Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The absolute configuration of strictosidinic acid, (2S,3R,4S)-3-ethenyl-2-(β-D-glucopyranos­yloxy)-4-{[(1S)-2,3,4,9-tetra­hy­dro-1H-pyrido[3,4-b]indol-1-yl]meth­yl}-3,4-dihydro-2H-py­ran-5-carboxyl­ate, was determined from its sodium chloride trihydrate, poly[[diaqua­((2S,3R,4S)-3-ethenyl-2-(β-D-gluco­pyranos­yloxy)-4-{[(1S)-2,3,4,9-tetra­hydro-1H-pyrido[3,4-b]in­dol-2-ium-1-yl]meth­yl}-3,4-dihydro-2H-pyran-5-carboxyl­ate)sodium] chloride monohydrate], {[Na(C26H32N2O9)(H2O)2]Cl·H2O}n. The strictosidinic acid molecule participates in inter­molecular hydrogen bonds of the O—H...O and O—H...Cl types. The solid-state conformation was observed as a zwitterion, based on a charged pyridine N atom and a carboxyl­ate group, the latter mediating the packing through coordination with the sodium cation.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112010372/lg3078sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112010372/lg3078Isup2.hkl
Contains datablock I

CCDC reference: 879430

Comment top

The Palicourea coriacea (Rubiaceae), popularly known as Douradinha, is a typical plant of the Brazilian savanna (Cerrado), whose tea is popularly used in folk medicine for kidney stones treatment, kidney and urethra inflammation, as well as having effective diuretic action. Previous studies of this genus have yielded triterpenes (Bolzani et al., 1992), alkaloids (do Nascimento et al., 2006), fluoroacetate (Kemmerling, 1996), coumarins (El-Seedi, 1999) and macrocyclic peptides (Bokesch et al., 2001), many of them possessing interesting biological properties such as anti-HIV (Bokesch et al., 2001) and anticancer activities (Hartwell, 1971). As part of our continued interest in plants from the Brazilian Cerrado (Lião et al., 2001) we have investigated the leaves of P. coriacea. Strictosidinic acid, an alkaloid that has important biological properties, was isolated and its structure has been elucidated based on NMR and IR spectroscopic data, and its absolute structure was obtained by X-ray crystallographic analysis.

The strictosidinic acid molecule is composed of a tryptoline moiety bonded to a pyran ring bonded to a β-glucose group. This molecule crystallized as a sodium chloride trihydrate, (I), with three water molecules, a coordinated sodium cation and a chloride counter-ion. The indole group of the tryptoline moiety shares a double bond [C2C10 = 1.371 (6) Å] with the six-membered heterocyclic pyridinium ring (N13/C1/C2/C10/C11/C12), which adopts a half-chair conformation with the protonated N13 atom as the flap atom [puckering parameters: Q = 0.513 (4) Å, θ = 49.7 (5)° and ϕ = 349.6 (7)°; Cremer & Pople, 1975; Spek, 2009]. The pyran ring (C20/C19/O18/C17/C16/C15) includes a CC double bond [C16C17 = 1.341 (6) Å] which allows for a half-chair conformation with the C20 atom as the flap atom [puckering parameters: Q = 0.501 (5) Å, θ = 125.1 (5)° and ϕ = 198.6 (6)°]. This pyran ring is substituted with a carboxylate group (C21/O22/O23) in the 5-position (on C16), which is coordinated to the sodium cation though the O22 carbonyl group. Atom O23 transfers its proton to the amine atom N13 and is a strong hydrogen-bond acceptor from both N13 and the O1S water molecule (Table 1), which is also coordinated to the sodium cation. The C21O22 bond is lengthened to 1.248 (5) Å and C21—O23 is shortened to 1.274 (5) Å, indicating that electron delocalization increases in this group. Given that the C15—C16—C21—O23 torsion angle is 9.8 (6)°, there is no resonance between the carboxylate group and the pyran ring CC double bond, what [which] is reflected in the elongation of the C16—C21 single bond to 1.501 (6) Å, when compared with the expected formal bond distance. The N13—C1 and N13—C12 single bonds of 1.509 (6) and 1.501 (6) Å, respectively, indicate that the N13 atom is sp3-hybridized. The β-glucose group shows a chair conformation [puckering parameters: Q = 0.574 (5) Å, θ = 6.0 (5)°, ϕ = 300 (4)°], with O32 as the pivot atom.

A search of the Cambridge Structural Database (CSD, Version 5.23, May 2011 update; Allen, 2002) gave two structures with the a chiral tryptoline moiety not substituted in the C12 and N13 positions, namely 1(S)-(α-D-arabinofuranosyl)-1,2,3,4-tetrahydro-β-carboline (CSD refcode DOJBIN; Piper et al., 1985) and 1-[2-(pyrrolidin-1-yl)phenyl]-2,3,4,9-tetrahydro-1H-β-carboline (HOPNOQ; Zhang et al., 2009). In general, the bond lengths are comparable within standard uncertainty, the exceptions (see Table 2) being N3—C2 which is shorter in (I) by 0.036 Å compared to DOJBIN, N13—C1 which is longer in (I) by 0.032 and 0.026 Å, respectively, compared to DOJBIN and HOPNOQ, and N13—C12 which is longer in (I) by 0.03 Å compared to HOPNOQ. These elongated N13—C bonds might be ascribed to the lowered charge density in these bonds due to the quaternary N atom.

Due to the fact that the natural extract contained salt, it allowed the establishment of the absolute configuration of (I) (Flack & Bernardinelli, 1999, 2000); we determined the chiral centers: C1 S, C15 S, C19 S, C20 R, C27 S, C28 R, C29 S, C30 R and C31 R.

The sodium cation is involved in the packing stabilization mediating the intermolecular interactions, being five-coordinated by the hydroxy atom O34i, the methoxy atom O37ii, the carboxylate atom O22 and water molecules O1S and O2S (symmetry codes as in Fig. 1). In the crystal, there are classical intermolecular interactions where the strictosidinate anion acts as a donor (O33—H33···O22iii) and involving the coordinated O2S water molecule (O2S—H2SB···O35iii). There are also nonclassical intermolecular hydrogen-bond interactions, viz. O34—H34···Cl1, O35—H35···Cl1 and O37—H37···Cl1vi (Table 1). The O3S water molecule is involved in intermolecular interactions both as a donor, viz. in O3S—H3SA···O1S and O3S—H3SA···O26v, and as an acceptor, viz. in O2S—H2SA···O3Siv (symmetry codes as in Table 1). All these intermolecular interactions create a three-dimensional polymeric chain.

Related literature top

For related literature, see: Allen (2002); Bokesch et al. (2001); Bolzani et al. (1992); Cremer & Pople (1975); El-Seedi (1999); Flack & Bernardinelli (1999, 2000); Hartwell (1971); Kemmerling (1996); Lião et al. (2001); Nascimento, do, Gomes, Lião, de Oliveira, Kato, de Silva & Tanaka (2006); Piper et al. (1985); Spek (2009); Zhang et al. (2009).

Experimental top

The air-dried and powdered leaves (362 g) were successively extracted with EtOH (1.5 l for 48 h). The resulting extract was filtered and concentrated under reduced pressure to give 41.3 g to which was then added a 10% HOAc solution (250 ml) and the suspension was kept at 278 K overnight. The suspension was filtered and the acidic aqueous phase was partitioned with CH2Cl2. The resulting aqueous layer was basificated (pH 8–9) with saturated NaHCO3 solution, and was then again extracted with CH2Cl2. The combined organic layers were treated with Na2SO4 and filtered, affording a CH2Cl2 basic fraction. Strictosidinic acid (29 mg) was obtained from a crude methanolic extract of the leaves after repeated fractionation using column chromatography (CHCl3/MeOH eluent system on gradient form) followed by preparative thin-layer chromatography on silica gel (n-butanol/HOAc/H2O 4:1:5–organic phase). Crystals suitable for single-crystal X-ray diffraction studies were obtained as yellow block-shaped crystals by recrystallization from chloroform and methanol (1:1v/v) (m.p. 482–485 K).

Refinement top

All water H atoms were located in a difference Fourier map, and refined with restraints on bond distances using O—H = 0.84 (2) Å, while being allowed to ride on their parent atoms. The remaining H atoms were positioned geometrically (aromatic C—H = 0.95 Å, methine C—H = 1.00 Å, alkyl C—H = 0.99 Å, ethylene C—H = 0.95 Å, N—H= 0.92 Å, aromatic N—H = 0.88 Å and hydroxy O—H = 0.84 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N,Owater) and 1.5Ueq(Ohydroxy). Hydroxy groups were allowed to rotate in order to fit the difference electron-density map.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Dashed lines indicate intramolecular interactions. [Symmetry codes: (i) -x+1/2, -y+2, z-1/2; (ii) x-1/2, -y+3/2, -z+1; (vii) -x+1/2, -y+2, z+1/2; (viii) x+1/2, -y+3/2, -z+1.]
poly[[diaqua((2S,3R,4S)-3-ethenyl-2-(β-D- glucopyranosyloxy)-4-{[(1S)-2,3,4,9-tetrahydro-1H- pyrido[3,4-b]indol-2-ium-1-yl]methyl}-3,4-dihydro-2H- pyran-5-carboxylate)sodium] chloride monohydrate] top
Crystal data top
[Na(C26H32N2O9)(H2O)2]Cl·H2OF(000) = 1328
Mr = 629.02Dx = 1.439 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 4095 reflections
a = 7.6419 (4) Åθ = 3.3–66.6°
b = 16.2205 (8) ŵ = 1.89 mm1
c = 23.4299 (12) ÅT = 100 K
V = 2904.3 (3) Å3Plate, colourless
Z = 40.2 × 0.15 × 0.1 mm
Data collection top
Bruker SMART APEX DUO
diffractometer
4390 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
ω scansθmax = 66.6°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 98
Tmin = 0.706, Tmax = 0.835k = 1817
22917 measured reflectionsl = 2627
5062 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.0921P)2 + 0.2377P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
5062 reflectionsΔρmax = 0.53 e Å3
402 parametersΔρmin = 0.26 e Å3
6 restraintsAbsolute structure: Flack (1983), 2134 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (3)
Crystal data top
[Na(C26H32N2O9)(H2O)2]Cl·H2OV = 2904.3 (3) Å3
Mr = 629.02Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 7.6419 (4) ŵ = 1.89 mm1
b = 16.2205 (8) ÅT = 100 K
c = 23.4299 (12) Å0.2 × 0.15 × 0.1 mm
Data collection top
Bruker SMART APEX DUO
diffractometer
5062 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4390 reflections with I > 2σ(I)
Tmin = 0.706, Tmax = 0.835Rint = 0.078
22917 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.063H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.159Δρmax = 0.53 e Å3
S = 1.14Δρmin = 0.26 e Å3
5062 reflectionsAbsolute structure: Flack (1983), 2134 Friedel pairs
402 parametersAbsolute structure parameter: 0.04 (3)
6 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.3561 (2)0.93046 (11)0.25270 (7)0.0395 (4)
Cl10.39910 (14)0.56856 (6)0.85273 (5)0.0396 (3)
O1S0.6199 (5)1.0006 (2)0.23657 (15)0.0457 (8)
H1SB0.692 (7)0.981 (4)0.213 (2)0.055*
H1SA0.647 (8)0.992 (4)0.2710 (12)0.055*
O2S0.4540 (5)0.7986 (2)0.23217 (16)0.0456 (8)
H2SA0.426 (9)0.761 (3)0.255 (2)0.055*
H2SB0.562 (3)0.799 (4)0.232 (3)0.055*
O3S0.5825 (7)1.1638 (3)0.1994 (2)0.0681 (12)
H3SA0.652 (9)1.142 (5)0.223 (3)0.082*
H3SB0.627 (10)1.158 (5)0.1665 (17)0.082*
O180.5223 (4)0.81992 (19)0.50674 (14)0.0390 (7)
O220.4343 (4)0.92329 (19)0.35024 (14)0.0389 (7)
O230.6989 (4)0.97840 (17)0.34759 (13)0.0354 (6)
O260.6861 (4)0.79487 (17)0.58525 (13)0.0316 (6)
O320.5138 (4)0.83495 (17)0.65931 (13)0.0346 (7)
O330.6190 (4)0.62765 (18)0.61009 (13)0.0360 (6)
H330.69990.59540.61970.054*
O340.5649 (4)0.60366 (19)0.72886 (14)0.0409 (7)
H340.53870.60660.76360.061*
O350.3178 (4)0.72449 (19)0.77836 (14)0.0412 (7)
H350.34560.6810.79560.062*
O370.2931 (5)0.95967 (19)0.70205 (15)0.0415 (7)
H370.37310.97490.67980.062*
N30.6804 (5)1.1997 (2)0.54195 (17)0.0346 (8)
H30.66651.16220.56870.041*
N130.7853 (5)1.1094 (2)0.40300 (16)0.0365 (8)
H13A0.90041.12030.41160.044*
H13B0.78141.06020.38340.044*
C10.6827 (5)1.1009 (2)0.45771 (19)0.0328 (9)
H10.55811.08860.44780.039*
C20.6905 (6)1.1850 (3)0.48518 (19)0.0320 (8)
C40.6957 (6)1.2834 (3)0.5505 (2)0.0350 (9)
C50.6970 (6)1.3297 (3)0.6007 (2)0.0378 (9)
H50.68781.30380.63690.045*
C60.7122 (6)1.4145 (3)0.5961 (2)0.0360 (10)
H60.71341.44720.62970.043*
C70.7259 (6)1.4528 (3)0.5426 (2)0.0377 (10)
H70.73191.51130.54060.045*
C80.7306 (6)1.4076 (3)0.4933 (2)0.0382 (10)
H80.74381.4340.45740.046*
C90.7154 (6)1.3212 (3)0.4968 (2)0.0348 (9)
C100.7143 (6)1.2570 (2)0.4554 (2)0.0338 (9)
C110.7423 (6)1.2607 (3)0.3923 (2)0.0390 (10)
H11A0.86261.28020.38430.047*
H11B0.65921.30060.37530.047*
C120.7155 (7)1.1768 (3)0.36551 (19)0.0399 (10)
H12A0.58911.16770.35880.048*
H12B0.77571.1750.32810.048*
C140.7520 (6)1.0316 (3)0.49490 (19)0.0352 (9)
H14A0.67481.0270.52870.042*
H14B0.86931.04790.50880.042*
C150.7677 (5)0.9449 (2)0.46762 (18)0.0321 (9)
H150.86830.94680.44040.039*
C160.6081 (6)0.9149 (3)0.43428 (19)0.0342 (9)
C170.5084 (5)0.8542 (2)0.45537 (19)0.0325 (8)
H170.41880.83350.43120.039*
C190.6458 (6)0.8560 (3)0.54527 (19)0.0340 (9)
H190.59340.9050.56470.041*
C200.8126 (6)0.8804 (3)0.51379 (19)0.0340 (9)
H200.85690.83010.49370.041*
C210.5765 (5)0.9404 (2)0.37354 (18)0.0327 (9)
C240.9515 (6)0.9067 (2)0.5556 (2)0.0346 (9)
H240.92090.94660.58360.042*
C251.1120 (6)0.8781 (3)0.5559 (2)0.0422 (10)
H25A1.14680.83820.52850.051*
H25B1.19340.89730.58350.051*
C270.5454 (6)0.7701 (2)0.62002 (18)0.0317 (8)
H270.43890.75880.59650.038*
C280.6060 (6)0.6926 (2)0.65071 (18)0.0315 (8)
H280.72440.7030.66740.038*
C290.4815 (6)0.6694 (3)0.69848 (19)0.0352 (9)
H290.36870.64930.68190.042*
C300.4466 (6)0.7429 (3)0.73655 (19)0.0345 (9)
H300.55760.75930.7560.041*
C310.3807 (6)0.8147 (3)0.70055 (19)0.0342 (9)
H310.27010.79890.68060.041*
C360.3520 (6)0.8925 (3)0.7348 (2)0.0392 (10)
H36A0.26510.8810.76520.047*
H36B0.46330.90790.75370.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0395 (9)0.0360 (9)0.0431 (9)0.0008 (7)0.0036 (7)0.0004 (7)
Cl10.0440 (6)0.0352 (5)0.0396 (5)0.0004 (4)0.0035 (4)0.0001 (4)
O1S0.0441 (18)0.0489 (19)0.0439 (18)0.0014 (15)0.0004 (15)0.0013 (14)
O2S0.0442 (18)0.0402 (17)0.0525 (19)0.0054 (15)0.0010 (16)0.0009 (14)
O3S0.080 (3)0.048 (2)0.076 (3)0.014 (2)0.028 (2)0.009 (2)
O180.0331 (16)0.0411 (16)0.0429 (17)0.0043 (13)0.0034 (13)0.0047 (13)
O220.0365 (16)0.0388 (15)0.0414 (16)0.0043 (13)0.0054 (13)0.0006 (13)
O230.0341 (16)0.0318 (14)0.0402 (15)0.0004 (13)0.0007 (13)0.0009 (13)
O260.0294 (14)0.0270 (13)0.0383 (15)0.0007 (12)0.0034 (12)0.0026 (11)
O320.0329 (15)0.0322 (15)0.0387 (16)0.0030 (12)0.0057 (12)0.0003 (11)
O330.0377 (16)0.0266 (14)0.0436 (16)0.0020 (12)0.0004 (13)0.0049 (12)
O340.0419 (17)0.0340 (15)0.0468 (18)0.0042 (13)0.0066 (14)0.0052 (13)
O350.0429 (18)0.0362 (16)0.0445 (18)0.0006 (14)0.0051 (15)0.0044 (13)
O370.0413 (18)0.0333 (16)0.0498 (18)0.0024 (13)0.0049 (14)0.0017 (13)
N30.0326 (18)0.0262 (16)0.045 (2)0.0001 (14)0.0020 (16)0.0024 (14)
N130.0349 (19)0.0344 (18)0.040 (2)0.0065 (15)0.0050 (15)0.0002 (15)
C10.0258 (19)0.0295 (19)0.043 (2)0.0008 (16)0.0030 (18)0.0017 (17)
C20.0262 (19)0.031 (2)0.038 (2)0.0020 (16)0.0017 (17)0.0029 (16)
C40.030 (2)0.030 (2)0.045 (2)0.0032 (17)0.0004 (18)0.0020 (17)
C50.035 (2)0.034 (2)0.045 (2)0.0038 (18)0.0022 (19)0.0007 (18)
C60.029 (2)0.029 (2)0.050 (3)0.0019 (16)0.0019 (18)0.0061 (17)
C70.030 (2)0.029 (2)0.053 (3)0.0024 (16)0.0025 (19)0.0016 (18)
C80.033 (2)0.037 (2)0.044 (2)0.0005 (17)0.0048 (18)0.0058 (18)
C90.029 (2)0.029 (2)0.046 (2)0.0039 (16)0.0023 (18)0.0007 (18)
C100.030 (2)0.0271 (19)0.044 (2)0.0006 (16)0.0029 (18)0.0020 (17)
C110.042 (2)0.028 (2)0.047 (2)0.0026 (17)0.003 (2)0.0029 (18)
C120.044 (3)0.039 (2)0.037 (2)0.0022 (19)0.0016 (19)0.0006 (18)
C140.029 (2)0.035 (2)0.041 (2)0.0003 (16)0.0002 (17)0.0068 (18)
C150.028 (2)0.028 (2)0.040 (2)0.0026 (16)0.0024 (16)0.0022 (16)
C160.0273 (19)0.036 (2)0.039 (2)0.0009 (17)0.0023 (17)0.0063 (16)
C170.0261 (19)0.0297 (19)0.042 (2)0.0042 (15)0.0004 (17)0.0005 (17)
C190.033 (2)0.030 (2)0.039 (2)0.0038 (16)0.0006 (18)0.0007 (17)
C200.031 (2)0.031 (2)0.040 (2)0.0019 (17)0.0035 (18)0.0022 (17)
C210.032 (2)0.0257 (19)0.040 (2)0.0027 (17)0.0019 (18)0.0048 (16)
C240.033 (2)0.0275 (19)0.044 (2)0.0002 (16)0.0005 (18)0.0039 (17)
C250.040 (2)0.037 (2)0.050 (3)0.000 (2)0.006 (2)0.0053 (19)
C270.031 (2)0.0268 (19)0.038 (2)0.0052 (15)0.0013 (17)0.0029 (16)
C280.031 (2)0.0260 (18)0.037 (2)0.0055 (16)0.0011 (18)0.0000 (16)
C290.034 (2)0.032 (2)0.040 (2)0.0019 (18)0.0003 (18)0.0006 (17)
C300.032 (2)0.031 (2)0.041 (2)0.0013 (16)0.0012 (18)0.0002 (17)
C310.028 (2)0.032 (2)0.042 (2)0.0034 (17)0.0014 (17)0.0016 (17)
C360.039 (2)0.039 (2)0.040 (2)0.0028 (18)0.0045 (18)0.0028 (19)
Geometric parameters (Å, º) top
Na1—O2S2.316 (4)C6—C71.404 (7)
Na1—O34i2.334 (4)C6—H60.95
Na1—O1S2.346 (4)C7—C81.369 (7)
Na1—O222.365 (4)C7—H70.95
Na1—O37ii2.426 (4)C8—C91.409 (6)
Na1—H1SA2.47 (6)C8—H80.95
O1S—H1SB0.84 (2)C9—C101.423 (6)
O1S—H1SA0.85 (2)C10—C111.495 (7)
O2S—H2SA0.84 (2)C11—C121.513 (6)
O2S—H2SB0.83 (2)C11—H11A0.99
O3S—H3SA0.85 (2)C11—H11B0.99
O3S—H3SB0.85 (2)C12—H12A0.99
O18—C171.330 (6)C12—H12B0.99
O18—C191.431 (5)C14—C151.549 (6)
O22—C211.248 (5)C14—H14A0.99
O23—C211.274 (5)C14—H14B0.99
O26—C191.398 (5)C15—C161.528 (6)
O26—C271.408 (5)C15—C201.544 (6)
O32—C271.418 (5)C15—H151
O32—C311.441 (5)C16—C171.341 (6)
O33—C281.424 (5)C16—C211.501 (6)
O33—H330.84C17—H170.95
O34—C291.431 (5)C19—C201.525 (6)
O34—H340.84C19—H191
O35—C301.420 (6)C20—C241.506 (6)
O35—H350.84C20—H201
O37—C361.408 (6)C24—C251.311 (7)
O37—H370.84C24—H240.95
N3—C21.353 (6)C25—H25A0.95
N3—C41.378 (6)C25—H25B0.95
N3—H30.88C27—C281.520 (6)
N13—C121.501 (6)C27—H271
N13—C11.509 (6)C28—C291.516 (6)
N13—H13A0.92C28—H281
N13—H13B0.92C29—C301.513 (6)
C1—C21.510 (6)C29—H291
C1—C141.518 (6)C30—C311.525 (6)
C1—H11C30—H301
C2—C101.371 (6)C31—C361.511 (6)
C4—C51.394 (7)C31—H311
C4—C91.408 (7)C36—H36A0.99
C5—C61.385 (6)C36—H36B0.99
C5—H50.95
O2S—Na1—O34i97.32 (14)N13—C12—H12B109.3
O2S—Na1—O1S97.86 (14)C11—C12—H12B109.3
O34i—Na1—O1S164.70 (14)H12A—C12—H12B108
O2S—Na1—O2294.23 (13)C1—C14—C15117.6 (4)
O34i—Na1—O2292.89 (13)C1—C14—H14A107.9
O1S—Na1—O2287.84 (13)C15—C14—H14A107.9
O2S—Na1—O37ii136.77 (14)C1—C14—H14B107.9
O34i—Na1—O37ii79.43 (13)C15—C14—H14B107.9
O1S—Na1—O37ii88.21 (14)H14A—C14—H14B107.2
O22—Na1—O37ii128.87 (13)C16—C15—C20108.6 (3)
O2S—Na1—H1SA96.7 (15)C16—C15—C14116.0 (3)
O34i—Na1—H1SA157.0 (11)C20—C15—C14110.1 (3)
O1S—Na1—H1SA20.0 (7)C16—C15—H15107.3
O22—Na1—H1SA67.9 (7)C20—C15—H15107.3
O37ii—Na1—H1SA102.3 (12)C14—C15—H15107.3
Na1—O1S—H1SB119 (5)C17—C16—C21117.4 (4)
Na1—O1S—H1SA88 (5)C17—C16—C15120.0 (4)
H1SB—O1S—H1SA113 (6)C21—C16—C15121.7 (4)
Na1—O2S—H2SA117 (4)O18—C17—C16126.5 (4)
Na1—O2S—H2SB108 (4)O18—C17—H17116.7
H2SA—O2S—H2SB105 (6)C16—C17—H17116.7
H3SA—O3S—H3SB108 (8)O26—C19—O18106.1 (3)
C17—O18—C19116.9 (3)O26—C19—C20108.9 (3)
C21—O22—Na1129.2 (3)O18—C19—C20110.6 (4)
C19—O26—C27114.9 (3)O26—C19—H19110.4
C27—O32—C31112.8 (3)O18—C19—H19110.4
C28—O33—H33109.5C20—C19—H19110.4
C29—O34—H34109.5C24—C20—C19110.3 (4)
C30—O35—H35109.5C24—C20—C15114.9 (3)
C36—O37—H37109.5C19—C20—C15109.2 (3)
C2—N3—C4108.2 (4)C24—C20—H20107.4
C2—N3—H3125.9C19—C20—H20107.4
C4—N3—H3125.9C15—C20—H20107.4
C12—N13—C1112.3 (4)O22—C21—O23122.5 (4)
C12—N13—H13A109.2O22—C21—C16119.6 (4)
C1—N13—H13A109.2O23—C21—C16117.9 (4)
C12—N13—H13B109.2C25—C24—C20124.2 (4)
C1—N13—H13B109.2C25—C24—H24117.9
H13A—N13—H13B107.9C20—C24—H24117.9
N13—C1—C2105.1 (3)C24—C25—H25A120
N13—C1—C14111.9 (3)C24—C25—H25B120
C2—C1—C14114.3 (4)H25A—C25—H25B120
N13—C1—H1108.5O26—C27—O32107.1 (3)
C2—C1—H1108.5O26—C27—C28106.1 (3)
C14—C1—H1108.5O32—C27—C28111.0 (3)
N3—C2—C10111.0 (4)O26—C27—H27110.8
N3—C2—C1125.1 (4)O32—C27—H27110.8
C10—C2—C1123.9 (4)C28—C27—H27110.8
N3—C4—C5130.9 (4)O33—C28—C29110.7 (3)
N3—C4—C9107.9 (4)O33—C28—C27108.5 (3)
C5—C4—C9121.2 (4)C29—C28—C27111.3 (3)
C6—C5—C4118.0 (5)O33—C28—H28108.8
C6—C5—H5121C29—C28—H28108.8
C4—C5—H5121C27—C28—H28108.8
C5—C6—C7121.1 (4)O34—C29—C30111.9 (4)
C5—C6—H6119.5O34—C29—C28105.8 (3)
C7—C6—H6119.5C30—C29—C28110.5 (3)
C8—C7—C6121.2 (4)O34—C29—H29109.5
C8—C7—H7119.4C30—C29—H29109.5
C6—C7—H7119.4C28—C29—H29109.5
C7—C8—C9118.8 (5)O35—C30—C29111.3 (3)
C7—C8—H8120.6O35—C30—C31108.3 (3)
C9—C8—H8120.6C29—C30—C31109.5 (4)
C4—C9—C8119.6 (4)O35—C30—H30109.2
C4—C9—C10106.9 (4)C29—C30—H30109.2
C8—C9—C10133.5 (5)C31—C30—H30109.2
C2—C10—C9106.1 (4)O32—C31—C36105.6 (4)
C2—C10—C11123.8 (4)O32—C31—C30108.2 (3)
C9—C10—C11130.1 (4)C36—C31—C30113.1 (4)
C10—C11—C12110.8 (4)O32—C31—H31110
C10—C11—H11A109.5C36—C31—H31110
C12—C11—H11A109.5C30—C31—H31110
C10—C11—H11B109.5O37—C36—C31113.7 (4)
C12—C11—H11B109.5O37—C36—H36A108.8
H11A—C11—H11B108.1C31—C36—H36A108.8
N13—C12—C11111.4 (4)O37—C36—H36B108.8
N13—C12—H12A109.3C31—C36—H36B108.8
C11—C12—H12A109.3H36A—C36—H36B107.7
O2S—Na1—O22—C2187.7 (4)C21—C16—C17—O18176.1 (4)
O34i—Na1—O22—C21174.8 (3)C15—C16—C17—O186.9 (7)
O1S—Na1—O22—C2110.1 (4)C27—O26—C19—O1864.7 (4)
O37ii—Na1—O22—C2196.0 (4)C27—O26—C19—C20176.2 (3)
C12—N13—C1—C256.5 (4)C17—O18—C19—O26158.0 (3)
C12—N13—C1—C14179.0 (4)C17—O18—C19—C2040.0 (5)
C4—N3—C2—C100.7 (5)O26—C19—C20—C2455.5 (4)
C4—N3—C2—C1178.9 (4)O18—C19—C20—C24171.7 (3)
N13—C1—C2—N3152.3 (4)O26—C19—C20—C15177.4 (3)
C14—C1—C2—N329.2 (6)O18—C19—C20—C1561.1 (4)
N13—C1—C2—C1025.6 (6)C16—C15—C20—C24171.8 (4)
C14—C1—C2—C10148.7 (4)C14—C15—C20—C2443.8 (5)
C2—N3—C4—C5178.6 (5)C16—C15—C20—C1947.2 (4)
C2—N3—C4—C90.2 (5)C14—C15—C20—C1980.8 (4)
N3—C4—C5—C6179.1 (4)Na1—O22—C21—O2311.7 (6)
C9—C4—C5—C62.2 (7)Na1—O22—C21—C16167.5 (3)
C4—C5—C6—C70.0 (7)C17—C16—C21—O2220.1 (6)
C5—C6—C7—C82.2 (7)C15—C16—C21—O22170.9 (4)
C6—C7—C8—C92.1 (7)C17—C16—C21—O23159.2 (4)
N3—C4—C9—C8178.8 (4)C15—C16—C21—O239.8 (6)
C5—C4—C9—C82.3 (7)C19—C20—C24—C25129.4 (5)
N3—C4—C9—C100.9 (5)C15—C20—C24—C25106.7 (5)
C5—C4—C9—C10178.0 (4)C19—O26—C27—O3273.1 (4)
C7—C8—C9—C40.1 (6)C19—O26—C27—C28168.4 (3)
C7—C8—C9—C10179.7 (5)C31—O32—C27—O26175.5 (3)
N3—C2—C10—C91.3 (5)C31—O32—C27—C2860.1 (4)
C1—C2—C10—C9179.5 (4)O26—C27—C28—O3369.6 (4)
N3—C2—C10—C11175.8 (4)O32—C27—C28—O33174.4 (3)
C1—C2—C10—C112.4 (7)O26—C27—C28—C29168.3 (3)
C4—C9—C10—C21.3 (5)O32—C27—C28—C2952.3 (4)
C8—C9—C10—C2178.3 (5)O33—C28—C29—O3467.4 (4)
C4—C9—C10—C11175.5 (4)C27—C28—C29—O34171.9 (3)
C8—C9—C10—C114.9 (8)O33—C28—C29—C30171.4 (3)
C2—C10—C11—C127.9 (6)C27—C28—C29—C3050.6 (5)
C9—C10—C11—C12175.8 (4)O34—C29—C30—O3567.8 (5)
C1—N13—C12—C1166.8 (5)C28—C29—C30—O35174.5 (3)
C10—C11—C12—N1337.9 (5)O34—C29—C30—C31172.5 (4)
N13—C1—C14—C1554.1 (5)C28—C29—C30—C3154.8 (5)
C2—C1—C14—C15173.4 (4)C27—O32—C31—C36174.7 (3)
C1—C14—C15—C1647.5 (5)C27—O32—C31—C3064.0 (4)
C1—C14—C15—C20171.3 (3)O35—C30—C31—O32178.3 (3)
C20—C15—C16—C1715.7 (5)C29—C30—C31—O3260.2 (4)
C14—C15—C16—C17108.9 (5)O35—C30—C31—C3661.7 (5)
C20—C15—C16—C21153.0 (4)C29—C30—C31—C36176.8 (4)
C14—C15—C16—C2182.4 (5)O32—C31—C36—O3761.2 (5)
C19—O18—C17—C165.8 (6)C30—C31—C36—O37179.3 (4)
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1/2, y+2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1S—H1SB···Cl1iii0.84 (2)2.35 (2)3.192 (4)177 (6)
O1S—H1SA···O230.85 (2)1.85 (2)2.694 (5)176 (7)
O2S—H2SA···O3Siv0.84 (2)1.90 (3)2.726 (6)165 (7)
O2S—H2SB···O35iii0.83 (2)2.00 (3)2.816 (5)167 (6)
O3S—H3SA···O1S0.85 (2)2.33 (8)2.801 (6)115 (7)
O3S—H3SB···O26v0.85 (2)2.50 (4)3.276 (5)152 (7)
O33—H33···O22iii0.841.952.711 (4)151
O34—H34···Cl10.842.423.217 (3)158
O35—H35···Cl10.842.303.134 (3)172
O37—H37···Cl1vi0.842.433.209 (4)154
N3—H3···Cl1vi0.882.443.314 (4)173
N13—H13B···O230.921.692.576 (5)160
Symmetry codes: (iii) x+1/2, y+3/2, z+1; (iv) x+1, y1/2, z+1/2; (v) x+3/2, y+2, z1/2; (vi) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Na(C26H32N2O9)(H2O)2]Cl·H2O
Mr629.02
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)7.6419 (4), 16.2205 (8), 23.4299 (12)
V3)2904.3 (3)
Z4
Radiation typeCu Kα
µ (mm1)1.89
Crystal size (mm)0.2 × 0.15 × 0.1
Data collection
DiffractometerBruker SMART APEX DUO
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.706, 0.835
No. of measured, independent and
observed [I > 2σ(I)] reflections
22917, 5062, 4390
Rint0.078
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.159, 1.14
No. of reflections5062
No. of parameters402
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.26
Absolute structureFlack (1983), 2134 Friedel pairs
Absolute structure parameter0.04 (3)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1S—H1SB···Cl1i0.84 (2)2.35 (2)3.192 (4)177 (6)
O1S—H1SA···O230.85 (2)1.85 (2)2.694 (5)176 (7)
O2S—H2SA···O3Sii0.84 (2)1.90 (3)2.726 (6)165 (7)
O2S—H2SB···O35i0.83 (2)2.00 (3)2.816 (5)167 (6)
O3S—H3SA···O1S0.85 (2)2.33 (8)2.801 (6)115 (7)
O3S—H3SB···O26iii0.85 (2)2.50 (4)3.276 (5)152 (7)
O33—H33···O22i0.841.952.711 (4)151
O34—H34···Cl10.842.423.217 (3)158
O35—H35···Cl10.842.303.134 (3)172
O37—H37···Cl1iv0.842.433.209 (4)154
N3—H3···Cl1iv0.882.443.314 (4)173
N13—H13B···O230.921.692.576 (5)160
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1, y1/2, z+1/2; (iii) x+3/2, y+2, z1/2; (iv) x+1, y+1/2, z+3/2.
Exceptional tryptoline moiety bond lengths (Å). top
Bond(I)DOJBINHOPNOQ
N3—C21.353 (6)1.389 (4)1.374 (3)
N13—C11.509 (6)1.477 (4)1.483 (3)
N13—C121.501 (6)1.487 (5)1.471 (3)
CSD codes: DOJBIN (Piper et al., 1985) and HOPNOQ (Zhang et al., 2009).
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds