0.0508 (10)0.0318 (8)0.0001 (7)0.0026 (6)0.0015 (7)
C180.0368 (10)0.0564 (12)0.0391 (9)0.0061 (9)0.0064 (7)0.0028 (8)
C190.0380 (10)0.0591 (13)0.0453 (10)0.0022 (9)0.0001 (8)0.0042 (9)
C200.0421 (11)0.0641 (14)0.0363 (9)0.0026 (10)0.0035 (8)0.0064 (9)
C210.0423 (11)0.0690 (14)0.0339 (9)0.0046 (10)0.0045 (8)0.0010 (9)
C220.0352 (9)0.0539 (12)0.0344 (9)0.0020 (8)0.0057 (7)0.0001 (8)
C230.0459 (12)0.0687 (15)0.0572 (13)0.0076 (11)0.0179 (10)0.0090 (11)
C240.0474 (12)0.0614 (14)0.0489 (11)0.0065 (10)0.0023 (9)0.0051 (10)
C250.0471 (12)0.0658 (15)0.0476 (11)0.0072 (10)0.0104 (9)0.0034 (10)
C260.0389 (10)0.0661 (14)0.0459 (11)0.0069 (10)0.0042 (8)0.0020 (10)
P10.0365 (3)0.0671 (4)0.0442 (3)0.0052 (2)0.0014 (2)0.0119 (2)
F10.0390 (7)0.1090 (12)0.0577 (8)0.0025 (7)0.0008 (6)0.0167 (8)
F20.0675 (9)0.0983 (12)0.0455 (7)0.0249 (8)0.0035 (6)0.0166 (7)
F30.0576 (8)0.0953 (11)0.0545 (8)0.0017 (8)0.0158 (6)0.0192 (7)
F40.0816 (11)0.0715 (10)0.0859 (11)0.0076 (8)0.0165 (9)0.0022 (8)
F50.0901 (12)0.0721 (10)0.0708 (10)0.0165 (9)0.0053 (8)0.0017 (8)
F60.0399 (8)0.1147 (14)0.1095 (14)0.0029 (8)0.0109 (8)0.0499 (11)
Geometric parameters (Å, º) top
N1—C11.330 (3)N4—C221.530 (2)
N1—C51.368 (3)N4—C181.532 (3)
N2—C121.339 (3)N4—H4A0.92 (2)
N2—C91.359 (3)N4—H4B0.95 (3)
N3—C171.339 (3)C18—C241.526 (3)
N3—C131.352 (3)C18—C231.529 (3)
C1—C21.403 (3)C18—C191.546 (3)
C1—H10.9500C19—C201.512 (3)
C2—C31.364 (4)C19—H19A0.9900
C2—H20.9500C19—H19B0.9900
C3—C41.407 (4)C20—C211.512 (3)
C3—H30.9500C21—C221.548 (3)
C4—C51.424 (3)C21—H21A0.9900
C4—C61.438 (4)C21—H21B0.9900
C5—C91.454 (3)C22—C251.525 (3)
C6—C71.350 (4)C22—C261.527 (3)
C6—H60.9500C23—H23A0.9800
C7—C81.432 (3)C23—H23B0.9800
C7—H70.9500C23—H23C0.9800
C8—C101.403 (3)C24—H24A0.9800
C8—C91.422 (3)C24—H24B0.9800
C10—C111.373 (3)C24—H24C0.9800
C10—H100.9500C25—H25A0.9800
C11—C121.418 (3)C25—H25B0.9800
C11—H110.9500C25—H25C0.9800
C12—C131.494 (3)C26—H26A0.9800
C13—C141.398 (3)C26—H26B0.9800
C14—C151.395 (3)C26—H26C0.9800
C14—H140.9500P1—F51.5906 (18)
C15—C161.367 (4)P1—F11.5912 (14)
C15—H150.9500P1—F61.5929 (15)
C16—C171.389 (3)P1—F41.5989 (18)
C16—H160.9500P1—F21.6049 (14)
C17—H170.9500P1—F31.6081 (14)
O1—C201.210 (3)
C1—N1—C5118.10 (18)C24—C18—C19110.63 (18)
C12—N2—C9118.34 (18)C23—C18—C19110.92 (18)
C17—N3—C13117.98 (19)N4—C18—C19108.63 (16)
N1—C1—C2124.0 (2)C20—C19—C18111.53 (16)
N1—C1—H1118.0C20—C19—H19A109.3
C2—C1—H1118.0C18—C19—H19A109.3
C3—C2—C1118.5 (2)C20—C19—H19B109.3
C3—C2—H2120.8C18—C19—H19B109.3
C1—C2—H2120.8H19A—C19—H19B108.0
C2—C3—C4119.9 (2)O1—C20—C21123.2 (2)
C2—C3—H3120.0O1—C20—C19123.1 (2)
C4—C3—H3120.0C21—C20—C19113.70 (19)
C3—C4—C5118.1 (2)C20—C21—C22112.91 (17)
C3—C4—C6122.3 (2)C20—C21—H21A109.0
C5—C4—C6119.6 (2)C22—C21—H21A109.0
N1—C5—C4121.4 (2)C20—C21—H21B109.0
N1—C5—C9119.41 (17)C22—C21—H21B109.0
C4—C5—C9119.24 (19)H21A—C21—H21B107.8
C7—C6—C4121.5 (2)C25—C22—C26108.66 (18)
C7—C6—H6119.3C25—C22—N4105.43 (16)
C4—C6—H6119.3C26—C22—N4112.04 (16)
C6—C7—C8120.5 (2)C25—C22—C21111.80 (17)
C6—C7—H7119.8C26—C22—C21110.55 (18)
C8—C7—H7119.8N4—C22—C21108.30 (15)
C10—C8—C9117.46 (19)C18—C23—H23A109.5
C10—C8—C7121.8 (2)C18—C23—H23B109.5
C9—C8—C7120.7 (2)H23A—C23—H23B109.5
N2—C9—C8122.6 (2)C18—C23—H23C109.5
N2—C9—C5118.91 (18)H23A—C23—H23C109.5
C8—C9—C5118.49 (18)H23B—C23—H23C109.5
C11—C10—C8120.1 (2)C18—C24—H24A109.5
C11—C10—H10119.9C18—C24—H24B109.5
C8—C10—H10119.9H24A—C24—H24B109.5
C10—C11—C12118.8 (2)C18—C24—H24C109.5
C10—C11—H11120.6H24A—C24—H24C109.5
C12—C11—H11120.6H24B—C24—H24C109.5
N2—C12—C11122.60 (19)C22—C25—H25A109.5
N2—C12—C13117.81 (18)C22—C25—H25B109.5
C11—C12—C13119.56 (19)H25A—C25—H25B109.5
N3—C13—C14121.18 (19)C22—C25—H25C109.5
N3—C13—C12117.79 (18)H25A—C25—H25C109.5
C14—C13—C12121.0 (2)H25B—C25—H25C109.5
C15—C14—C13119.4 (2)C22—C26—H26A109.5
C15—C14—H14120.3C22—C26—H26B109.5
C13—C14—H14120.3H26A—C26—H26B109.5
C16—C15—C14119.4 (2)C22—C26—H26C109.5
C16—C15—H15120.3H26A—C26—H26C109.5
C14—C15—H15120.3H26B—C26—H26C109.5
C15—C16—C17118.0 (2)F5—P1—F190.85 (10)
C15—C16—H16121.0F5—P1—F690.02 (11)
C17—C16—H16121.0F1—P1—F6179.08 (12)
N3—C17—C16124.1 (2)F5—P1—F4179.92 (11)
N3—C17—H17118.0F1—P1—F489.07 (10)
C16—C17—H17118.0F6—P1—F490.06 (11)
C22—N4—C18119.99 (16)F5—P1—F290.47 (9)
C22—N4—H4A106.8 (14)F1—P1—F290.17 (8)
C18—N4—H4A113.6 (14)F6—P1—F290.11 (9)
C22—N4—H4B108.9 (14)F4—P1—F289.51 (9)
C18—N4—H4B107.1 (14)F5—P1—F389.90 (9)
H4A—N4—H4B98 (2)F1—P1—F390.11 (8)
C24—C18—C23109.07 (18)F6—P1—F389.61 (9)
C24—C18—N4111.96 (17)F4—P1—F390.12 (9)
C23—C18—N4105.53 (17)F2—P1—F3179.53 (10)
C5—N1—C1—C20.4 (3)C10—C11—C12—N22.0 (3)
N1—C1—C2—C30.6 (3)C10—C11—C12—C13176.04 (19)
C1—C2—C3—C41.2 (3)C17—N3—C13—C140.5 (3)
C2—C3—C4—C50.9 (3)C17—N3—C13—C12178.55 (19)
C2—C3—C4—C6175.9 (2)N2—C12—C13—N311.5 (3)
C1—N1—C5—C40.8 (3)C11—C12—C13—N3170.34 (19)
C1—N1—C5—C9178.47 (18)N2—C12—C13—C14166.55 (19)
C3—C4—C5—N10.1 (3)C11—C12—C13—C1411.6 (3)
C6—C4—C5—N1177.04 (19)N3—C13—C14—C151.0 (3)
C3—C4—C5—C9179.11 (18)C12—C13—C14—C15177.0 (2)
C6—C4—C5—C92.2 (3)C13—C14—C15—C161.1 (4)
C3—C4—C6—C7177.8 (2)C14—C15—C16—C170.1 (4)
C5—C4—C6—C71.1 (3)C13—N3—C17—C161.8 (4)
C4—C6—C7—C80.2 (4)C15—C16—C17—N31.6 (4)
C6—C7—C8—C10179.3 (2)C22—N4—C18—C2473.0 (2)
C6—C7—C8—C90.2 (3)C22—N4—C18—C23168.50 (17)
C12—N2—C9—C80.4 (3)C22—N4—C18—C1949.5 (2)
C12—N2—C9—C5179.63 (16)C24—C18—C19—C2072.8 (2)
C10—C8—C9—N21.9 (3)C23—C18—C19—C20166.0 (2)
C7—C8—C9—N2179.02 (18)N4—C18—C19—C2050.5 (2)
C10—C8—C9—C5178.14 (17)C18—C19—C20—O1122.3 (2)
C7—C8—C9—C50.9 (3)C18—C19—C20—C2157.1 (2)
N1—C5—C9—N22.9 (3)O1—C20—C21—C22123.2 (2)
C4—C5—C9—N2177.83 (17)C19—C20—C21—C2256.3 (2)
N1—C5—C9—C8177.13 (17)C18—N4—C22—C25167.70 (17)
C4—C5—C9—C82.1 (3)C18—N4—C22—C2674.3 (2)
C9—C8—C10—C111.4 (3)C18—N4—C22—C2147.9 (2)
C7—C8—C10—C11179.5 (2)C20—C21—C22—C25163.85 (18)
C8—C10—C11—C120.4 (3)C20—C21—C22—C2675.0 (2)
C9—N2—C12—C111.6 (3)C20—C21—C22—N448.1 (2)
C9—N2—C12—C13176.51 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N10.92 (2)1.98 (2)2.887 (2)169 (2)
N4—H4B···N30.95 (3)2.03 (3)2.965 (3)170 (2)

Experimental details

(I)(II)(III)
Crystal data
Chemical formula[CuCl2(C17H11N3)][CuCl2(C17H11N3)]C9H18NO+·PF6·C17H11N3
Mr391.73391.73558.50
Crystal system, space groupTriclinic, P1Monoclinic, P21/cMonoclinic, P21/c
Temperature (K)150150183
a, b, c (Å)7.4523 (2), 8.8189 (2), 12.1288 (3)11.8630 (2), 7.7022 (2), 16.8882 (3)8.1051 (10), 21.714 (3), 14.4087 (19)
α, β, γ (°)103.263 (1), 99.042 (1), 101.361 (1)90, 106.424 (1), 9090, 96.337 (3), 90
V3)743.36 (3)1480.13 (5)2520.3 (6)
Z244
Radiation typeCu KαCu KαSynchrotron, λ = 0.77490 Å
µ (mm1)5.385.410.23
Crystal size (mm)0.25 × 0.11 × 0.100.13 × 0.11 × 0.030.07 × 0.07 × 0.05
Data collection
DiffractometerBruker SMART6000 CCD area-detector
diffractometer
Bruker SMART6000 CCD area-detector
diffractometer
Bruker Platinum 200
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Multi-scan
(SADABS; Sheldrick, 2008a)
Multi-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.346, 0.6150.540, 0.8550.984, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
6228, 2545, 2401 11084, 2578, 2184 26509, 5080, 4268
Rint0.0150.0330.040
(sin θ/λ)max1)0.5990.5980.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.083, 1.06 0.037, 0.098, 1.05 0.049, 0.151, 1.06
No. of reflections254525785080
No. of parameters208208353
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.78, 0.350.88, 0.270.71, 0.24

Computer programs: SMART (Bruker, 2003), APEX2 (Bruker, 2009), SAINT (Bruker, 2003) and SADABS (Sheldrick, 2008a), SHELXTL (Sheldrick, 2008b) and DIAMOND (Brandenburg, 2012).

Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N10.92 (2)1.98 (2)2.887 (2)169 (2)
N4—H4B···N30.95 (3)2.03 (3)2.965 (3)170 (2)
Comparison of bond lengths and angles (Å, °) for forms (I) and (II) top
(I)(II)
Cu1—N12.086 (2)2.096 (3)
Cu1—N21.967 (2)1.959 (2)
Cu1—N32.079 (2)2.099 (3)
Cu1—Cl12.2578 (6)2.2393 (8)
Cu1—Cl22.4336 (7)2.4461 (9)
(I)(II)
N1—Cu1—N279.82 (8)79.66 (10)
N1—Cu1—N3156.19 (8)154.42 (10)
N2—Cu1—N377.19 (8)77.14 (10)
N1—Cu1—Cl198.20 (6)97.58 (7)
N2—Cu1—Cl1149.32 (6)156.48 (8)
N3—Cu1—Cl198.41 (6)99.38 (7)
N1—Cu1—Cl296.58 (6)101.03 (7)
N2—Cu1—Cl2104.08 (6)99.86 (8)
N3—Cu1—Cl294.90 (6)93.44 (7)
Cl1—Cu1—Cl2106.56 (2)103.58 (3)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds