Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The zinc alkoxide molecules in di-μ3-ethano­lato-diethyl­tetra­kis­(μ2-2-methyl-4-oxo-4H-pyran-3-olato-κ3O3,O4:O3)tetra­zinc(II), [Zn4(C2H5)2(C2H5O)2(C6H5O3)4], (I), and bis­(μ3-2-eth­oxy­phe­nolato-κ4O1,O2:O1:O1)bis­(μ2-2-eth­oxy­phenolato-κ3O1,O2:O1)bis­(μ2-2-methyl-4-oxo-4H-pyran-3-olato-κ3O3,O4:O3)bis­(2-methyl-4-oxo-4H-pyran-3-olato-κ2O3,O4)tetra­zinc(II) toluene disolvate, [Zn4(C6H5O3)4(C8H9O2)4]·2C7H8, (II), lie on crystallographic centres of inversion. The asymmetric units of (I) and (II) contain half of the tetra­meric unit and additionally one mol­ecule of toluene for (II). The ZnII atoms are four- and six-coordinated in distorted tetra­hedral and octa­hedral geometries for (I), and six-coordinated in a dis­torted octa­hedral environment for (II). The ZnII atoms in both compounds are arranged in a defect dicubane Zn4O6 core structure composed of two EtZnO3 tetra­hedra and ZnO6 octa­hedra for (I), and of four ZnO6 octa­hedra for (II), sharing common corners. The maltolate ligands exist mostly in a μ2-bridging mode, while the guetholate ligands prefer a higher coordination mode and act as μ3- and μ2-bridges.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112036773/lg3088sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112036773/lg3088Isup2.hkl
Contains datablock I

cdx

Chemdraw file https://doi.org/10.1107/S0108270112036773/lg3088Isup4.cdx
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112036773/lg3088IIsup3.hkl
Contains datablock II

cdx

Chemdraw file https://doi.org/10.1107/S0108270112036773/lg3088IIsup5.cdx
Supplementary material

CCDC references: 906561; 906562

Comment top

Alkoxo zinc complexes have been used as initiators for the ring-opening polymeryzation of cyclic esters (Chamberlain et al., 2001), as electroluminescent compounds for light-emitting diodes (Kajii et al., 2001) and as precursors for the preparation of high-purity zinc oxide employed in numerous applications (Wang, 2004). It was previously mentioned (Boyle et al., 2004) that the arrangement of the central core of zinc alkoxy and alkyl alkoxy precursors affects the morphology of nanoparticles, which will ultimately dictate the electrical and optical properties of the final devices. We report herein the synthesis and structural characteristics of new tetranuclear [Zn4(R)2(OR)6] and [Zn4(OR)8] precursors of ZnO based on defective dicubane-like cores, which were not yet used for such purposes. This work also includes research on the formation of alkoxides by the action of dioxygen on alkyl zinc compounds (Lewiński et al., 2003; Grévy, 2011) as a new very attractive way for the preparation of `Zn(R)(OR)' precursors of ZnO nanoparticles. In our work, we decided to use maltol (MalOH; 3-hydroxy-2-methyl-4H-pyran-4-one) and guethol (GueOH; 3-ethoxy-4-hydroxybenzaldehyde) as ligands due to their commercial availability, low cost and human-friendly nature, approved by the US Food and Drug Administration (Bauer et al., 2001). Moreover, previous work has shown that maltol is a very attractive ligand which is easily deprotonated to give an O,O'-bidentate chelating system for complexation with a number of biologically active metal ions to form thermodynamic stable and neutrally charged complexes. For instance, metal–maltolate complexes, such as [Fe(MalO)3] (Ahmet et al., 1988), [Al(MalO)3] (Finnegan et al., 1986; Nelson et al., 1988; Yu et al., 2002), [Ga(MalO)3] (Bernstein et al., 2000; Chitambar et al., 2007) and [VO(MalO)2] (Thompson et al., 2003, 2004; Saatchi et al., 2005), have found numerous medical applications as metallotherapeutic drugs and metal-based diagnostic agents (Thompson et al., 2006).

The structure of the tetranuclear compound [Zn43-OEt)22-MalO)4Et2], (I), with the atom-numbering scheme, is shown in Fig. 1. Selected bond lengths and angles are listed in Table 1. The molecular structure of (I) exists as a centrosymmetric cluster, which contains two types of environmentally different ZnII centres. The ZnII ions and the bridging alkoxide groups are arranged in a double-open face-shared dicubane-like core with two missing vertices similar to that observed in the structure of the previously published conformational isomer [Zn43-OEt)22-MalO)4Et2].C7H8, (I') (Petrus & Sobota, 2012). Atoms Zn1 and Zn2 are linked through a µ3-OEt bridge via atom O15, which also connects to Zn2i [Symmetry code: (i) -x+1, -y+1, -z+1] to form a Zn3 triangle with Zn···Zn nonbonding distances significantly different (shorter by 0.15 and 0.13 Å for Zn1···Zn2 and Zn2···Zn2i, and longer by 0.12 Å for Zn1···Zn2i) than those reported for (I'), presumably because of the absence of toluene molecules in the lattice, which, through C—H···O hydrogen bonds, could stabilize the Zn4 cage at a higher level of regularity. Very different values of the Zn—O bond lengths within the Zn2O2 diamond cores indicate a high deformation of the central core geometry, with minimum and maximum deviations of 5.2 and 7.7% from the average Zn—O bond length. While for (I'), the deformation does not exceed 1.7 (minimun) and 2.5% (maximum). The Zn1 ion is coordinated in a tetrahedral manner to one ethyl, one ethanolate and two maltolate ligands in a monodentate coordination mode through atoms O3 and O9i. The Zn1—O3 and Zn1—O15 bond lengths are in the expected range for a four-coordinate ZnII center, whilst significant bond elongation is observed for Zn1—O9, i.e. by about 0.17 Å (Table 1). The terminal Zn1—C1 bond lenght is slightly longer (ca 0.1 Å) than observed in the structure of ZnEt2 (Bacsa et al., 2011). A considerable deviation from the ideal tetrahedral geometry is mainly evident in the bond angles around the Zn1 center (Table 1), accomplished by a dihedral angle of 84 (2)° between the O3/Zn1/O9i and C1/Zn1/O15 planes. The Zn2 ion is six-coordinated by two ethanolate and two maltolate ligands in a bidentate chelating mode through the O atoms of alkoxy and carbonyl groups, forming five-membered Zn2/O3/C3/C4/O4 and Zn2/O9/C9/C10/O10 chelate rings. The first of these metallacycles is twisted about the Zn2—O4 bond, while the second is planar, with a largest displacement from the least-squares plane of 0.035 (2) Å for atom O10. The environment of the Zn2 atom can be considered as an octahedron distorted towards a trigonal prism, as confirmed by the shape measure parameter S(Oh) = 12.27 (Alvarez et al., 2002). One of the maltolate ligands occupies two positions in the equatorial plane via atoms O3 and O4, while the second ligand has alkoxo atom O9 positioned equatorially and keto atom O10 positioned axially. The Zn2—O bond lengths involving maltolate O atoms show a clear division into two distinct categories, the first involving keto (longer by ca 0.08–0.09 Å) and the second involving alkoxo donor sets, quite different than in the structure of (I') with a high compatibility of both types of bonds. The Zn2—µ3O distances clearly show bond elongation in the axial plane of the molecule. Distortion from an ideal octahedral environment is clearly evident in the nonlinear transoid angles, supported by cisoid angles deviating significantly from 90° (Table 1). The crystal packing is stabilized by weak ππ stacking and C—H···O interactions (Table 2).

The X-ray structure determination revealed that [Zn43-GueO)22-GueO)22-MalO)2(MalO)2].2C7H8, (II), is also a tetramer, in which the two ethyl and two ethanolate groups, presented in (I), are replaced by four 2-ethoxyphenolate ligands. The structure of (II), with the atom-numbering scheme, is shown in Fig. 2. Selected bond lengths and angles are listed in Table 3. The molecular structure of (II) exists as a centrosymmetric zinc cluster containing a Zn4O6 `double-open' face-shared dicubane core, in which the metal ions are held together by four µ2 and two µ3 alkoxo O atoms. The phenolate O atoms of four guetholate ligands act as two µ3- and two µ2-O bridges, as opposed to the maltolate O atoms in (I) which act as two µ2-O bridges. The ZnII ions in (II) form six-coordinated distorted octahedra with O6 donor sets. The deformation of the coordination geometry around the ZnII centers were analyzed in terms of the continuous shape measures. The departure from an ideal octahedron is larger for the coordination environment around Zn2, as confirmed by the metric shape parameters S(Oh) = 4.78 for Zn1 and 8.55 for Zn2. Furthermore, the alkoxo O atoms of the maltolate ligands are in cis positions in contrast to the trans positions in (I). The Zn—O bond lengths within the Zn2O2 cores demonstrate much higher regularity of a central core geometry in comparison with (I). Moreover, all five-membered Zn2O2C2 metallacycles in (II) have a conformation based on an envelope on the Zn position. The differences between Zn—O(alkoxo) and Zn—O(keto/ether) bond lengths of the two chelating ligands (except µ2-MalO) are even more apparent than in the structure of (I), indicating a significant deformation of the polyhedral geometry outside the Zn4 cage. Complex (II) shows hydrogen-bonding interactions between the tetranuclear units and the adjacent molecules to link them into extended chains (Table 4).

The double-open dicubane-like core is a common structural motif in metal coordination chemistry, found frequently in many coordination compounds (Pradeep et al., 2006; Mandal & Ray, 2007; Delferro et al., 2010; Jerzykiewicz et al., 2010; Costes et al., 2011), including (I) and (II). However, this kind of structural disposition for a zinc tetramer is not very common, as illustrated by the fact that only nine tetramers of this type have been so far reported and solid-state characterized: [Zn43-OPh)22-pa)4(Ph)2] [where paH = pivaloylacetone; Cambridge Structural Database (CSD; Allen, 2002) refcode CINHIQ; Boersma et al., 1974], [Zn43-OMe)22-pa)4Et2] (FOFTUP; Dekker et al., 1987), [Zn43-OMe)22-acac)4(acac)2] (Hacac = acetylacetone; EKOSIG; Seisenbaeva et al., 2003), [Zn43-azol)22-azol)2(OOEt)2Et2] (azolH = 1-aziridineethanol; EMEYAW; Lewiński et al., 2003), [Zn43-OQ)22-OQ)4(OAc)2].MeOH (HOQ = 8-hydroxyquinoline; XELBOG; Xu et al., 2005), [Zn43-OQ)22-OQ)4(OAc)2].2H2O (BOWHOL; Sattarzadeh et al., 2009), [Zn43-OMe)22-ONR)4(Me)2] {HONR = 2-[3-(heptaisobutyloctasilsesquioxanyl)propyliminomethyl]phenol; ILIWEG; Di Iulio et al., 2010}, [Zn43-OEt)22-O,NR)4Et2] (ILIWIK; Di Iulio et al., 2010) and the aforementioned [Zn43-OEt)22-MalO)4Et2].C7H8 (Petrus & Sobota, 2012).

Among the examples cited above and the title zinc tetramers, we can distinguish two distinct classes of compounds. The first comprises alkylzinc alkoxides of general formula [Zn43-OR')22-O,X')4(R)2] (R = Me, Et, Ph; OR' = OMe, OEt, OPh; O,X' = O,O' or O,N' chelating donor ligands) [CINHIQ, FOFTUP, ILIWEG, ILIWIK, (I') and (I)], containing terminally coordinated alkyl groups on the external RZnO3 tetrahedra, and two octahedra with ZnO6 [CINHIQ, FOFTUP, (I') and (I)] or ZnO4N2 (ILIWEG and ILIWIK) topology. Similar to these, Lewiński et al. (2003) have reported a zinc alkylperoxide with µ2-OOEt bridges (EMEYAW). The second group consists of alkoxides of type [Zn43-OR'/O,X')22-O,X')4(O,X')2] (OR' = OMe) [BOWHOL, EKOSIG, XELBOG and (II)], containing four octahedra in ZnO6 [EKOSIG and (II)] or two pairs in ZnO4N2 and ZnO5N (BOWHOL and XELBOG) environment.

In order to visualize the differences in the construction of the tetrameric unit in (I) and (II), an overlay of their core structures is shown in Fig. 3. In both cases, the two open cubanes are related by a crystallographic centre of inversion located at the centroid of the Zn2—µ3O—Zn2i—µ3Oi face. Thus, the vertices of the common face of the dicubane unit are occupied by the Zn2 and Zn2i ions, being doubly bridged through alkoxo O atoms located on the other two vertices. These O atoms act as triple bridges since they are also linked to Zn1 and Zn1i atoms along the edges of both cubic subunits. The external vertices of the defective dicubanes are defined by Zn1 and Zn1i ions, supported by four doubly-bridged alkoxo O atoms. The dihedral angles between the planes defined by the atoms of the Zn2O2 faces are smaller than the ideal value of 90° for perfect double-open dicubane geometry, as shown in Fig. 3.

In order to compare the core structures of (I) and (II) with previously published Zn4O6 defective dicubanes, we have introduced the connectivity parameters d(1–2), d(1–2i), d(2–2i), d(1–1i), θ, θi, σ, σi and ϕ (Serna et al., 2000, 2010), which are summarized in Table 5. In the present classification system, d denotes the distance between Zn atoms, and θ, θi, σ, σi and ϕ denote Zn—O—Zn angles within the tetrameric unit; details are given in the legend of Table 5. Within the connectivity parameters for all nine compounds (Table 5), we cannot find specific unique parameters that are distinctive of each group. The only regular feature repeated in both class is that the ϕ angle is generally close to 99°. However, compounds (I) and (II), as well as compound (I'), show significant deviation from this value, viz. from 5 to 13° (Table 5). In addition, it is worth noting that (I) shows large deviations in the values of the d parameters in comparison with other compounds.

Related literature top

For related literature, see: Ahmet et al. (1988); Allen (2002); Alvarez et al. (2002); Bacsa et al. (2011); Bauer et al. (2001); Bernstein et al. (2000); Boersma et al. (1974); Boyle et al. (2004); Chamberlain et al. (2001); Chitambar et al. (2007); Costes et al. (2011); Dekker et al. (1987); Delferro et al. (2010); Di Iulio, Jones, Mahon & Apperley (2010); Finnegan et al. (1986); Grévy (2011); Jerzykiewicz et al. (2010); Kajii et al. (2001); Lewiński et al. (2003); Mandal & Ray (2007); Nelson et al. (1988); Petrus & Sobota (2012); Pradeep et al. (2006); Saatchi et al. (2005); Sattarzadeh et al. (2009); Seisenbaeva et al. (2003); Serna et al. (2000, 2010); Thompson et al. (2003, 2004, 2006); Wang (2004); Xu et al. (2005); Yu et al. (2002).

Experimental top

All syntheses were performed under a dry N2 atmosphere using standard Schlenk techniques. Reagents were purified by standard methods, i.e. toluene was distilled from Na and guethol was distilled from CaO. Maltol, guethol and ZnEt2 were purchased from Aldrich. The method used for the synthesis of (I) is easier and simpler than previously published in our work (Petrus & Sobota, 2012). For the preparation of (I), ZnEt2 (15.86 ml, 15.86 mmol) was added dropwise to a solution of MalOH (2 g, 15.86 mmol) in toluene (200 ml) at 273 K and the resulting mixture exposed to an excess of dry oxygen for 10 min. After oxygenation, excess O2 was removed and the system was flow by nitrogen. The orange mixture was stirred for a further 1 h and allowed to warm to room temperature. After 2 h, the volume was reduced to 100 ml. Colourless crystals were obtained by slow evaporation from the mother liquor (yield 2.42 g, 67%). Analysis calculated for C32H40O14Zn4: C 42.22, H 4.43%; found: C 42.30, H 4.50%.

For the synthesis of (II), GueOH (0.55 ml, 4.40 mmol) was added to a solution of (I) (1 g, 1.10 mmol) in toluene (100 ml). The resulting mixture was stirred at room temperature for 1 h, and thereafter refluxed for 12 h. Next the volume was reduced to 60 ml. Colourless crystals were obtained by slow evaporation from the mother liquor (yield 1.25 g, 87%). Analysis calculated for C32H40O14Zn4: C 51.32, H 4.31%; found: C 51.55, H 4.36%.

Refinement top

Both crystals showed weak reflections, especially at high diffraction angle, so these were omitted from the refinements for θ > 27. All non-H atoms, excluding the atoms of disordered ethyl group of the aromatic ligand (C19A—C20A, C19B—C20B and C19C—C20C) and the toluene molecule (C29A–C35A and C29B–C35B) in (II), were refined anisotropically. In (I), the ethyl and ethanolate groups are disordered in two positions, with refined site-occupancy factors of 0.582 (15):0.418 (15) and 0.513 (8):0.487 (8), respectively. In (II), the ethyl group of one of the GueO ligands is disordered over three positions and was refined isotropically with occupation factors in the ratio 0.449 (15):0.365 (16):0.186 (14). The toluene molecule is disordered over two positions and was refined isotropically with occupation factors in the ratio 0.531 (9):0.469 (9). The phenyl ring of the disordered solvent molecule was constrained as a rigid hexagon, with C—C distances of 1.39 Å. Additionally, atom C31B was given the same Uiso value as atom C32B. All H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H = 0.95 Å for aromatic, 0.98 Å for methyl and 0.99 Å for methylene H atoms, with Uiso(H) = 1.5Ueq(C) for methyl H atoms or 1.2Ueq(C) otherwise.

Computing details top

For both compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure and atom-numbering schemes for [Zn43-OEt)22-MalO)4Et2], (I). Displacement ellipsoids are drawn at the 20% probability level. The second disorder components of the ethyl and ethanolate groups are drawn as dashed lines. H atoms have been omitted for clarity. [Symmetry code: (i) -x+1, -y+1, -z+1.]
[Figure 2] Fig. 2. The molecular structure and atom-numbering schemes for [Zn43-GueO)22-GueO)22-MalO)2(MalO)2].2C7H8, (II). Displacement ellipsoids are drawn at the 20% probability level. The disorder components of the ethyl group of the GueO ligand and the toluene solvent molecule are drawn as dashed lines or open bonds. H atoms, as well as the labels of the disordered toluene molecules (C29A–C35A and C29B–C35B), have been omitted for clarity. [Symmetry code: (i) -x+1, -y+1, -z+1.]
[Figure 3] Fig. 3. An overlay of the central cores of (I) (black) and (II) (white). (Software used for visualization: AMIRA; Stalling et al., 2005). [Symmetry code: (i) -x+1, -y+1, -z+1.]
(I) di-µ3-ethanolato-diethyltetrakis(µ2-2-methyl-4-oxo-4H-pyran-3- olato-κ3O3,O4:O3)tetrazinc(II) top
Crystal data top
[Zn4(C2H5)2(C2H5O)2(C6H5O3)4]F(000) = 928
Mr = 910.20Dx = 1.681 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6719 reflections
a = 9.851 (2) Åθ = 3.0–28.0°
b = 18.828 (2) ŵ = 2.70 mm1
c = 10.721 (3) ÅT = 100 K
β = 115.26 (2)°Plate, colourless
V = 1798.3 (7) Å30.37 × 0.22 × 0.16 mm
Z = 2
Data collection top
Kuma KM-4 CCD κ-geometry
diffractometer
3778 independent reflections
Radiation source: fine-focus sealed tube2953 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 27.0°, θmin = 3.0°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2007)
h = 1212
Tmin = 0.499, Tmax = 0.646k = 2414
11678 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0632P)2]
where P = (Fo2 + 2Fc2)/3
3778 reflections(Δ/σ)max = 0.001
248 parametersΔρmax = 1.07 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Zn4(C2H5)2(C2H5O)2(C6H5O3)4]V = 1798.3 (7) Å3
Mr = 910.20Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.851 (2) ŵ = 2.70 mm1
b = 18.828 (2) ÅT = 100 K
c = 10.721 (3) Å0.37 × 0.22 × 0.16 mm
β = 115.26 (2)°
Data collection top
Kuma KM-4 CCD κ-geometry
diffractometer
3778 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2007)
2953 reflections with I > 2σ(I)
Tmin = 0.499, Tmax = 0.646Rint = 0.027
11678 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.04Δρmax = 1.07 e Å3
3778 reflectionsΔρmin = 0.43 e Å3
248 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.67689 (4)0.413106 (18)0.72023 (4)0.03172 (12)
Zn20.37495 (4)0.456431 (16)0.49952 (4)0.02778 (12)
C10.8234 (4)0.3819 (2)0.9141 (4)0.0561 (11)
H1A0.77800.38950.97960.067*0.582 (15)
H1B0.84670.33070.91420.067*0.582 (15)
H1C0.83150.42170.97720.067*0.418 (15)
H1D0.77520.34210.94050.067*0.418 (15)
C2A0.9529 (8)0.4216 (9)0.9535 (8)0.081 (5)0.582 (15)
H2A1.02430.40761.04650.122*0.582 (15)
H2B0.92870.47210.95310.122*0.582 (15)
H2C0.99760.41330.88880.122*0.582 (15)
C2B0.9667 (11)0.3608 (8)0.9425 (11)0.055 (3)0.418 (15)
H2D1.01940.34811.04020.082*0.418 (15)
H2E1.01990.39980.92190.082*0.418 (15)
H2F0.96340.31950.88560.082*0.418 (15)
O30.4944 (2)0.36549 (10)0.5894 (2)0.0349 (5)
C30.4468 (4)0.30895 (16)0.5025 (4)0.0377 (8)
O40.2576 (2)0.37831 (11)0.3454 (3)0.0367 (5)
C40.3186 (4)0.31885 (16)0.3687 (4)0.0396 (8)
C50.2712 (4)0.25959 (19)0.2712 (5)0.0523 (10)
H50.19140.26470.18190.063*
C60.3444 (5)0.1978 (2)0.3122 (6)0.0610 (13)
H60.31760.15940.24880.073*
O70.4543 (3)0.18798 (13)0.4397 (4)0.0603 (8)
C70.5058 (4)0.24318 (17)0.5361 (5)0.0496 (10)
C80.6249 (5)0.22151 (19)0.6764 (5)0.0666 (13)
H8A0.66470.26390.73340.100*
H8B0.70640.19670.66510.100*
H8C0.58040.18980.72140.100*
O90.2689 (2)0.55201 (10)0.4431 (2)0.0301 (5)
C90.1937 (3)0.56435 (15)0.5187 (3)0.0265 (6)
O100.2580 (2)0.45165 (10)0.6263 (2)0.0328 (5)
C100.1916 (3)0.50809 (16)0.6172 (3)0.0294 (6)
C110.1103 (3)0.52080 (19)0.6975 (4)0.0360 (7)
H110.10660.48670.76130.043*
C120.0413 (3)0.58171 (19)0.6787 (4)0.0421 (9)
H120.01440.59130.73050.051*
O130.0443 (2)0.63315 (12)0.5881 (3)0.0428 (6)
C130.1215 (3)0.62466 (16)0.5082 (4)0.0352 (7)
C140.1131 (4)0.68768 (17)0.4136 (5)0.0568 (11)
H14A0.02980.68040.32260.085*
H14B0.20740.69110.40390.085*
H14C0.09690.73170.45400.085*
O150.5592 (2)0.50125 (9)0.6610 (2)0.0278 (4)
C150.5506 (4)0.54704 (16)0.7726 (4)0.0389 (8)
H15A0.52840.59600.73570.047*0.513 (8)
H15B0.46240.53080.78650.047*0.513 (8)
H15C0.45860.57630.73060.047*0.487 (8)
H15D0.63720.58000.80540.047*0.487 (8)
C16A0.6732 (8)0.5514 (4)0.9051 (8)0.048 (2)0.513 (8)
H16A0.64730.58360.96360.072*0.513 (8)
H16B0.76170.56970.89600.072*0.513 (8)
H16C0.69510.50410.94710.072*0.513 (8)
C16B0.5490 (8)0.5060 (3)0.9098 (7)0.0353 (19)0.487 (8)
H16D0.54260.54140.97410.053*0.487 (8)
H16E0.64140.47830.95570.053*0.487 (8)
H16F0.46210.47420.88020.053*0.487 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0325 (2)0.02425 (19)0.0408 (2)0.00634 (14)0.01794 (17)0.00767 (15)
Zn20.02649 (19)0.01765 (17)0.0448 (2)0.00345 (12)0.02055 (16)0.00275 (14)
C10.048 (2)0.062 (2)0.060 (3)0.0200 (19)0.025 (2)0.025 (2)
C2A0.026 (4)0.157 (14)0.050 (5)0.001 (5)0.006 (3)0.006 (6)
C2B0.048 (6)0.057 (8)0.050 (6)0.007 (5)0.011 (4)0.009 (5)
O30.0304 (11)0.0160 (9)0.0603 (15)0.0025 (8)0.0213 (10)0.0026 (10)
C30.0353 (17)0.0226 (15)0.066 (2)0.0010 (13)0.0318 (17)0.0023 (15)
O40.0277 (11)0.0240 (11)0.0630 (16)0.0017 (8)0.0237 (11)0.0031 (10)
C40.0392 (18)0.0220 (15)0.071 (3)0.0055 (13)0.0360 (18)0.0083 (16)
C50.047 (2)0.036 (2)0.083 (3)0.0105 (16)0.036 (2)0.0155 (19)
C60.071 (3)0.0285 (19)0.104 (4)0.0129 (19)0.057 (3)0.027 (2)
O70.0529 (17)0.0255 (12)0.105 (2)0.0007 (11)0.0356 (17)0.0090 (14)
C70.049 (2)0.0209 (15)0.093 (3)0.0005 (14)0.043 (2)0.0006 (18)
C80.047 (2)0.0271 (18)0.125 (4)0.0102 (16)0.035 (2)0.022 (2)
O90.0279 (11)0.0220 (10)0.0487 (14)0.0071 (8)0.0242 (10)0.0055 (9)
C90.0177 (13)0.0261 (14)0.0337 (17)0.0017 (11)0.0089 (12)0.0037 (13)
O100.0265 (11)0.0276 (11)0.0481 (14)0.0017 (8)0.0195 (10)0.0062 (10)
C100.0191 (13)0.0332 (16)0.0339 (17)0.0034 (12)0.0094 (12)0.0060 (13)
C110.0229 (15)0.0507 (19)0.0349 (18)0.0039 (14)0.0127 (13)0.0063 (16)
C120.0237 (16)0.056 (2)0.049 (2)0.0008 (15)0.0179 (15)0.0157 (18)
O130.0254 (11)0.0433 (13)0.0633 (16)0.0048 (10)0.0222 (11)0.0114 (12)
C130.0257 (15)0.0314 (16)0.048 (2)0.0012 (12)0.0156 (14)0.0117 (14)
C140.052 (2)0.0256 (17)0.102 (3)0.0125 (16)0.042 (2)0.003 (2)
O150.0265 (10)0.0198 (9)0.0428 (12)0.0023 (8)0.0201 (9)0.0007 (9)
C150.0432 (19)0.0290 (16)0.058 (2)0.0044 (14)0.0349 (18)0.0095 (15)
C16A0.042 (4)0.062 (5)0.050 (5)0.005 (3)0.029 (4)0.020 (4)
C16B0.042 (4)0.031 (4)0.040 (4)0.002 (3)0.025 (3)0.008 (3)
Geometric parameters (Å, º) top
Zn1—C12.047 (4)C8—H8A0.9800
Zn1—O31.962 (2)C8—H8B0.9800
Zn1—O9i2.141 (2)C8—H8C0.9800
Zn1—O151.968 (2)O9—C91.331 (4)
Zn2—O32.068 (2)O9—Zn1i2.141 (2)
Zn2—O42.145 (2)C9—C131.319 (4)
Zn2—O92.039 (2)C9—C101.502 (4)
Zn2—O102.126 (2)O10—C101.230 (3)
Zn2—O152.079 (2)C10—C111.424 (4)
Zn2—O15i2.229 (2)C11—C121.304 (5)
C1—C2B1.370 (12)C11—H110.9500
C1—C2A1.381 (11)C12—O131.381 (4)
C1—H1A0.9900C12—H120.9500
C1—H1B0.9900O13—C131.376 (4)
C1—H1C0.9900C13—C141.540 (5)
C1—H1D0.9900C14—H14A0.9800
C2A—H2A0.9800C14—H14B0.9800
C2A—H2B0.9800C14—H14C0.9800
C2A—H2C0.9800O15—C151.507 (4)
C2B—H2D0.9800O15—Zn2i2.229 (2)
C2B—H2E0.9800C15—C16A1.421 (8)
C2B—H2F0.9800C15—C16B1.667 (7)
O3—C31.359 (4)C15—H15A0.9900
C3—C71.350 (4)C15—H15B0.9900
C3—C41.464 (5)C15—H15C0.9900
O4—C41.244 (4)C15—H15D0.9900
C4—C51.462 (5)C16A—H16A0.9800
C5—C61.340 (6)C16A—H16B0.9800
C5—H50.9500C16A—H16C0.9800
C6—O71.346 (6)C16B—H16D0.9800
C6—H60.9500C16B—H16E0.9800
O7—C71.399 (5)C16B—H16F0.9800
C7—C81.516 (6)
C1—Zn1—O9i127.25 (13)C6—C5—C4117.7 (4)
O3—Zn1—C1128.92 (14)C6—C5—H5121.1
O3—Zn1—O9i91.59 (9)C4—C5—H5121.1
O3—Zn1—O1585.46 (8)C5—C6—O7122.7 (4)
O15—Zn1—C1129.28 (14)C5—C6—H6118.7
O15—Zn1—O9i78.19 (8)O7—C6—H6118.7
O3—Zn2—O478.68 (9)C6—O7—C7121.9 (3)
O3—Zn2—O1091.31 (8)C3—C7—O7120.3 (4)
O3—Zn2—O1580.04 (8)C3—C7—C8125.0 (4)
O3—Zn2—O15i111.14 (8)O7—C7—C8114.6 (3)
O4—Zn2—O15i83.62 (8)C7—C8—H8A109.5
O9—Zn2—O3170.61 (9)C7—C8—H8B109.5
O9—Zn2—O4109.72 (9)H8A—C8—H8B109.5
O9—Zn2—O1082.98 (8)C7—C8—H8C109.5
O9—Zn2—O1592.50 (8)H8A—C8—H8C109.5
O9—Zn2—O15i74.74 (7)H8B—C8—H8C109.5
O10—Zn2—O4101.70 (8)C9—O9—Zn2108.77 (18)
O10—Zn2—O15i157.55 (7)C9—O9—Zn1i147.41 (18)
O15—Zn2—O4155.76 (7)Zn2—O9—Zn1i103.77 (8)
O15—Zn2—O1090.22 (8)C13—C9—O9121.2 (3)
O15—Zn2—O15i93.39 (8)C13—C9—C10119.9 (3)
O3—Zn1—Zn242.88 (6)O9—C9—C10118.9 (2)
O15—Zn1—Zn243.21 (6)C10—O10—Zn2109.14 (19)
C1—Zn1—Zn2154.94 (12)O10—C10—C11121.0 (3)
O9i—Zn1—Zn277.42 (6)O10—C10—C9119.9 (3)
O9—Zn2—Zn2i80.34 (6)C11—C10—C9119.1 (3)
O3—Zn2—Zn2i98.64 (6)C12—C11—C10116.4 (3)
O15—Zn2—Zn2i48.81 (6)C12—C11—H11121.8
O10—Zn2—Zn2i134.38 (6)C10—C11—H11121.8
O4—Zn2—Zn2i123.88 (6)C11—C12—O13124.0 (3)
O15i—Zn2—Zn2i44.58 (5)C11—C12—H12118.0
O9—Zn2—Zn1132.85 (6)O13—C12—H12118.0
O3—Zn2—Zn140.21 (6)C13—O13—C12122.7 (2)
O15—Zn2—Zn140.40 (5)C9—C13—O13117.9 (3)
O10—Zn2—Zn196.26 (6)C9—C13—C14126.5 (3)
O4—Zn2—Zn1116.46 (6)O13—C13—C14115.6 (3)
O15i—Zn2—Zn1100.83 (6)C13—C14—H14A109.5
Zn2i—Zn2—Zn166.80 (2)C13—C14—H14B109.5
C2B—C1—C2A50.0 (5)H14A—C14—H14B109.5
C2B—C1—Zn1121.4 (5)C13—C14—H14C109.5
C2A—C1—Zn1108.3 (5)H14A—C14—H14C109.5
C2B—C1—H1A128.2H14B—C14—H14C109.5
C2A—C1—H1A110.0C15—O15—Zn1116.81 (19)
Zn1—C1—H1A110.0C15—O15—Zn2124.64 (17)
C2B—C1—H1B60.1Zn1—O15—Zn296.39 (8)
C2A—C1—H1B110.0C15—O15—Zn2i122.84 (16)
Zn1—C1—H1B110.0Zn1—O15—Zn2i103.03 (8)
H1A—C1—H1B108.4Zn2—O15—Zn2i86.61 (8)
C2B—C1—H1C107.0C16A—C15—O15121.0 (4)
C2A—C1—H1C65.5C16A—C15—C16B57.9 (4)
Zn1—C1—H1C107.0O15—C15—C16B117.4 (3)
H1A—C1—H1C48.4C16A—C15—H15A107.1
H1B—C1—H1C141.8O15—C15—H15A107.1
C2B—C1—H1D107.0C16B—C15—H15A134.4
C2A—C1—H1D144.6C16A—C15—H15B107.1
Zn1—C1—H1D107.0O15—C15—H15B107.1
H1A—C1—H1D59.4C16B—C15—H15B52.1
H1B—C1—H1D53.4H15A—C15—H15B106.8
H1C—C1—H1D106.7C16A—C15—H15C130.2
C1—C2A—H2A109.5O15—C15—H15C107.9
C1—C2A—H2B109.5C16B—C15—H15C107.9
H2A—C2A—H2B109.5H15A—C15—H15C45.3
C1—C2A—H2C109.5H15B—C15—H15C63.2
H2A—C2A—H2C109.5C16A—C15—H15D51.1
H2B—C2A—H2C109.5O15—C15—H15D107.9
C1—C2B—H2D109.5C16B—C15—H15D107.9
C1—C2B—H2E109.5H15A—C15—H15D64.5
H2D—C2B—H2E109.5H15B—C15—H15D144.9
C1—C2B—H2F109.5H15C—C15—H15D107.2
H2D—C2B—H2F109.5C15—C16A—H16A109.5
H2E—C2B—H2F109.5C15—C16A—H16B109.5
C3—O3—Zn1142.24 (19)H16A—C16A—H16B109.5
C3—O3—Zn2111.56 (19)C15—C16A—H16C109.5
Zn1—O3—Zn296.91 (8)H16A—C16A—H16C109.5
C7—C3—O3123.5 (3)H16B—C16A—H16C109.5
C7—C3—C4118.1 (3)C15—C16B—H16D109.5
O3—C3—C4118.2 (3)C15—C16B—H16E109.5
C4—O4—Zn2114.0 (2)H16D—C16B—H16E109.5
O4—C4—C5124.3 (4)C15—C16B—H16F109.5
O4—C4—C3116.9 (3)H16D—C16B—H16F109.5
C5—C4—C3118.8 (3)H16E—C16B—H16F109.5
O3—Zn1—Zn2—O9170.82 (12)C6—O7—C7—C30.8 (5)
O15—Zn1—Zn2—O93.27 (12)C6—O7—C7—C8177.2 (3)
C1—Zn1—Zn2—O987.9 (3)O15—Zn2—O9—C985.37 (18)
O9i—Zn1—Zn2—O982.78 (10)O10—Zn2—O9—C94.55 (18)
O15—Zn1—Zn2—O3167.55 (13)O4—Zn2—O9—C9104.51 (18)
C1—Zn1—Zn2—O382.9 (3)O15i—Zn2—O9—C9178.20 (19)
O9i—Zn1—Zn2—O3106.39 (11)Zn2i—Zn2—O9—C9132.83 (18)
O3—Zn1—Zn2—O15167.55 (13)Zn1—Zn2—O9—C987.49 (18)
C1—Zn1—Zn2—O1584.6 (3)O15—Zn2—O9—Zn1i96.63 (10)
O9i—Zn1—Zn2—O1586.06 (10)O10—Zn2—O9—Zn1i173.45 (10)
O3—Zn1—Zn2—O1084.60 (11)O4—Zn2—O9—Zn1i73.49 (10)
O15—Zn1—Zn2—O1082.95 (10)O15i—Zn2—O9—Zn1i3.79 (8)
C1—Zn1—Zn2—O101.7 (3)Zn2i—Zn2—O9—Zn1i49.17 (7)
O9i—Zn1—Zn2—O10169.00 (7)Zn1—Zn2—O9—Zn1i94.51 (10)
O3—Zn1—Zn2—O421.81 (12)Zn2—O9—C9—C13176.2 (2)
O15—Zn1—Zn2—O4170.65 (11)Zn1i—O9—C9—C137.4 (5)
C1—Zn1—Zn2—O4104.7 (3)Zn2—O9—C9—C103.9 (3)
O9i—Zn1—Zn2—O484.59 (9)Zn1i—O9—C9—C10172.5 (2)
O3—Zn1—Zn2—O15i110.02 (11)O9—Zn2—O10—C104.9 (2)
O15—Zn1—Zn2—O15i82.43 (11)O3—Zn2—O10—C10167.6 (2)
C1—Zn1—Zn2—O15i167.1 (3)O15—Zn2—O10—C1087.6 (2)
O9i—Zn1—Zn2—O15i3.63 (7)O4—Zn2—O10—C10113.7 (2)
O3—Zn1—Zn2—Zn2i139.46 (10)O15i—Zn2—O10—C1011.9 (3)
O15—Zn1—Zn2—Zn2i52.99 (9)Zn2i—Zn2—O10—C1064.2 (2)
C1—Zn1—Zn2—Zn2i137.6 (3)Zn1—Zn2—O10—C10127.61 (19)
O9i—Zn1—Zn2—Zn2i33.07 (5)Zn2—O10—C10—C11176.6 (2)
O3—Zn1—C1—C2B111.4 (7)Zn2—O10—C10—C94.3 (3)
O15—Zn1—C1—C2B126.7 (7)C13—C9—C10—O10179.5 (3)
O9i—Zn1—C1—C2B19.8 (8)O9—C9—C10—O100.4 (4)
Zn2—Zn1—C1—C2B171.6 (7)C13—C9—C10—C110.4 (4)
O3—Zn1—C1—C2A165.2 (6)O9—C9—C10—C11179.5 (3)
O15—Zn1—C1—C2A72.9 (7)O10—C10—C11—C12178.8 (3)
O9i—Zn1—C1—C2A34.0 (7)C9—C10—C11—C120.3 (4)
Zn2—Zn1—C1—C2A134.6 (6)C10—C11—C12—O130.5 (5)
O15—Zn1—O3—C3148.1 (3)C11—C12—O13—C130.0 (5)
C1—Zn1—O3—C373.1 (4)O9—C9—C13—O13179.0 (3)
O9i—Zn1—O3—C370.1 (3)C10—C9—C13—O130.9 (4)
Zn2—Zn1—O3—C3139.6 (4)O9—C9—C13—C140.5 (5)
O15—Zn1—O3—Zn28.52 (9)C10—C9—C13—C14179.6 (3)
C1—Zn1—O3—Zn2147.30 (16)C12—O13—C13—C90.7 (4)
O9i—Zn1—O3—Zn269.50 (9)C12—O13—C13—C14179.7 (3)
O15—Zn2—O3—C3162.9 (2)O3—Zn1—O15—C15125.75 (18)
O10—Zn2—O3—C3107.14 (19)C1—Zn1—O15—C1512.8 (2)
O4—Zn2—O3—C35.46 (18)O9i—Zn1—O15—C15141.66 (19)
O15i—Zn2—O3—C373.07 (19)Zn2—Zn1—O15—C15134.2 (2)
Zn2i—Zn2—O3—C3117.54 (18)O3—Zn1—O15—Zn28.47 (9)
Zn1—Zn2—O3—C3154.7 (2)C1—Zn1—O15—Zn2146.99 (15)
O15—Zn2—O3—Zn18.16 (8)O9i—Zn1—O15—Zn284.12 (9)
O10—Zn2—O3—Zn198.15 (10)O3—Zn1—O15—Zn2i96.45 (10)
O4—Zn2—O3—Zn1160.17 (10)C1—Zn1—O15—Zn2i125.03 (16)
O15i—Zn2—O3—Zn181.64 (10)O9i—Zn1—O15—Zn2i3.86 (8)
Zn2i—Zn2—O3—Zn137.17 (8)Zn2—Zn1—O15—Zn2i87.98 (10)
Zn1—O3—C3—C744.1 (5)O9—Zn2—O15—C1553.4 (2)
Zn2—O3—C3—C7179.8 (3)O3—Zn2—O15—C15120.9 (2)
Zn1—O3—C3—C4139.9 (3)O10—Zn2—O15—C1529.6 (2)
Zn2—O3—C3—C43.7 (3)O4—Zn2—O15—C15149.7 (2)
O9—Zn2—O4—C4177.1 (2)O15i—Zn2—O15—C15128.3 (2)
O3—Zn2—O4—C47.3 (2)Zn2i—Zn2—O15—C15128.3 (2)
O15—Zn2—O4—C421.7 (3)Zn1—Zn2—O15—C15129.0 (2)
O10—Zn2—O4—C496.3 (2)O9—Zn2—O15—Zn1177.60 (8)
O15i—Zn2—O4—C4105.8 (2)O3—Zn2—O15—Zn18.13 (8)
Zn2i—Zn2—O4—C485.6 (2)O10—Zn2—O15—Zn199.42 (8)
Zn1—Zn2—O4—C46.9 (2)O4—Zn2—O15—Zn120.8 (2)
Zn2—O4—C4—C5172.0 (3)O15i—Zn2—O15—Zn1102.75 (9)
Zn2—O4—C4—C37.4 (3)Zn2i—Zn2—O15—Zn1102.75 (9)
C7—C3—C4—O4173.6 (3)O9—Zn2—O15—Zn2i74.85 (7)
O3—C3—C4—O42.7 (4)O3—Zn2—O15—Zn2i110.88 (8)
C7—C3—C4—C57.0 (5)O10—Zn2—O15—Zn2i157.83 (7)
O3—C3—C4—C5176.7 (3)O4—Zn2—O15—Zn2i82.0 (2)
O4—C4—C5—C6177.8 (3)O15i—Zn2—O15—Zn2i0.0
C3—C4—C5—C62.8 (5)Zn1—Zn2—O15—Zn2i102.75 (9)
C4—C5—C6—O72.5 (6)Zn1—O15—C15—C16A33.4 (5)
C5—C6—O7—C73.8 (6)Zn2—O15—C15—C16A153.5 (4)
O3—C3—C7—O7178.0 (3)Zn2i—O15—C15—C16A95.4 (5)
C4—C3—C7—O75.9 (5)Zn1—O15—C15—C16B33.9 (4)
O3—C3—C7—C84.2 (5)Zn2—O15—C15—C16B86.1 (4)
C4—C3—C7—C8171.8 (3)Zn2i—O15—C15—C16B162.7 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O10ii0.952.403.342 (4)169
C8—H8A···O30.982.582.974 (4)104
C12—H12···O4iii0.952.252.942 (4)129
C15—H15B···O100.992.513.184 (4)126
Symmetry codes: (ii) x, y+1/2, z1/2; (iii) x, y+1, z+1.
(II) bis(µ3-2-ethoxyphenolato-κ4O1,O2:O1: O1)bis(µ2-2-ethoxyphenolato-κ3O1,O2: O1)bis(µ2-2-methyl-4-oxo-4H-pyran-3-olato- κ3O3,O4:O3)bis(2-methyl-4-oxo-4H- pyran-3-olato-κ2O3,O4)tetrazinc(II) toluene disolvate top
Crystal data top
[Zn4(C6H5O3)4(C8H9O2)4]·2C7H8Z = 1
Mr = 1494.78F(000) = 772
Triclinic, P1Dx = 1.559 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.715 (3) ÅCell parameters from 6166 reflections
b = 12.578 (3) Åθ = 2.8–28.0°
c = 12.794 (4) ŵ = 1.57 mm1
α = 92.97 (3)°T = 100 K
β = 110.48 (3)°Plate, colourless
γ = 97.61 (3)°0.26 × 0.18 × 0.10 mm
V = 1592.1 (9) Å3
Data collection top
Kuma KM-4 CCD κ-geometry
diffractometer
6742 independent reflections
Radiation source: fine-focus sealed tube4717 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 27.0°, θmin = 2.8°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2007)
h = 1313
Tmin = 0.718, Tmax = 0.857k = 1616
12797 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0878P)2]
where P = (Fo2 + 2Fc2)/3
6742 reflections(Δ/σ)max = 0.001
405 parametersΔρmax = 0.87 e Å3
1 restraintΔρmin = 0.52 e Å3
Crystal data top
[Zn4(C6H5O3)4(C8H9O2)4]·2C7H8γ = 97.61 (3)°
Mr = 1494.78V = 1592.1 (9) Å3
Triclinic, P1Z = 1
a = 10.715 (3) ÅMo Kα radiation
b = 12.578 (3) ŵ = 1.57 mm1
c = 12.794 (4) ÅT = 100 K
α = 92.97 (3)°0.26 × 0.18 × 0.10 mm
β = 110.48 (3)°
Data collection top
Kuma KM-4 CCD κ-geometry
diffractometer
6742 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2007)
4717 reflections with I > 2σ(I)
Tmin = 0.718, Tmax = 0.857Rint = 0.025
12797 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0491 restraint
wR(F2) = 0.144H-atom parameters constrained
S = 1.04Δρmax = 0.87 e Å3
6742 reflectionsΔρmin = 0.52 e Å3
405 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.60621 (4)0.60550 (3)0.35835 (3)0.03244 (14)
Zn20.34994 (4)0.50106 (3)0.41584 (3)0.03083 (14)
O10.7067 (3)0.7149 (2)0.3035 (2)0.0511 (8)
C10.6550 (5)0.7112 (4)0.1965 (3)0.0477 (11)
O20.5008 (3)0.5597 (2)0.1839 (3)0.0563 (8)
C20.5486 (5)0.6279 (4)0.1323 (4)0.0490 (11)
C30.4968 (6)0.6292 (4)0.0121 (4)0.0624 (14)
H30.42400.57550.03300.075*
C40.5488 (6)0.7033 (4)0.0357 (4)0.0748 (16)
H40.51480.69990.11520.090*
O50.6491 (4)0.7847 (3)0.0236 (3)0.0812 (12)
C50.7017 (6)0.7882 (4)0.1390 (4)0.0649 (14)
C60.8058 (7)0.8849 (5)0.1929 (5)0.101 (2)
H6A0.77270.93120.23800.151*
H6B0.82410.92510.13480.151*
H6C0.88900.86220.24130.151*
O70.4300 (3)0.64291 (19)0.3763 (2)0.0332 (6)
C70.3617 (4)0.7227 (3)0.3860 (3)0.0322 (8)
O80.1997 (3)0.5915 (2)0.4082 (2)0.0393 (6)
C80.2366 (4)0.6892 (3)0.4023 (3)0.0371 (9)
C90.1601 (4)0.7732 (3)0.4111 (4)0.0456 (10)
H90.07580.75650.42060.055*
C100.2107 (5)0.8760 (3)0.4056 (4)0.0497 (11)
H100.15940.93070.41110.060*
O110.3264 (3)0.9051 (2)0.3932 (2)0.0457 (7)
C110.4039 (4)0.8287 (3)0.3830 (3)0.0367 (9)
C120.5325 (5)0.8772 (3)0.3720 (4)0.0504 (11)
H12A0.59800.82750.39440.076*
H12B0.56840.94540.42060.076*
H12C0.51570.89070.29390.076*
O130.2820 (3)0.37145 (19)0.47503 (19)0.0331 (6)
C130.1777 (4)0.3009 (3)0.4052 (3)0.0327 (8)
O140.2099 (3)0.3983 (2)0.2630 (2)0.0419 (7)
C140.1368 (4)0.3128 (3)0.2893 (3)0.0377 (9)
C150.0300 (4)0.2422 (4)0.2122 (3)0.0480 (11)
H150.00130.25140.13450.058*
C160.0339 (4)0.1585 (4)0.2496 (4)0.0523 (11)
H160.10640.10930.19700.063*
C170.0054 (4)0.1451 (3)0.3617 (4)0.0458 (10)
H170.04020.08710.38590.055*
C180.1120 (4)0.2161 (3)0.4404 (3)0.0349 (8)
H180.13930.20620.51780.042*
C19A0.2289 (14)0.3916 (9)0.1554 (9)0.037 (3)*0.449 (15)
H19A0.20810.31540.12260.045*0.449 (15)
H19B0.32400.41940.16660.045*0.449 (15)
C20A0.1396 (15)0.4553 (12)0.0790 (14)0.083 (5)*0.449 (15)
H20A0.15260.45100.00690.125*0.449 (15)
H20B0.16100.53070.11170.125*0.449 (15)
H20C0.04550.42690.06740.125*0.449 (15)
C19B0.178 (2)0.4317 (16)0.1493 (16)0.059 (6)*0.365 (16)
H19C0.22190.50670.15260.071*0.365 (16)
H19D0.07890.42820.11230.071*0.365 (16)
C20B0.229 (2)0.3550 (15)0.0840 (18)0.094 (7)*0.365 (16)
H20D0.20720.37420.00710.142*0.365 (16)
H20E0.18550.28090.08230.142*0.365 (16)
H20F0.32690.36030.12040.142*0.365 (16)
C19C0.177 (4)0.395 (3)0.142 (3)0.038 (7)*0.186 (14)
H19E0.08390.40830.10310.046*0.186 (14)
H19F0.18700.32400.11030.046*0.186 (14)
C20C0.278 (4)0.483 (3)0.131 (3)0.078 (12)*0.186 (14)
H20G0.26550.48580.05190.117*0.186 (14)
H20H0.36910.46880.17260.117*0.186 (14)
H20I0.26530.55180.16220.117*0.186 (14)
O210.5266 (2)0.45997 (18)0.40162 (19)0.0290 (5)
C210.5523 (4)0.3671 (3)0.3585 (3)0.0322 (8)
O220.7396 (3)0.4760 (2)0.3459 (2)0.0402 (6)
C220.6689 (4)0.3732 (3)0.3307 (3)0.0356 (9)
C230.7061 (4)0.2817 (3)0.2945 (3)0.0430 (10)
H230.78570.28640.27700.052*
C240.6260 (5)0.1824 (3)0.2838 (3)0.0474 (11)
H240.65130.11880.25920.057*
C250.5116 (4)0.1758 (3)0.3082 (3)0.0401 (9)
H250.45640.10770.29900.048*
C260.4748 (4)0.2680 (3)0.3468 (3)0.0340 (8)
H260.39570.26230.36510.041*
C270.8752 (4)0.4920 (3)0.3463 (3)0.0412 (9)
H27A0.92020.43100.37830.049*
H27B0.92640.55900.39470.049*
C280.8772 (4)0.4998 (4)0.2305 (3)0.0480 (11)
H28A0.82900.55790.19730.072*
H28B0.83310.43130.18410.072*
H28C0.97090.51530.23430.072*
C29A0.8042 (9)0.0513 (6)0.8963 (8)0.097 (4)*0.531 (9)
C30A0.8697 (8)0.1478 (7)0.8787 (8)0.073 (3)*0.531 (9)
H30A0.94000.14740.84970.087*0.531 (9)
C31A0.8325 (10)0.2449 (6)0.9037 (9)0.107 (5)*0.531 (9)
H31A0.87730.31090.89170.128*0.531 (9)
C32A0.7297 (10)0.2455 (6)0.9462 (9)0.123 (5)*0.531 (9)
H32A0.70420.31190.96330.148*0.531 (9)
C33A0.6641 (8)0.1490 (7)0.9638 (7)0.075 (3)*0.531 (9)
H33A0.59380.14940.99290.090*0.531 (9)
C34A0.7013 (8)0.0519 (6)0.9389 (7)0.076 (3)*0.531 (9)
H34A0.65650.01410.95090.091*0.531 (9)
C35A0.814 (2)0.0486 (15)0.8732 (16)0.164 (8)*0.531 (9)
H35A0.75110.09680.89620.246*0.531 (9)
H35B0.90660.06070.91370.246*0.531 (9)
H35C0.79250.06360.79230.246*0.531 (9)
C29B0.7086 (7)0.0975 (6)0.9330 (8)0.087 (4)*0.469 (9)
C30B0.7754 (9)0.0156 (5)0.9132 (8)0.062 (3)*0.469 (9)
H30B0.74440.05700.92050.075*0.469 (9)
C31B0.8877 (10)0.0399 (7)0.8829 (9)0.105 (4)*0.469 (9)
H31B0.93330.01600.86930.126*0.469 (9)
C32B0.9331 (9)0.1461 (8)0.8723 (9)0.105 (4)*0.469 (9)
H32B1.00980.16280.85150.126*0.469 (9)
C33B0.8663 (10)0.2280 (6)0.8920 (9)0.082 (4)*0.469 (9)
H33B0.89730.30060.88480.099*0.469 (9)
C34B0.7541 (8)0.2037 (6)0.9224 (7)0.052 (3)*0.469 (9)
H34B0.70840.25970.93590.063*0.469 (9)
C35B0.607 (2)0.0537 (15)0.9670 (16)0.143 (8)*0.469 (9)
H35D0.55890.11070.98160.215*0.469 (9)
H35E0.64490.01951.03580.215*0.469 (9)
H35F0.54330.00050.90800.215*0.469 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0365 (3)0.0325 (2)0.0261 (2)0.00093 (18)0.01030 (18)0.00287 (17)
Zn20.0329 (3)0.0286 (2)0.0287 (2)0.00260 (17)0.00901 (18)0.00351 (17)
O10.0548 (19)0.0466 (17)0.0428 (17)0.0005 (14)0.0093 (14)0.0056 (13)
C10.060 (3)0.050 (3)0.027 (2)0.016 (2)0.0049 (19)0.0018 (18)
O20.063 (2)0.0503 (18)0.0469 (18)0.0061 (16)0.0142 (16)0.0023 (14)
C20.057 (3)0.049 (3)0.043 (2)0.002 (2)0.022 (2)0.010 (2)
C30.079 (4)0.057 (3)0.037 (2)0.005 (3)0.009 (2)0.006 (2)
C40.092 (4)0.071 (4)0.045 (3)0.006 (3)0.011 (3)0.002 (3)
O50.104 (3)0.074 (2)0.051 (2)0.015 (2)0.019 (2)0.0199 (18)
C50.080 (4)0.061 (3)0.043 (3)0.009 (3)0.016 (3)0.010 (2)
C60.103 (5)0.093 (5)0.079 (4)0.033 (4)0.016 (4)0.013 (4)
O70.0356 (15)0.0272 (13)0.0352 (14)0.0055 (11)0.0104 (11)0.0058 (10)
C70.038 (2)0.0312 (19)0.0256 (17)0.0098 (16)0.0067 (15)0.0043 (14)
O80.0354 (15)0.0388 (15)0.0429 (15)0.0064 (12)0.0125 (12)0.0086 (12)
C80.038 (2)0.041 (2)0.0274 (19)0.0072 (18)0.0058 (16)0.0034 (16)
C90.038 (2)0.051 (3)0.050 (2)0.018 (2)0.015 (2)0.008 (2)
C100.050 (3)0.043 (2)0.061 (3)0.024 (2)0.019 (2)0.008 (2)
O110.0515 (19)0.0326 (14)0.0499 (17)0.0147 (13)0.0117 (14)0.0048 (12)
C110.043 (2)0.0313 (19)0.0323 (19)0.0121 (17)0.0070 (17)0.0046 (15)
C120.054 (3)0.030 (2)0.063 (3)0.0033 (19)0.017 (2)0.0049 (19)
O130.0359 (15)0.0315 (13)0.0251 (12)0.0037 (11)0.0061 (11)0.0003 (10)
C130.030 (2)0.0284 (18)0.0353 (19)0.0048 (15)0.0077 (16)0.0038 (15)
O140.0497 (17)0.0435 (16)0.0266 (13)0.0023 (13)0.0083 (12)0.0044 (11)
C140.033 (2)0.041 (2)0.034 (2)0.0083 (17)0.0047 (16)0.0010 (17)
C150.039 (2)0.056 (3)0.036 (2)0.002 (2)0.0008 (18)0.0022 (19)
C160.041 (3)0.050 (3)0.050 (3)0.005 (2)0.004 (2)0.013 (2)
C170.039 (2)0.036 (2)0.057 (3)0.0033 (17)0.015 (2)0.0023 (19)
C180.031 (2)0.034 (2)0.040 (2)0.0036 (16)0.0135 (17)0.0002 (16)
O210.0355 (14)0.0220 (12)0.0281 (12)0.0042 (10)0.0102 (11)0.0004 (10)
C210.040 (2)0.0309 (19)0.0247 (17)0.0099 (16)0.0081 (16)0.0042 (14)
O220.0428 (17)0.0344 (14)0.0443 (16)0.0019 (12)0.0185 (13)0.0032 (12)
C220.040 (2)0.036 (2)0.0298 (19)0.0055 (17)0.0124 (17)0.0047 (15)
C230.046 (3)0.042 (2)0.045 (2)0.0106 (19)0.020 (2)0.0054 (18)
C240.065 (3)0.035 (2)0.047 (2)0.019 (2)0.022 (2)0.0029 (18)
C250.047 (3)0.0288 (19)0.042 (2)0.0032 (17)0.0135 (19)0.0021 (16)
C260.037 (2)0.0316 (19)0.0319 (19)0.0042 (16)0.0114 (16)0.0048 (15)
C270.031 (2)0.049 (2)0.041 (2)0.0041 (18)0.0096 (17)0.0107 (18)
C280.037 (2)0.066 (3)0.043 (2)0.007 (2)0.0170 (19)0.012 (2)
Geometric parameters (Å, º) top
Zn1—O11.945 (3)C19B—C20B1.52 (3)
Zn1—O22.126 (3)C19B—H19C0.9900
Zn1—O72.090 (3)C19B—H19D0.9900
Zn1—O13i2.030 (2)C20B—H20D0.9800
Zn1—O212.099 (2)C20B—H20E0.9800
Zn1—O222.339 (3)C20B—H20F0.9800
Zn2—O72.042 (2)C19C—C20C1.49 (5)
Zn2—O82.069 (3)C19C—H19E0.9900
Zn2—O131.990 (2)C19C—H19F0.9900
Zn2—O142.217 (3)C20C—H20G0.9800
Zn2—O212.092 (3)C20C—H20H0.9800
Zn2—O21i2.234 (3)C20C—H20I0.9800
O1—C11.280 (5)O21—C211.367 (4)
C1—C51.390 (6)O21—Zn2i2.234 (3)
C1—C21.419 (6)C21—C261.373 (5)
O2—C21.270 (5)C21—C221.408 (5)
C2—C31.443 (6)O22—C221.377 (4)
C3—C41.309 (7)O22—C271.438 (5)
C3—H30.9500C22—C231.375 (5)
C4—O51.354 (6)C23—C241.390 (6)
C4—H40.9500C23—H230.9500
O5—C51.380 (6)C24—C251.361 (6)
C5—C61.488 (7)C24—H240.9500
C6—H6A0.9800C25—C261.394 (5)
C6—H6B0.9800C25—H250.9500
C6—H6C0.9800C26—H260.9500
O7—C71.343 (4)C27—C281.497 (5)
C7—C111.356 (5)C27—H27A0.9900
C7—C81.440 (5)C27—H27B0.9900
O8—C81.255 (5)C28—H28A0.9800
C8—C91.443 (6)C28—H28B0.9800
C9—C101.350 (6)C28—H28C0.9800
C9—H90.9500C29A—C35A1.303 (19)
C10—O111.312 (5)C29A—C30A1.3900
C10—H100.9500C29A—C34A1.3900
O11—C111.380 (5)C30A—C31A1.3900
C11—C121.487 (6)C30A—H30A0.9500
C12—H12A0.9800C31A—C32A1.3900
C12—H12B0.9800C31A—H31A0.9500
C12—H12C0.9800C32A—C33A1.3900
O13—C131.338 (4)C32A—H32A0.9500
O13—Zn1i2.030 (2)C33A—C34A1.3900
C13—C181.381 (5)C33A—H33A0.9500
C13—C141.414 (5)C34A—H34A0.9500
O14—C141.371 (5)C35A—H35A0.9800
O14—C19A1.460 (11)C35A—H35B0.9800
O14—C19C1.46 (3)C35A—H35C0.9800
O14—C19B1.471 (19)C29B—C35B1.37 (2)
C14—C151.387 (5)C29B—C30B1.3900
C15—C161.377 (6)C29B—C34B1.3900
C15—H150.9500C30B—C31B1.3900
C16—C171.373 (6)C30B—H30B0.9500
C16—H160.9500C31B—C32B1.3900
C17—C181.395 (5)C31B—H31B0.9500
C17—H170.9500C32B—C33B1.3900
C18—H180.9500C32B—H32B0.9500
C19A—C20A1.46 (2)C33B—C34B1.3900
C19A—H19A0.9900C33B—H33B0.9500
C19A—H19B0.9900C34B—H34B0.9500
C20A—H20A0.9800C35B—H35D0.9800
C20A—H20B0.9800C35B—H35E0.9800
C20A—H20C0.9800C35B—H35F0.9800
O1—Zn1—O282.41 (12)C20A—C19A—H19A109.8
O1—Zn1—O7116.58 (12)O14—C19A—H19B109.8
O1—Zn1—O13i100.45 (11)C20A—C19A—H19B109.8
O1—Zn1—O21164.48 (12)H19A—C19A—H19B108.2
O1—Zn1—O2293.23 (12)C19A—C20A—H20A109.5
O2—Zn1—O2285.32 (12)C19A—C20A—H20B109.5
O7—Zn1—O290.60 (12)H20A—C20A—H20B109.5
O7—Zn1—O2177.98 (10)C19A—C20A—H20C109.5
O7—Zn1—O22149.13 (9)H20A—C20A—H20C109.5
O13i—Zn1—O2171.50 (11)H20B—C20A—H20C109.5
O13i—Zn1—O795.18 (10)O14—C19B—C20B107.4 (15)
O13i—Zn1—O2182.60 (10)O14—C19B—H19C110.2
O13i—Zn1—O2286.53 (10)C20B—C19B—H19C110.2
O21—Zn1—O292.56 (11)O14—C19B—H19D110.2
O21—Zn1—O2271.67 (9)C20B—C19B—H19D110.2
O7—Zn2—O880.02 (10)H19C—C19B—H19D108.5
O7—Zn2—O14111.16 (10)C19B—C20B—H20D109.5
O7—Zn2—O2179.22 (10)C19B—C20B—H20E109.5
O7—Zn2—O21i92.66 (10)H20D—C20B—H20E109.5
O8—Zn2—O1489.48 (11)C19B—C20B—H20F109.5
O8—Zn2—O21159.09 (10)H20D—C20B—H20F109.5
O8—Zn2—O21i98.31 (10)H20E—C20B—H20F109.5
O13—Zn2—O7172.54 (9)O14—C19C—C20C103 (2)
O13—Zn2—O899.01 (11)O14—C19C—H19E111.1
O13—Zn2—O1476.16 (10)C20C—C19C—H19E111.1
O13—Zn2—O21101.90 (10)O14—C19C—H19F111.1
O13—Zn2—O21i80.14 (10)C20C—C19C—H19F111.1
O14—Zn2—O21i155.94 (9)H19E—C19C—H19F109.1
O21—Zn2—O1495.70 (10)C19C—C20C—H20G109.5
O21—Zn2—O21i85.12 (10)C19C—C20C—H20H109.5
O1—Zn1—Zn2i136.92 (9)H20G—C20C—H20H109.5
O13i—Zn1—Zn2i37.75 (7)C19C—C20C—H20I109.5
O7—Zn1—Zn2i84.82 (7)H20G—C20C—H20I109.5
O21—Zn1—Zn2i44.90 (7)H20H—C20C—H20I109.5
O2—Zn1—Zn2i137.24 (9)C21—O21—Zn2131.5 (2)
O22—Zn1—Zn2i77.79 (7)C21—O21—Zn1116.8 (2)
O13—Zn2—Zn1i38.64 (7)Zn2—O21—Zn1100.39 (10)
O7—Zn2—Zn1i134.19 (8)C21—O21—Zn2i111.6 (2)
O8—Zn2—Zn1i102.84 (8)Zn2—O21—Zn2i94.89 (10)
O21—Zn2—Zn1i93.42 (7)Zn1—O21—Zn2i93.57 (10)
O14—Zn2—Zn1i114.56 (7)O21—C21—C26123.5 (3)
O21i—Zn2—Zn1i41.54 (6)O21—C21—C22117.8 (3)
C1—O1—Zn1110.8 (3)C26—C21—C22118.6 (3)
O1—C1—C5121.2 (4)C22—O22—C27120.0 (3)
O1—C1—C2121.1 (4)C22—O22—Zn1111.2 (2)
C5—C1—C2117.6 (4)C27—O22—Zn1128.7 (2)
C2—O2—Zn1107.0 (3)C23—C22—O22125.2 (4)
O2—C2—C1118.3 (4)C23—C22—C21120.9 (4)
O2—C2—C3124.0 (4)O22—C22—C21113.9 (3)
C1—C2—C3117.6 (4)C22—C23—C24119.3 (4)
C4—C3—C2120.9 (5)C22—C23—H23120.4
C4—C3—H3119.6C24—C23—H23120.4
C2—C3—H3119.6C25—C24—C23120.4 (4)
C3—C4—O5122.7 (5)C25—C24—H24119.8
C3—C4—H4118.6C23—C24—H24119.8
O5—C4—H4118.6C24—C25—C26120.5 (4)
C4—O5—C5118.9 (4)C24—C25—H25119.8
O5—C5—C1122.2 (4)C26—C25—H25119.8
O5—C5—C6112.9 (4)C21—C26—C25120.3 (4)
C1—C5—C6124.9 (5)C21—C26—H26119.8
C5—C6—H6A109.5C25—C26—H26119.8
C5—C6—H6B109.5O22—C27—C28111.6 (3)
H6A—C6—H6B109.5O22—C27—H27A109.3
C5—C6—H6C109.5C28—C27—H27A109.3
H6A—C6—H6C109.5O22—C27—H27B109.3
H6B—C6—H6C109.5C28—C27—H27B109.3
C7—O7—Zn2111.6 (2)H27A—C27—H27B108.0
C7—O7—Zn1145.2 (2)C27—C28—H28A109.5
Zn2—O7—Zn1102.39 (11)C27—C28—H28B109.5
O7—C7—C11124.6 (4)H28A—C28—H28B109.5
O7—C7—C8115.2 (3)C27—C28—H28C109.5
C11—C7—C8120.1 (3)H28A—C28—H28C109.5
C8—O8—Zn2111.5 (3)H28B—C28—H28C109.5
O8—C8—C7120.0 (3)C35A—C29A—C30A131.5 (10)
O8—C8—C9123.6 (4)C35A—C29A—C34A108.4 (10)
C7—C8—C9116.4 (4)C30A—C29A—C34A120.0
C10—C9—C8118.6 (4)C29A—C30A—C31A120.0
C10—C9—H9120.7C29A—C30A—H30A120.0
C8—C9—H9120.7C31A—C30A—H30A120.0
O11—C10—C9124.1 (4)C32A—C31A—C30A120.0
O11—C10—H10118.0C32A—C31A—H31A120.0
C9—C10—H10118.0C30A—C31A—H31A120.0
C10—O11—C11120.3 (3)C31A—C32A—C33A120.0
C7—C11—O11120.5 (4)C31A—C32A—H32A120.0
C7—C11—C12127.0 (4)C33A—C32A—H32A120.0
O11—C11—C12112.4 (3)C34A—C33A—C32A120.0
C11—C12—H12A109.5C34A—C33A—H33A120.0
C11—C12—H12B109.5C32A—C33A—H33A120.0
H12A—C12—H12B109.5C33A—C34A—C29A120.0
C11—C12—H12C109.5C33A—C34A—H34A120.0
H12A—C12—H12C109.5C29A—C34A—H34A120.0
H12B—C12—H12C109.5C29A—C35A—H35A109.5
C13—O13—Zn2118.9 (2)C29A—C35A—H35B109.5
C13—O13—Zn1i137.3 (2)H35A—C35A—H35B109.5
Zn2—O13—Zn1i103.60 (11)C29A—C35A—H35C109.5
O13—C13—C18123.4 (3)H35A—C35A—H35C109.5
O13—C13—C14117.5 (3)H35B—C35A—H35C109.5
C18—C13—C14119.1 (3)C35B—C29B—C30B108.7 (10)
C14—O14—C19A119.6 (5)C35B—C29B—C34B131.2 (10)
C14—O14—C19C111.1 (13)C30B—C29B—C34B120.0
C14—O14—C19B123.8 (9)C31B—C30B—C29B120.0
C14—O14—Zn2111.5 (2)C31B—C30B—H30B120.0
C19A—O14—Zn2124.4 (5)C29B—C30B—H30B120.0
C19C—O14—Zn2137.4 (13)C32B—C31B—C30B120.0
C19B—O14—Zn2123.3 (8)C32B—C31B—H31B120.0
O14—C14—C15124.9 (4)C30B—C31B—H31B120.0
O14—C14—C13114.5 (3)C31B—C32B—C33B120.0
C15—C14—C13120.6 (4)C31B—C32B—H32B120.0
C16—C15—C14119.1 (4)C33B—C32B—H32B120.0
C16—C15—H15120.4C34B—C33B—C32B120.0
C14—C15—H15120.4C34B—C33B—H33B120.0
C17—C16—C15121.0 (4)C32B—C33B—H33B120.0
C17—C16—H16119.5C33B—C34B—C29B120.0
C15—C16—H16119.5C33B—C34B—H34B120.0
C16—C17—C18120.4 (4)C29B—C34B—H34B120.0
C16—C17—H17119.8C29B—C35B—H35D109.5
C18—C17—H17119.8C29B—C35B—H35E109.5
C13—C18—C17119.8 (4)H35D—C35B—H35E109.5
C13—C18—H18120.1C29B—C35B—H35F109.5
C17—C18—H18120.1H35D—C35B—H35F109.5
O14—C19A—C20A109.5 (10)H35E—C35B—H35F109.5
O14—C19A—H19A109.8
O13i—Zn1—O1—C1177.3 (3)C19B—O14—C14—C155.0 (11)
O7—Zn1—O1—C181.5 (3)Zn2—O14—C14—C15171.7 (3)
O21—Zn1—O1—C177.2 (5)C19A—O14—C14—C13149.4 (6)
O2—Zn1—O1—C15.4 (3)C19C—O14—C14—C13170.5 (19)
O22—Zn1—O1—C190.2 (3)C19B—O14—C14—C13174.4 (9)
Zn2i—Zn1—O1—C1165.7 (2)Zn2—O14—C14—C137.6 (4)
Zn1—O1—C1—C5173.9 (4)O13—C13—C14—O141.0 (5)
Zn1—O1—C1—C26.6 (5)C18—C13—C14—O14178.9 (3)
O1—Zn1—O2—C23.7 (3)O13—C13—C14—C15179.6 (3)
O7—Zn1—O2—C2113.1 (3)C18—C13—C14—C151.7 (6)
O21—Zn1—O2—C2168.9 (3)O14—C14—C15—C16179.1 (4)
O22—Zn1—O2—C297.6 (3)C13—C14—C15—C161.6 (6)
Zn2i—Zn1—O2—C2163.9 (2)C14—C15—C16—C170.8 (7)
Zn1—O2—C2—C11.4 (5)C15—C16—C17—C180.3 (7)
Zn1—O2—C2—C3175.4 (4)O13—C13—C18—C17178.9 (4)
O1—C1—C2—O23.5 (7)C14—C13—C18—C171.2 (6)
C5—C1—C2—O2176.9 (5)C16—C17—C18—C130.5 (6)
O1—C1—C2—C3179.5 (4)C14—O14—C19A—C20A103.7 (9)
C5—C1—C2—C30.1 (7)C19C—O14—C19A—C20A33 (4)
O2—C2—C3—C4178.4 (5)C19B—O14—C19A—C20A3.7 (19)
C1—C2—C3—C41.6 (8)Zn2—O14—C19A—C20A102.4 (10)
C2—C3—C4—O52.7 (9)C14—O14—C19B—C20B78.5 (16)
C3—C4—O5—C51.9 (9)C19A—O14—C19B—C20B13.6 (14)
C4—O5—C5—C10.2 (8)C19C—O14—C19B—C20B28 (6)
C4—O5—C5—C6177.0 (6)Zn2—O14—C19B—C20B116.3 (13)
O1—C1—C5—O5178.9 (5)C14—O14—C19C—C20C172 (2)
C2—C1—C5—O50.7 (8)C19A—O14—C19C—C20C54 (4)
O1—C1—C5—C64.7 (9)C19B—O14—C19C—C20C51 (5)
C2—C1—C5—C6175.7 (6)Zn2—O14—C19C—C20C5 (4)
O8—Zn2—O7—C711.2 (2)O13—Zn2—O21—C2145.8 (3)
O21—Zn2—O7—C7171.3 (2)O7—Zn2—O21—C21141.7 (3)
O14—Zn2—O7—C796.7 (2)O8—Zn2—O21—C21134.8 (3)
O21i—Zn2—O7—C786.8 (2)O14—Zn2—O21—C2131.2 (3)
Zn1i—Zn2—O7—C787.1 (2)O21i—Zn2—O21—C21124.7 (3)
O8—Zn2—O7—Zn1176.61 (12)Zn1i—Zn2—O21—C2183.9 (3)
O21—Zn2—O7—Zn10.90 (9)O13—Zn2—O21—Zn1173.37 (9)
O14—Zn2—O7—Zn191.09 (12)O7—Zn2—O21—Zn10.89 (9)
O21i—Zn2—O7—Zn185.42 (11)O8—Zn2—O21—Zn16.0 (3)
Zn1i—Zn2—O7—Zn185.14 (12)O14—Zn2—O21—Zn1109.61 (10)
O1—Zn1—O7—C719.3 (4)O21i—Zn2—O21—Zn194.54 (11)
O13i—Zn1—O7—C785.1 (4)Zn1i—Zn2—O21—Zn1135.28 (8)
O21—Zn1—O7—C7166.4 (4)O13—Zn2—O21—Zn2i78.83 (10)
O2—Zn1—O7—C7101.1 (4)O7—Zn2—O21—Zn2i93.65 (10)
O22—Zn1—O7—C7177.0 (3)O8—Zn2—O21—Zn2i100.5 (3)
Zn2i—Zn1—O7—C7121.4 (4)O14—Zn2—O21—Zn2i155.85 (9)
O1—Zn1—O7—Zn2173.39 (11)O21i—Zn2—O21—Zn2i0.0
O13i—Zn1—O7—Zn282.19 (12)Zn1i—Zn2—O21—Zn2i40.74 (7)
O21—Zn1—O7—Zn20.90 (9)O1—Zn1—O21—C2111.8 (5)
O2—Zn1—O7—Zn291.58 (12)O13i—Zn1—O21—C21114.2 (2)
O22—Zn1—O7—Zn29.7 (2)O7—Zn1—O21—C21148.8 (2)
Zn2i—Zn1—O7—Zn245.84 (9)O2—Zn1—O21—C2158.8 (2)
Zn2—O7—C7—C11168.9 (3)O22—Zn1—O21—C2125.5 (2)
Zn1—O7—C7—C112.2 (6)Zn2i—Zn1—O21—C21116.4 (3)
Zn2—O7—C7—C810.3 (4)O1—Zn1—O21—Zn2159.7 (4)
Zn1—O7—C7—C8176.9 (3)O13i—Zn1—O21—Zn297.81 (11)
O13—Zn2—O8—C8161.9 (2)O7—Zn1—O21—Zn20.88 (9)
O7—Zn2—O8—C810.6 (2)O2—Zn1—O21—Zn289.20 (13)
O21—Zn2—O8—C817.5 (4)O22—Zn1—O21—Zn2173.41 (12)
O14—Zn2—O8—C8122.2 (3)Zn2i—Zn1—O21—Zn295.63 (11)
O21i—Zn2—O8—C880.6 (3)O1—Zn1—O21—Zn2i104.7 (4)
Zn1i—Zn2—O8—C8122.7 (2)O13i—Zn1—O21—Zn2i2.18 (9)
Zn2—O8—C8—C78.5 (4)O7—Zn1—O21—Zn2i94.76 (10)
Zn2—O8—C8—C9171.3 (3)O2—Zn1—O21—Zn2i175.17 (11)
O7—C7—C8—O81.2 (5)O22—Zn1—O21—Zn2i90.96 (10)
C11—C7—C8—O8178.0 (3)Zn2—O21—C21—C2621.9 (5)
O7—C7—C8—C9179.0 (3)Zn1—O21—C21—C26157.7 (3)
C11—C7—C8—C91.8 (5)Zn2i—O21—C21—C2696.3 (4)
O8—C8—C9—C10178.7 (4)Zn2—O21—C21—C22161.8 (2)
C7—C8—C9—C101.1 (6)Zn1—O21—C21—C2225.9 (4)
C8—C9—C10—O110.4 (7)Zn2i—O21—C21—C2280.0 (3)
C9—C10—O11—C111.1 (6)O1—Zn1—O22—C22153.4 (2)
O7—C7—C11—O11179.7 (3)O13i—Zn1—O22—C22106.4 (2)
C8—C7—C11—O111.2 (5)O7—Zn1—O22—C2212.1 (3)
O7—C7—C11—C122.0 (6)O21—Zn1—O22—C2223.0 (2)
C8—C7—C11—C12177.1 (4)O2—Zn1—O22—C2271.3 (2)
C10—O11—C11—C70.2 (5)Zn2i—Zn1—O22—C2269.2 (2)
C10—O11—C11—C12178.8 (4)O1—Zn1—O22—C2723.1 (3)
O8—Zn2—O13—C1376.2 (3)O13i—Zn1—O22—C2777.2 (3)
O21—Zn2—O13—C13104.0 (3)O7—Zn1—O22—C27171.5 (3)
O14—Zn2—O13—C1311.0 (2)O21—Zn1—O22—C27160.5 (3)
O21i—Zn2—O13—C13173.1 (3)O2—Zn1—O22—C27105.2 (3)
Zn1i—Zn2—O13—C13175.5 (3)Zn2i—Zn1—O22—C27114.3 (3)
O8—Zn2—O13—Zn1i99.32 (12)C27—O22—C22—C2312.9 (5)
O21—Zn2—O13—Zn1i80.45 (12)Zn1—O22—C22—C23163.9 (3)
O14—Zn2—O13—Zn1i173.46 (13)C27—O22—C22—C21165.5 (3)
O21i—Zn2—O13—Zn1i2.38 (10)Zn1—O22—C22—C2117.6 (4)
Zn2—O13—C13—C18171.5 (3)O21—C21—C22—C23175.3 (3)
Zn1i—O13—C13—C182.0 (6)C26—C21—C22—C231.2 (5)
Zn2—O13—C13—C1410.7 (4)O21—C21—C22—O223.2 (5)
Zn1i—O13—C13—C14175.8 (3)C26—C21—C22—O22179.7 (3)
O13—Zn2—O14—C149.9 (2)O22—C22—C23—C24179.3 (4)
O7—Zn2—O14—C14168.6 (2)C21—C22—C23—C241.0 (6)
O8—Zn2—O14—C1489.5 (2)C22—C23—C24—C250.4 (6)
O21—Zn2—O14—C14110.8 (2)C23—C24—C25—C261.5 (6)
O21i—Zn2—O14—C1420.0 (4)O21—C21—C26—C25176.3 (3)
Zn1i—Zn2—O14—C1414.4 (3)C22—C21—C26—C250.1 (5)
O13—Zn2—O14—C19A145.9 (6)C24—C25—C26—C211.3 (6)
O7—Zn2—O14—C19A35.6 (6)C22—O22—C27—C2888.4 (4)
O8—Zn2—O14—C19A114.7 (6)Zn1—O22—C27—C2887.8 (4)
O21—Zn2—O14—C19A45.0 (6)C35A—C29A—C30A—C31A174.9 (15)
O21i—Zn2—O14—C19A135.8 (6)C34A—C29A—C30A—C31A0.0
Zn1i—Zn2—O14—C19A141.4 (6)C29A—C30A—C31A—C32A0.0
O13—Zn2—O14—C19C168 (3)C30A—C31A—C32A—C33A0.0
O7—Zn2—O14—C19C14 (3)C31A—C32A—C33A—C34A0.0
O8—Zn2—O14—C19C93 (3)C32A—C33A—C34A—C29A0.0
O21—Zn2—O14—C19C67 (3)C35A—C29A—C34A—C33A176.0 (12)
O21i—Zn2—O14—C19C158 (3)C30A—C29A—C34A—C33A0.0
Zn1i—Zn2—O14—C19C163 (3)C35B—C29B—C30B—C31B176.9 (11)
O13—Zn2—O14—C19B176.7 (9)C34B—C29B—C30B—C31B0.0
O7—Zn2—O14—C19B1.8 (9)C29B—C30B—C31B—C32B0.0
O8—Zn2—O14—C19B77.3 (9)C30B—C31B—C32B—C33B0.0
O21—Zn2—O14—C19B82.4 (9)C31B—C32B—C33B—C34B0.0
O21i—Zn2—O14—C19B173.2 (9)C32B—C33B—C34B—C29B0.0
Zn1i—Zn2—O14—C19B178.8 (9)C35B—C29B—C34B—C33B176.1 (14)
C19A—O14—C14—C1531.2 (8)C30B—C29B—C34B—C33B0.0
C19C—O14—C14—C1510.1 (19)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O10.982.433.224 (6)137
C18—H18···O1i0.952.373.173 (5)142
C28—H28C···O8ii0.982.693.408 (5)131
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[Zn4(C2H5)2(C2H5O)2(C6H5O3)4][Zn4(C6H5O3)4(C8H9O2)4]·2C7H8
Mr910.201494.78
Crystal system, space groupMonoclinic, P21/cTriclinic, P1
Temperature (K)100100
a, b, c (Å)9.851 (2), 18.828 (2), 10.721 (3)10.715 (3), 12.578 (3), 12.794 (4)
α, β, γ (°)90, 115.26 (2), 9092.97 (3), 110.48 (3), 97.61 (3)
V3)1798.3 (7)1592.1 (9)
Z21
Radiation typeMo KαMo Kα
µ (mm1)2.701.57
Crystal size (mm)0.37 × 0.22 × 0.160.26 × 0.18 × 0.10
Data collection
DiffractometerKuma KM-4 CCD κ-geometry
diffractometer
Kuma KM-4 CCD κ-geometry
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2007)
Analytical
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.499, 0.6460.718, 0.857
No. of measured, independent and
observed [I > 2σ(I)] reflections
11678, 3778, 2953 12797, 6742, 4717
Rint0.0270.025
(sin θ/λ)max1)0.6390.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.098, 1.04 0.049, 0.144, 1.04
No. of reflections37786742
No. of parameters248405
No. of restraints01
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.07, 0.430.87, 0.52

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) for (I) top
Zn1—C12.047 (4)Zn2—O42.145 (2)
Zn1—O31.962 (2)Zn2—O92.039 (2)
Zn1—O9i2.141 (2)Zn2—O102.126 (2)
Zn1—O151.968 (2)Zn2—O152.079 (2)
Zn2—O32.068 (2)Zn2—O15i2.229 (2)
C1—Zn1—O9i127.25 (13)O9—Zn2—O3170.61 (9)
O3—Zn1—C1128.92 (14)O9—Zn2—O4109.72 (9)
O3—Zn1—O9i91.59 (9)O9—Zn2—O1082.98 (8)
O3—Zn1—O1585.46 (8)O9—Zn2—O1592.50 (8)
O15—Zn1—C1129.28 (14)O9—Zn2—O15i74.74 (7)
O15—Zn1—O9i78.19 (8)O10—Zn2—O4101.70 (8)
O3—Zn2—O478.68 (9)O10—Zn2—O15i157.55 (7)
O3—Zn2—O1091.31 (8)O15—Zn2—O4155.76 (7)
O3—Zn2—O1580.04 (8)O15—Zn2—O1090.22 (8)
O3—Zn2—O15i111.14 (8)O15—Zn2—O15i93.39 (8)
O4—Zn2—O15i83.62 (8)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O10ii0.952.403.342 (4)169
C8—H8A···O30.982.582.974 (4)104
C12—H12···O4iii0.952.252.942 (4)129
C15—H15B···O100.992.513.184 (4)126
Symmetry codes: (ii) x, y+1/2, z1/2; (iii) x, y+1, z+1.
Selected geometric parameters (Å, º) for (II) top
Zn1—O11.945 (3)Zn2—O72.042 (2)
Zn1—O22.126 (3)Zn2—O82.069 (3)
Zn1—O72.090 (3)Zn2—O131.990 (2)
Zn1—O13i2.030 (2)Zn2—O142.217 (3)
Zn1—O212.099 (2)Zn2—O212.092 (3)
Zn1—O222.339 (3)Zn2—O21i2.234 (3)
O1—Zn1—O282.41 (12)O7—Zn2—O880.02 (10)
O1—Zn1—O7116.58 (12)O7—Zn2—O14111.16 (10)
O1—Zn1—O13i100.45 (11)O7—Zn2—O2179.22 (10)
O1—Zn1—O21164.48 (12)O7—Zn2—O21i92.66 (10)
O1—Zn1—O2293.23 (12)O8—Zn2—O1489.48 (11)
O2—Zn1—O2285.32 (12)O8—Zn2—O21159.09 (10)
O7—Zn1—O290.60 (12)O8—Zn2—O21i98.31 (10)
O7—Zn1—O2177.98 (10)O13—Zn2—O7172.54 (9)
O7—Zn1—O22149.13 (9)O13—Zn2—O899.01 (11)
O13i—Zn1—O2171.50 (11)O13—Zn2—O1476.16 (10)
O13i—Zn1—O795.18 (10)O13—Zn2—O21101.90 (10)
O13i—Zn1—O2182.60 (10)O13—Zn2—O21i80.14 (10)
O13i—Zn1—O2286.53 (10)O14—Zn2—O21i155.94 (9)
O21—Zn1—O292.56 (11)O21—Zn2—O1495.70 (10)
O21—Zn1—O2271.67 (9)O21—Zn2—O21i85.12 (10)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O10.982.433.224 (6)137
C18—H18···O1i0.952.373.173 (5)142
C28—H28C···O8ii0.982.693.408 (5)131
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z.
The connectivity parameters for zinc-defect-dicubane-like tetramers (Å, °). top
Cored(1–2)d(1–2i)d(2–2i)d(1–1i)θθiσσiϕ
(I)3.018 (2)3.290 (2)2.956 (2)5.578 (3)96.91 (8)103.77 (8)96.39 (8)103.03 (8)86.61 (8)
(II)3.220 (2)3.160 (2)3.188 (2)5.526 (3)102.39 (11)103.60 (11)100.39 (10)93.57 (10)94.89 (10)
(I')3.168 (2)3.172 (2)3.089 (2)5.536 (3)98.55 (5)99.46 (5)100.57 (5)98.99 (4)94.07 (4)
BOWHOL3.3033.2543.2705.683108.21105.5297.2094.6899.15
CINHIQ3.1713.1773.2395.459100.64102.8197.7297.1795.72
EKOSIG3.1193.1923.2105.43497.5896.1297.10104.2098.31
EMEYAW3.0763.0943.2505.24596.9897.8893.1594.7699.70
FOFTUP3.1533.1353.1485.44499.0397.67101.52100.7599.66
ILIWEG3.1693.1443.2605.406100.4099.0398.8198.8499.58
ILIWIK3.1443.1633.2745.39098.95100.1398.1897.9799.45
XELBOG3.3113.2923.2885.726108.50107.6398.6595.3099.34
Notes: d(1–2) = Zn1—Zn2, d(1–2i) = Zn1—Zn2i, d(2—2i) = Zn2—Zn2i, d(1—1i) = Zn1—Zn1i, θ = Zn1—µ2O—Zn2, θi = Zn1—µ2O—Zn2i, σ = Zn1—µ3O—Zn2, σi = Zn1—µ3O—Zn2i and ϕ = Zn2—µ3O—Zn2i. refcodes are explained and references are given in the Comment. Symmetry code: (i) -x+1, -y+1, -z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds