Download citation
Download citation
link to html
The structure of the neutral heterometal oxide cluster dodeca­aqua-di-μ3-hydroxido-deca-μ2-hydroxido-octa­cosaoxidotetra­cobalt(II)dodeca­molybdenum(V) dodeca­hydrate, [Mo12O282-OH)103-OH)2{Co(H2O)3}4], is virtually identical to the previously reported NiII analogue [Mo12O282-OH)103-OH)2{NiII(H2O)3}4] [Müller, Beugholt, Kögerler, Bögge, Budko & Luban (2000). Inorg. Chem. 39, 5176–5177], the first mol­ecular magnet to exhibit signs of magnetostriction. The formation kinetics of the neutral cluster species, which is insoluble in water, can be significantly slowed by the use of deuterated reactants in order to grow single crystals of sufficient size for single-crystal X-ray diffraction studies using standard diffractometers. One half of the main cluster and six solvent water mol­ecules constitute the asymmetric unit. The main cluster is located on a mirror plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112006014/lg3073sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112006014/lg3073Isup2.hkl
Contains datablock I

mol

MDL mol file https://doi.org/10.1107/S0108270112006014/lg3073Isup3.mol
Supplementary material

Comment top

Magnetically functionalized polyoxomolybdates present a structurally very diverse source of molecular spin polytopes featuring a wide range of magnetic phenomena. In these species, the redox-active, otherwise diamagnetic, molybdate structures serve as scaffolds into which (currently up to 30) magnetic transition metal cations can be integrated, resulting in magnetic characteristics ranging from molecular spin frustration and spin-glass transitions (Kögerler et al., 2010) to magnetic metastability (Ritchie et al., 2008) and charge-dependent exchange coupling (Botar et al., 2009). The neutral polyoxomolybdate(V)-based cluster [Mo12O282-OH)103-OH)2{NiII(H2O)3}4] (= {Ni4Mo12}), isolated as {Ni4Mo12}.14H2O (Müller et al., 2000) represents the first molecular magnet featuring aspects of magnetostriction that were attributed to the `non-innocent' ε-Keggin polyanion serving as a superexchange pathway between the NiII centres defining a nearly regular tetrahedron (Schnack et al., 2006). In particular, both the exchange energies for the intramolecular antiferromagnetic coupling and the absorption intensities in the UV–Vis spectroscopic range depend on the external magnetic field. In order to explore these effects in more detail, isostructural derivatives with other spin centres were targeted, though their characterization was hampered by the fact that the charge-neutral {MII4Mo12} clusters (where M is Co or Fe) are barely soluble in the aqueous reaction media, resulting in their immediate precipitation as microcrystalline products.

We herein report that this problem in obtaining single crystals of the {CoIIMo12} derivative suitable for X-ray diffraction studies can be prevented by utilizing deuterated reagents (D2O, deuterated ammonium molybdate and deuterated hydrazine sulfate in our case). Apparently, the multiple condensation steps leading to the highly nucleophilic ε-Keggin polyanion [HxMoV12O40](20-x)- are slowed down significantly, so that the formation of this proposed intermediate becomes the rate-determining step for the overall reaction and thus the growth of crystals. Under otherwise identical reaction conditions, this results in crystals with dimensions that are approximately one order of magnitude larger (Fig. 1).

The {Co4Mo12} cluster was isolated as the dodecahydrate, [MoV12O302-OH)10H2{CoII(H2O)3}4].12H2O = {Co4Mo12}.12H2O. The cluster (Fig. 2) is virtually isostructural with the {Ni4Mo12} species and is of crystallographic Cs symmetry (atoms Co1, Co2, Mo4 and Mo5 define the mirror plane). {Co4Mo12} features a tenfold protonated ε-Keggin core anion, [MoV12O383-OH)2]18-, built up from four edge-sharing {Mo3} groups (each consisting of three edge-sharing MoO6 octahedra). Note that the Td-symmetric ε-Keggin structure can be formally derived from the common α-Keggin isomer by rotating all four {Mo3} groups by 60°. The ε-Keggin core comprises a central tetrahedral cavity defined by four µ3-O sites (atom O11 and its symmetry equivalents, and atoms O18 and O22), and two H atoms bind to the four µ3-O sites. This double protonation is common to all known ε-Keggin structures lacking a central heteroanion template. Within the ε-Keggin framework, the Mo positions form six MoV2 groups with short Mo—Mo single bonds, with an average Mo···Mo separation of 2.586 (5) Å, but one longer distance for Mo4···Mo5 of 2.9284 (15) Å. The Mo—Mo single bonds result in spin pairing; the analogous {MoVI4MoV12}-type tetracapped ε-Keggin cluster, in which four MoVIO3 groups assume the positions of the MII(H2O)3 groups in the {MIIMo12} family, is diamagnetic (Müller et al., 2000). Mo—Mo single bonds with Mo···Mo distances ranging from 2.6 to 3.4 Å are also found in face-sharing MoVO6 dimers present e.g. in {Mo57M6}- or {Mo132}-type polyoxomolybdates, where these {MoV2} dimers are diamagnetic as well (Müller et al., 1999; Müller et al., 2001). The assignment of the oxidation state +V to all 12 Mo positions is based on both charge neutrality arguments and the observed absence of a magnetic moment of the ε-Keggin core, although the bond-valence sum for atom Mo5 of 5.816 is closer to +VI than +V. Note that the diamagnetism of the ε-Keggin core, which rules out a paramagnetic {MoV11MoVI1} configuration, in both the title compound and the {NiII4MoV12} analogue is evident from their high-temperature susceptibility once the contributions of the four MII spin centres are subtracted.

In the title compound, {Co4Mo12}, four [CoII(H2O)3]2+ groups are each coordinated to three (non-protonated) µ2-oxide centres that interlink the Mo positions of the {MoV2} groups. This results in an octahedral O3CoII(H2O)3 coordination environment with all oxide and water ligands in trans orientations. The resulting Co—O bond lengths span very similar intervals: Co-(µ2-O) = 2.015 (7)–2.072 (5) Å and Co—OH2 = 2.027 (9)–2.118 (6) Å. This capping of the ε-Keggin core produces a near-regular Co4 tetrahedron, in which the Co centres are coupled via –O—Mo—O– superexchange pathways. The Co···Co distances range from 6.520 (2) to 6.707 (2) Å, compared with 6.606 (5)–6.700 (5) Å in {Ni4Mo12}.

In the solid-state structure of {Co4Mo12}.12H2O, the neutral cluster molecules are spaced apart by solvent water molecules (Fig. 3). The closest intermolecular Co···Co distance in the solid state is 7.162 (2) Å [Co1 to Co3(x - 1, y, z) of a neighbouring {Co4Mo12} molecule], rendering intermolecular (dipole–dipole) magnetic coupling insignificant. Preliminary magnetic studies show that the octahedrally coordinated CoII centres (4T1, S = 3/2) in {Co4Mo12} display pronounced single-ion ligand field and spin-orbit coupling effects (Speldrich et al., 2011) and are antiferromagnetically coupled. From preliminary field-dependent magnetization studies, the first-level crossing fields (i.e. steps in the magnetization versus field curve at 0.5 K) occur at 1.5 and 7.1 T. This pronounced deviation from equidistant crossing fields, also observed in {Ni4Mo12}, is an initial indication that {Co4Mo12} displays similar behaviour that could be caused by molecular magnetostriction.

Finally, we note that while the {Ni4Mo12}.14H2O compound originally reported (Müller et al., 2000) crystallizes in the space group C2/m, we found that lowering the synthesis reaction temperature to 303 K (as required for the synthesis of the title compound, {Co4Mo12}.12H2O) produces a derivative, {Ni4Mo12}.12H2O, which also crystallizes in the space group P21/m [a = 12.145 (2) Å, b = 18.188 (3) Å, c = 12.174 (2) Å and β = 93.030 (3)°] and otherwise exhibits a lattice construction identical to that of {Co4Mo12}.12H2O.

Related literature top

For related literature, see: Botar et al. (2009); Kögerler et al. (2010); Müller et al. (1999, 2000, 2001); Ritchie et al. (2008); Schnack et al. (2006); Speldrich et al. (2011).

Experimental top

Ammonium molybdate, (NH4)6[Mo7O24].4H2O (3.1 g, 2.5 mmol), and cobalt(II) acetate, Co(CH3COO)2.4H2O (11.2 g, 45 mmol) were dissolved in H2O (250 ml) and acetic acid (50%; 40 ml) in a 500 ml Erlenmeyer flask. After the formation of a clear solution, hydrazinium sulfate (650 mg, 5.0 mmol) was added in small portions under vigorous stirring (pH ca 3.5). The flask was covered with Parafilm and kept in an oil bath at 303 K for 3 d. The precipitated {Co4Mo12}.12H2O was separated from the reaction solution by decanting and washed several times with distilled water (yield 1.8 g; 69% based on Mo). Spectroscopic analysis: IR (KBr pellet, ν, cm-1): 3200 (s/br), 953 (s), 790 (m), 755 (m), 664 (w), 520 (m). Isolation of single crystals (brown plates) of sufficient size for single-crystal X-ray structure analysis required the use of D2O, deuterated acetic acid, deuterated ammonium molybdate and deuterated hydrazine sulfate. As both H2O and D2O were present in the reaction mixture, it was not possible to determine the D:H ratio in the product (note that the formation of polyoxometalates in deuterated media generally results in products with H:D ratios that significantly deviate from the stochiometric H:D ratios of the reaction solutions). For simplicity, all H/D positions were therefore designated as H.

Refinement top

During the structure solution and refinement, none of expected H atoms were observed in a difference Fourier map and, therefore, they were not included in the refinement. The Mo centres are assumed to be MoV (see Comment) and each of the four Co centres binds to three terminal water ligands. In the very centre of the ε-Keggin cluster, a small cavity is defined by a tetrahedron of four µ3-O atoms. As with all known ε-Keggin structures, two of them are expected to be protonated. To satisfy charge neutrality, the remaining ten H atoms are distributed over bridging O atoms on the cluster surface. The resulting formula and derived quantities were adjusted according to the analytical and physical properties of the compound. For this reason, the resulting formula is not in full accord with the atom list.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SMART (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2011); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Microscope image, comparing size distributions between crystalline material obtained using deuterated (left) and non-deuterated (right) educts in the synthesis of {Co4Mo12}.12H2O.
[Figure 2] Fig. 2. The structure of the {Co4Mo12} cluster, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [In the electronic version of the journal, Co atoms are green, Mo blue, µ3-O atoms defining the central O4 tetrahedron are yellow, O (water ligands) are brown and the remaining O atoms are red]. Short Mo···Mo contacts are highlighted by dashed lines. H atoms have been omitted for clarity. [Symmetry code: (i) x, 1/2 - y, z.] [Please supply a revised plot with all labels having the same size and not overlapping bonds and atoms]
[Figure 3] Fig. 3. A packing diagram for {Co4Mo12}.12H2O, viewed approximately along a, with the cell edge of one unit cell outlined. The neutral {Co4Mo12} clusters are shown in a polyhedral representation and the oxygen atoms of the solvent water solvate are drawn as small spheres. H atoms have been omitted for clarity.
dodecaaquadi-µ3-hydroxido-deca-µ2-hydroxido- octacosaoxidotetracobalt(II)dodecamolybdenum(V) dodecahydrate top
Crystal data top
[Co4Mo12O28(OH)12(H2O)12]·12H2OF(000) = 2368
Mr = 2471.48Dx = 3.097 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 956 reflections
a = 12.061 (3) Åθ = 3.6–27.7°
b = 18.151 (5) ŵ = 4.09 mm1
c = 12.129 (3) ÅT = 193 K
β = 93.403 (5)°Plate, brown
V = 2650.4 (12) Å30.20 × 0.15 × 0.06 mm
Z = 2
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
6337 independent reflections
Radiation source: fine-focus sealed tube5163 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ϕ and ω scansθmax = 28.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1615
Tmin = 0.62, Tmax = 0.76k = 2323
23238 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047H-atom parameters not defined
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0436P)2 + 27.542P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
6337 reflectionsΔρmax = 1.80 e Å3
385 parametersΔρmin = 1.58 e Å3
0 restraints
Crystal data top
[Co4Mo12O28(OH)12(H2O)12]·12H2OV = 2650.4 (12) Å3
Mr = 2471.48Z = 2
Monoclinic, P21/mMo Kα radiation
a = 12.061 (3) ŵ = 4.09 mm1
b = 18.151 (5) ÅT = 193 K
c = 12.129 (3) Å0.20 × 0.15 × 0.06 mm
β = 93.403 (5)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
6337 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5163 reflections with I > 2σ(I)
Tmin = 0.62, Tmax = 0.76Rint = 0.051
23238 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.113H-atom parameters not defined
S = 1.12 w = 1/[σ2(Fo2) + (0.0436P)2 + 27.542P]
where P = (Fo2 + 2Fc2)/3
6337 reflectionsΔρmax = 1.80 e Å3
385 parametersΔρmin = 1.58 e Å3
Special details top

Experimental. An X-ray quality crystal was selected under ambient conditions and covered with Paratone oil. The crystal was mounted and centred in the X-ray beam using a video camera.The crystal evaluation and data collection were performed on a Bruker SMART1000 CCD diffractometer with a detector-to-crystal distance of 5 cm. The initial cell parameters were obtained from three series of ω scans at different starting angles. Each series consisted of 30 frames collected at intervals of 0.3 in a 10 range about ω with the exposure time of 10 s per frame. The obtained reflections were successfully indexed by an automated indexing routine built to SMART (Bruker, 2003).

The data were collected using the full sphere routine by collecting four sets of frames with 0.3 scans in ω with an exposure time 30 sec per frame. This data set was corrected for Lorentz and polarization effects. The absorption correction was based on a fit of a spherical harmonic function to the empirical transmission surface as sampled by multiple equivalent measurements using SADABS (Sheldrick, 1996).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The splitting model was tried for all oxygen atoms of the coordinated and solvent water molecules. This approach did not lead to an improvement of the refinement, therefore the original model was used for final outputs.

The systematic absences in the diffraction data were consistent for the stated space group. The position of almost all atoms were found by direct methods. The remaining atoms were located in an alternating series of least-squares cycles on difference Fourier maps. All non-hydrogen atoms were refined in full-matrix anisotropic approximation.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.06085 (5)0.32114 (3)0.47739 (5)0.01059 (14)
Mo20.35913 (5)0.34625 (3)0.41800 (5)0.00958 (13)
Mo30.03327 (5)0.41679 (3)0.24242 (5)0.01033 (14)
Mo40.21968 (8)0.25000.01241 (8)0.0158 (2)
Mo50.39867 (8)0.25000.18646 (8)0.01441 (19)
Mo60.17395 (5)0.41428 (3)0.44272 (5)0.00948 (13)
Mo70.01087 (5)0.34683 (3)0.05879 (5)0.01041 (13)
Co10.21395 (11)0.25000.22494 (11)0.0105 (3)
Co20.19486 (11)0.25000.62470 (11)0.0086 (3)
Co30.25794 (8)0.42960 (5)0.15337 (8)0.0100 (2)
O10.2171 (5)0.5380 (3)0.2013 (5)0.0211 (12)
O20.2505 (5)0.4660 (3)0.0089 (5)0.0252 (13)
O30.4523 (4)0.3264 (3)0.2855 (4)0.0133 (10)
O40.2674 (4)0.4076 (3)0.3172 (4)0.0120 (10)
O50.4213 (5)0.4591 (4)0.1542 (6)0.0301 (14)
O60.2249 (5)0.4881 (3)0.5160 (4)0.0178 (11)
O70.0696 (4)0.4869 (3)0.3451 (4)0.0130 (10)
O80.2409 (4)0.3299 (3)0.5184 (4)0.0118 (10)
O90.0420 (6)0.25000.5481 (6)0.0124 (14)
O100.0453 (4)0.4041 (3)0.5539 (4)0.0136 (10)
O110.0549 (4)0.3470 (3)0.3612 (4)0.0112 (10)
O120.1399 (4)0.4016 (3)0.3723 (4)0.0138 (10)
O130.1356 (6)0.25000.3777 (6)0.0129 (14)
O140.1083 (4)0.3301 (3)0.1787 (4)0.0144 (10)
O150.0919 (4)0.4083 (3)0.1476 (4)0.0132 (10)
O160.0829 (4)0.4020 (3)0.0315 (4)0.0185 (12)
O170.0831 (6)0.25000.0113 (6)0.0136 (15)
O180.0772 (6)0.25000.1336 (6)0.0122 (14)
O190.1199 (4)0.3270 (3)0.0374 (4)0.0146 (11)
O200.3054 (7)0.25000.0931 (6)0.0178 (16)
O210.2925 (4)0.3208 (3)0.1169 (4)0.0142 (10)
O220.2817 (6)0.25000.3298 (6)0.0103 (14)
O230.4315 (6)0.25000.4884 (6)0.0139 (15)
O240.1484 (5)0.3340 (3)0.7295 (4)0.0213 (12)
O250.3529 (7)0.25000.6917 (7)0.0268 (19)
O260.1531 (5)0.3389 (3)0.5743 (5)0.0194 (12)
O270.3206 (5)0.3331 (3)0.2677 (6)0.0307 (15)
O280.2822 (7)0.25000.0665 (8)0.042 (3)
O290.1070 (5)0.4907 (3)0.1948 (5)0.0210 (12)
O300.5006 (6)0.25000.0981 (7)0.0192 (17)
O310.4517 (5)0.4019 (3)0.4855 (5)0.0199 (12)
O320.102 (2)0.75000.2278 (11)0.136 (9)
O330.6466 (9)0.25000.5135 (14)0.076 (4)
O340.6129 (8)0.4095 (5)0.0460 (9)0.068 (3)
O350.3731 (8)0.6185 (6)0.3288 (8)0.064 (3)
O360.3382 (8)0.4047 (5)0.8120 (8)0.062 (2)
O370.5721 (11)0.4928 (7)0.3216 (8)0.105 (5)
O380.5343 (9)0.3274 (6)0.8615 (9)0.077 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.0154 (3)0.0072 (3)0.0093 (3)0.0005 (2)0.0022 (2)0.0007 (2)
Mo20.0135 (3)0.0071 (3)0.0081 (3)0.0001 (2)0.0001 (2)0.0001 (2)
Mo30.0140 (3)0.0078 (3)0.0091 (3)0.0017 (2)0.0004 (2)0.0004 (2)
Mo40.0241 (5)0.0110 (4)0.0133 (5)0.0000.0100 (4)0.000
Mo50.0188 (5)0.0097 (4)0.0158 (5)0.0000.0090 (4)0.000
Mo60.0150 (3)0.0058 (3)0.0076 (3)0.0015 (2)0.0012 (2)0.0007 (2)
Mo70.0140 (3)0.0093 (3)0.0078 (3)0.0011 (2)0.0002 (2)0.0015 (2)
Co10.0086 (6)0.0109 (6)0.0119 (7)0.0000.0004 (5)0.000
Co20.0136 (7)0.0067 (6)0.0055 (6)0.0000.0012 (5)0.000
Co30.0134 (5)0.0103 (4)0.0064 (4)0.0011 (4)0.0002 (3)0.0028 (3)
O10.029 (3)0.013 (3)0.021 (3)0.001 (2)0.001 (2)0.002 (2)
O20.029 (3)0.029 (3)0.017 (3)0.002 (3)0.000 (2)0.009 (2)
O30.017 (3)0.016 (2)0.007 (2)0.001 (2)0.0022 (19)0.000 (2)
O40.016 (3)0.010 (2)0.010 (2)0.0030 (19)0.002 (2)0.0006 (19)
O50.021 (3)0.032 (3)0.038 (4)0.004 (3)0.005 (3)0.002 (3)
O60.024 (3)0.010 (2)0.018 (3)0.000 (2)0.002 (2)0.006 (2)
O70.018 (3)0.009 (2)0.012 (3)0.003 (2)0.002 (2)0.000 (2)
O80.016 (3)0.011 (2)0.009 (2)0.002 (2)0.0020 (19)0.0004 (19)
O90.016 (4)0.010 (3)0.011 (4)0.0000.004 (3)0.000
O100.019 (3)0.009 (2)0.013 (3)0.002 (2)0.005 (2)0.004 (2)
O110.017 (3)0.010 (2)0.007 (2)0.0004 (19)0.0024 (19)0.0007 (19)
O120.014 (3)0.012 (2)0.016 (3)0.004 (2)0.005 (2)0.002 (2)
O130.009 (3)0.012 (3)0.017 (4)0.0000.003 (3)0.000
O140.015 (3)0.014 (2)0.014 (3)0.004 (2)0.002 (2)0.004 (2)
O150.019 (3)0.012 (2)0.009 (2)0.000 (2)0.003 (2)0.004 (2)
O160.019 (3)0.020 (3)0.016 (3)0.006 (2)0.004 (2)0.004 (2)
O170.020 (4)0.015 (4)0.006 (3)0.0000.002 (3)0.000
O180.015 (4)0.011 (3)0.010 (3)0.0000.001 (3)0.000
O190.018 (3)0.013 (2)0.013 (3)0.002 (2)0.000 (2)0.003 (2)
O200.024 (4)0.014 (4)0.016 (4)0.0000.009 (3)0.000
O210.015 (3)0.022 (3)0.005 (2)0.000 (2)0.0009 (19)0.004 (2)
O220.018 (4)0.006 (3)0.007 (3)0.0000.002 (3)0.000
O230.018 (4)0.010 (3)0.013 (4)0.0000.001 (3)0.000
O240.036 (3)0.019 (3)0.009 (3)0.006 (2)0.006 (2)0.002 (2)
O250.025 (5)0.043 (5)0.012 (4)0.0000.000 (3)0.000
O260.027 (3)0.014 (3)0.017 (3)0.002 (2)0.009 (2)0.001 (2)
O270.017 (3)0.024 (3)0.051 (4)0.005 (2)0.003 (3)0.011 (3)
O280.016 (4)0.090 (9)0.019 (5)0.0000.002 (4)0.000
O290.023 (3)0.016 (3)0.024 (3)0.005 (2)0.000 (2)0.000 (2)
O300.020 (4)0.017 (4)0.021 (4)0.0000.011 (3)0.000
O310.018 (3)0.019 (3)0.022 (3)0.003 (2)0.003 (2)0.001 (2)
O320.30 (3)0.097 (13)0.013 (6)0.0000.003 (11)0.000
O330.026 (6)0.075 (9)0.126 (13)0.0000.009 (7)0.000
O340.073 (6)0.048 (5)0.089 (7)0.001 (5)0.035 (5)0.007 (5)
O350.057 (6)0.074 (6)0.062 (6)0.012 (5)0.002 (5)0.004 (5)
O360.076 (6)0.044 (5)0.068 (6)0.018 (4)0.011 (5)0.006 (4)
O370.146 (11)0.126 (11)0.041 (6)0.073 (9)0.015 (6)0.003 (6)
O380.088 (7)0.068 (6)0.078 (7)0.016 (6)0.033 (6)0.003 (5)
Geometric parameters (Å, º) top
Mo1—O261.697 (5)Mo6—O81.937 (5)
Mo1—O131.953 (5)Mo6—O41.951 (5)
Mo1—O91.953 (5)Mo6—O112.088 (5)
Mo1—O112.095 (5)Mo6—O102.123 (5)
Mo1—O122.126 (5)Mo6—O72.132 (5)
Mo1—O102.152 (5)Mo7—O161.687 (5)
Mo1—Mo1i2.5826 (14)Mo7—O151.945 (5)
Mo2—O311.682 (5)Mo7—O141.947 (5)
Mo2—O41.949 (5)Mo7—O192.049 (5)
Mo2—O81.952 (5)Mo7—O172.117 (4)
Mo2—O32.047 (5)Mo7—O182.220 (4)
Mo2—O232.111 (4)Co1—O132.029 (7)
Mo2—O222.225 (4)Co1—O14i2.034 (5)
Mo2—Mo62.5849 (10)Co1—O142.034 (5)
Mo3—O291.692 (5)Co1—O282.045 (9)
Mo3—O141.951 (5)Co1—O27i2.069 (6)
Mo3—O151.957 (5)Co1—O272.069 (6)
Mo3—O122.110 (5)Co2—O92.015 (7)
Mo3—O72.127 (5)Co2—O252.027 (9)
Mo3—O112.152 (5)Co2—O8i2.039 (5)
Mo3—Mo72.5917 (10)Co2—O82.039 (5)
Mo4—O201.692 (7)Co2—O242.082 (5)
Mo4—O191.918 (5)Co2—O24i2.082 (5)
Mo4—O19i1.918 (5)Co3—O42.023 (5)
Mo4—O211.973 (5)Co3—O152.037 (5)
Mo4—O21i1.973 (5)Co3—O52.042 (6)
Mo4—O182.326 (7)Co3—O212.072 (5)
Mo4—Mo52.9284 (15)Co3—O22.073 (6)
Mo5—O301.678 (7)Co3—O12.118 (6)
Mo5—O3i1.921 (5)O9—Mo1i1.953 (5)
Mo5—O31.921 (5)O13—Mo1i1.953 (5)
Mo5—O211.969 (5)O17—Mo7i2.117 (4)
Mo5—O21i1.969 (5)O18—Mo7i2.220 (4)
Mo5—O222.303 (7)O22—Mo2i2.225 (4)
Mo6—O61.703 (5)O23—Mo2i2.111 (4)
O26—Mo1—O13104.9 (3)O6—Mo6—O789.2 (2)
O26—Mo1—O9104.3 (3)O8—Mo6—O7165.4 (2)
O13—Mo1—O995.3 (2)O4—Mo6—O787.4 (2)
O26—Mo1—O11156.0 (2)O11—Mo6—O774.44 (19)
O13—Mo1—O1191.9 (3)O10—Mo6—O788.7 (2)
O9—Mo1—O1190.7 (2)O6—Mo6—Mo298.58 (19)
O26—Mo1—O1289.7 (2)O8—Mo6—Mo248.59 (15)
O13—Mo1—O1284.8 (2)O4—Mo6—Mo248.44 (14)
O9—Mo1—O12165.4 (2)O11—Mo6—Mo2103.91 (14)
O11—Mo1—O1274.69 (19)O10—Mo6—Mo2134.52 (14)
O26—Mo1—O1088.0 (2)O7—Mo6—Mo2135.76 (14)
O13—Mo1—O10166.2 (3)O16—Mo7—O15107.8 (2)
O9—Mo1—O1085.8 (2)O16—Mo7—O14105.5 (2)
O11—Mo1—O1074.31 (19)O15—Mo7—O1493.9 (2)
O12—Mo1—O1090.7 (2)O16—Mo7—O1996.8 (2)
O26—Mo1—Mo1i100.97 (18)O15—Mo7—O1986.0 (2)
O13—Mo1—Mo1i48.61 (14)O14—Mo7—O19156.5 (2)
O9—Mo1—Mo1i48.62 (14)O16—Mo7—O1792.8 (2)
O11—Mo1—Mo1i102.96 (13)O15—Mo7—O17158.7 (2)
O12—Mo1—Mo1i133.38 (14)O14—Mo7—O1785.3 (2)
O10—Mo1—Mo1i134.44 (14)O19—Mo7—O1786.4 (2)
O31—Mo2—O4107.3 (2)O16—Mo7—O18162.1 (2)
O31—Mo2—O8106.0 (2)O15—Mo7—O1887.3 (2)
O4—Mo2—O894.0 (2)O14—Mo7—O1882.4 (2)
O31—Mo2—O396.3 (2)O19—Mo7—O1874.2 (2)
O4—Mo2—O385.7 (2)O17—Mo7—O1871.5 (2)
O8—Mo2—O3156.7 (2)O16—Mo7—Mo3101.01 (19)
O31—Mo2—O2393.1 (3)O15—Mo7—Mo348.57 (15)
O4—Mo2—O23158.8 (2)O14—Mo7—Mo348.40 (15)
O8—Mo2—O2385.5 (2)O19—Mo7—Mo3134.30 (15)
O3—Mo2—O2386.5 (2)O17—Mo7—Mo3133.66 (19)
O31—Mo2—O22162.4 (3)O18—Mo7—Mo396.22 (17)
O4—Mo2—O2286.6 (2)O13—Co1—O14i89.2 (2)
O8—Mo2—O2283.0 (2)O13—Co1—O1489.2 (2)
O3—Mo2—O2273.6 (2)O14i—Co1—O1491.3 (3)
O23—Mo2—O2272.3 (2)O13—Co1—O28176.0 (3)
O31—Mo2—Mo6102.08 (19)O14i—Co1—O2888.0 (2)
O4—Mo2—Mo648.53 (15)O14—Co1—O2888.0 (2)
O8—Mo2—Mo648.11 (14)O13—Co1—O27i91.9 (2)
O3—Mo2—Mo6133.92 (14)O14i—Co1—O27i87.5 (2)
O23—Mo2—Mo6133.5 (2)O14—Co1—O27i178.3 (3)
O22—Mo2—Mo695.15 (17)O28—Co1—O27i90.8 (3)
O29—Mo3—O14106.4 (2)O13—Co1—O2791.9 (2)
O29—Mo3—O15105.7 (2)O14i—Co1—O27178.3 (3)
O14—Mo3—O1593.4 (2)O14—Co1—O2787.5 (2)
O29—Mo3—O1291.6 (2)O28—Co1—O2790.8 (3)
O14—Mo3—O1284.4 (2)O27i—Co1—O2793.7 (4)
O15—Mo3—O12162.5 (2)O9—Co2—O25176.2 (3)
O29—Mo3—O790.1 (2)O9—Co2—O8i89.1 (2)
O14—Mo3—O7162.7 (2)O25—Co2—O8i88.2 (2)
O15—Mo3—O787.0 (2)O9—Co2—O889.1 (2)
O12—Mo3—O790.1 (2)O25—Co2—O888.2 (2)
O29—Mo3—O11157.5 (2)O8i—Co2—O890.6 (3)
O14—Mo3—O1189.5 (2)O9—Co2—O2490.5 (2)
O15—Mo3—O1188.8 (2)O25—Co2—O2492.0 (2)
O12—Mo3—O1173.86 (19)O8i—Co2—O24178.2 (2)
O7—Mo3—O1173.25 (19)O8—Co2—O2487.6 (2)
O29—Mo3—Mo7100.1 (2)O9—Co2—O24i90.5 (2)
O14—Mo3—Mo748.25 (15)O25—Co2—O24i92.0 (2)
O15—Mo3—Mo748.17 (15)O8i—Co2—O24i87.6 (2)
O12—Mo3—Mo7132.61 (14)O8—Co2—O24i178.2 (2)
O7—Mo3—Mo7135.17 (14)O24—Co2—O24i94.1 (3)
O11—Mo3—Mo7102.40 (13)O4—Co3—O1589.7 (2)
O20—Mo4—O1999.3 (2)O4—Co3—O592.8 (2)
O20—Mo4—O19i99.3 (2)O15—Co3—O5175.5 (2)
O19—Mo4—O19i93.5 (3)O4—Co3—O2191.23 (19)
O20—Mo4—O21102.5 (3)O15—Co3—O2191.2 (2)
O19—Mo4—O2188.5 (2)O5—Co3—O2192.6 (2)
O19i—Mo4—O21157.4 (2)O4—Co3—O2172.8 (2)
O20—Mo4—O21i102.5 (3)O15—Co3—O292.4 (2)
O19—Mo4—O21i157.4 (2)O5—Co3—O284.8 (3)
O19i—Mo4—O21i88.5 (2)O21—Co3—O295.7 (2)
O21—Mo4—O21i81.2 (3)O4—Co3—O185.1 (2)
O20—Mo4—O18170.1 (3)O15—Co3—O186.7 (2)
O19—Mo4—O1874.10 (19)O5—Co3—O189.7 (2)
O19i—Mo4—O1874.10 (19)O21—Co3—O1175.7 (2)
O21—Mo4—O1884.9 (2)O2—Co3—O188.1 (2)
O21i—Mo4—O1884.9 (2)Mo5—O3—Mo2116.0 (3)
O20—Mo4—Mo595.0 (3)Mo2—O4—Mo683.02 (19)
O19—Mo4—Mo5130.45 (16)Mo2—O4—Co3136.5 (3)
O19i—Mo4—Mo5130.45 (16)Mo6—O4—Co3138.8 (3)
O21—Mo4—Mo541.96 (15)Mo3—O7—Mo6105.1 (2)
O21i—Mo4—Mo541.96 (15)Mo6—O8—Mo283.30 (19)
O18—Mo4—Mo594.87 (18)Mo6—O8—Co2137.8 (3)
O30—Mo5—O3i99.6 (2)Mo2—O8—Co2137.7 (3)
O30—Mo5—O399.6 (2)Mo1—O9—Mo1i82.8 (3)
O3i—Mo5—O392.3 (3)Mo1—O9—Co2137.93 (15)
O30—Mo5—O21102.1 (3)Mo1i—O9—Co2137.93 (15)
O3i—Mo5—O21157.7 (2)Mo6—O10—Mo1103.0 (2)
O3—Mo5—O2189.1 (2)Mo6—O11—Mo1106.3 (2)
O30—Mo5—O21i102.1 (3)Mo6—O11—Mo3105.8 (2)
O3i—Mo5—O21i89.1 (2)Mo1—O11—Mo3105.0 (2)
O3—Mo5—O21i157.7 (2)Mo3—O12—Mo1105.4 (2)
O21—Mo5—O21i81.5 (3)Mo1i—O13—Mo182.8 (3)
O30—Mo5—O22170.7 (3)Mo1i—O13—Co1137.58 (16)
O3i—Mo5—O2274.13 (19)Mo1—O13—Co1137.58 (16)
O3—Mo5—O2274.13 (19)Mo7—O14—Mo383.3 (2)
O21—Mo5—O2284.9 (2)Mo7—O14—Co1137.1 (3)
O21i—Mo5—O2284.9 (2)Mo3—O14—Co1138.6 (3)
O30—Mo5—Mo494.4 (3)Mo7—O15—Mo383.3 (2)
O3i—Mo5—Mo4131.09 (15)Mo7—O15—Co3136.1 (3)
O3—Mo5—Mo4131.09 (15)Mo3—O15—Co3139.1 (3)
O21—Mo5—Mo442.09 (15)Mo7i—O17—Mo7112.2 (3)
O21i—Mo5—Mo442.09 (15)Mo7i—O18—Mo7104.7 (3)
O22—Mo5—Mo494.90 (18)Mo7i—O18—Mo495.5 (2)
O6—Mo6—O8104.3 (2)Mo7—O18—Mo495.5 (2)
O6—Mo6—O4104.4 (2)Mo4—O19—Mo7116.0 (2)
O8—Mo6—O494.4 (2)Mo5—O21—Mo495.9 (2)
O6—Mo6—O11157.5 (2)Mo5—O21—Co3131.6 (3)
O8—Mo6—O1191.0 (2)Mo4—O21—Co3132.1 (3)
O4—Mo6—O1190.4 (2)Mo2i—O22—Mo2103.5 (3)
O6—Mo6—O1089.5 (2)Mo2i—O22—Mo596.0 (2)
O8—Mo6—O1086.0 (2)Mo2—O22—Mo596.0 (2)
O4—Mo6—O10165.5 (2)Mo2i—O23—Mo2111.7 (3)
O11—Mo6—O1075.06 (19)
Symmetry code: (i) x, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Co4Mo12O28(OH)12(H2O)12]·12H2O
Mr2471.48
Crystal system, space groupMonoclinic, P21/m
Temperature (K)193
a, b, c (Å)12.061 (3), 18.151 (5), 12.129 (3)
β (°) 93.403 (5)
V3)2650.4 (12)
Z2
Radiation typeMo Kα
µ (mm1)4.09
Crystal size (mm)0.20 × 0.15 × 0.06
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.62, 0.76
No. of measured, independent and
observed [I > 2σ(I)] reflections
23238, 6337, 5163
Rint0.051
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.113, 1.12
No. of reflections6337
No. of parameters385
H-atom treatmentH-atom parameters not defined
w = 1/[σ2(Fo2) + (0.0436P)2 + 27.542P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.80, 1.58

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2011), SHELXTL (Sheldrick, 2008).

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds