Download citation
Download citation
link to html
The crystal structure of ammonium rubidium nona­oxotetra­tellurate(IV) dihydrate has been studied as a function of pressure up to 7.40 GPa. The ambient-pressure structure is characterized by the co-existence of three different Te-O polyhedra (TeO3, TeO4 and TeO5), which are connected to form layers. NH4+, H2O and Rb+ are incorporated between the layers. Both the Rb1 position, which is located on a twofold axis, and the Rb2 position are partially occupied. The three different types of coordination polyhedra around Te4+ are stable up to at least 5.05 GPa. No phase transition is observed. The fit of the unit-cell volume as a function of pressure gives a zero-pressure bulk modulus of 34 (1) GPa with a zero-pressure volume of V0 = 2620 (4) Å3 [B' = 1.4 (2)].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111025728/lg3063sup1.cif
Contains datablocks global, I_ambient, I_1.13GPa, I_2.52GPa, I_3.45GPa, I_5.05GPa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111025728/lg3063I_ambientsup2.hkl
Contains datablock I_ambient

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111025728/lg3063I_1.13GPasup3.hkl
Contains datablock I_1.13GPa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111025728/lg3063I_2.52GPasup4.hkl
Contains datablock I_2.52GPa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111025728/lg3063I_3.45GPasup5.hkl
Contains datablock I_3.45GPa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111025728/lg3063I_5.05GPasup6.hkl
Contains datablock I_5.05GPa

Comment top

The high-pressure behaviour of compounds with elements containing lone-pair electrons is far from uniform (Grzechnik, 2007). While in some compounds the application of pressure leads to phase transitions in which the coordination number around the lone-pair cation is increased, e.g. in Bi2Ga4O9 (Friedrich et al., 2010), BiB3O6 (Dinnebier et al., 2009) or PbS (Grzechnik & Friese, 2010a), in others first-order phase transitions with breaking of bonds are observed, e.g. lilianite, Pb3Bi2S6 (Olsen et al., 2008), and heyrovskyite, Pb6Bi2S9 (Olsen et al., 2011). Pressure-induced amorphization is also observed in compounds containing lone-electron pairs, e.g. in Bi4M3O12 compounds with M = Si, Ge or Ti (Arora et al., 2004; Meng et al., 1998; Grzechnik, 2009), in Tl2CO3 (Grzechnik & Friese, 2008, 2010b) or in Tl2MoO4 (Machon et al., 2010).

At atmospheric pressure, the coordination numbers (CN) of Te4+ cations in oxides range from 3 to 7 (Marukhnov et al., 2007). The higher the CN the more the stereoactivity of the lone pair is supressed. To the best of our knowledge, only two compounds containing Te4+ have been studied under high pressure: TlTeVO5 (Grzechnik et al., 2009) and (NH4)2WTe2O8 (Grzechnik et al., 2010). With increasing pressure, the CN of Te4+ in TlTeVO5 is increased from 4 at ambient pressure to 5 at higher pressures, and thus follows the trend observed for many other compounds with lone-electron pairs. For (NH4)2WTe2O8, on the other hand, the behaviour with increasing pressure is rather unusual. In the ambient-pressure structure, two distinct Te4+ sites are present, both of them being fourfold coordinated by oxygen (Kim et al., 2007). Surprisingly, at high pressure (5.09 GPa) the CN of one of the Te4+ sites is reduced from 3 to 4, resulting in two different coordination polyhedra for the two symmetrically independent Te4+ sites (Grzechnik et al., 2010). This seems to be the only known case where the CN around a lone-pair element is decreased with increasing pressure, indicating an increase in the stereoactivity of the lone pair at higher pressures.

The compound studied here, NH4RbTe4O9.2H2O, is exceptional, as three different coordination polyhedra around Te4+ exist simultaneously at ambient pressure, namely TeO3, TeO4 and TeO5 (Fig. 1). The three polyhedra are connected to form [Te4O9]2- layers in the ab plane (Fig. 2). NH4+ and Rb+ cations are incorporated between the layers and provide the necessary charge balance and, in addition, water molecules are located between the layers (Kim & Halasyamani, 2008). Given the unusual behaviour of (NH4)2WTe2O8 under pressure and the unique structure of NH4RbTe4O9.2H2O characterized by the coexistence of three different coordination polyhedra around Te4+, we thought it would be worthwhile to carry out a high-pressure study of this compound.

Measurements at ambient pressure using laboratory equipment on crystals coming from the same batch as those investigated earlier by Kim & Halasyamani (2008) confirm the previous structure determination (see Fig. 1). However, in the earlier structure determination the Rb1 position, located on a two-fold axis, is fully occupied and the Rb2 position, located on a general position, is only half occupied, whereas our refinement of the occupation factors indicates that both Rb positions are partially occupied. In addition, in the earlier publication the N position could be approximated by a single position, while our data are best approximated assuming two atomic positions, both of them with an occupancy of 0.5. Refinement of the data at higher pressures does not lead to significantly different occupation factors for Rb+ and NH4+. Only at the highest pressure at which structure refinement was carried out (5.05 GPa) is the N position better approximated by a single position.

Our studies based on synchrotron data show that the compound is stable up to at least 5.05 GPa, and there are no indications of a structural phase transition (Fig. 3). At 7.40 GPa, only lattice parameters could be extracted from the experiment, which nevertheless provided no evidence for the presence of a phase transition. The unit-cell volume could be fitted with a Murnaghan equation of state with a zero-pressure bulk modulus B0 = 34 (1) GPa and a zero-pressure volume V0 = 2620 (4) Å3 [B' = 1.4 (2)]. The bulk compressibility can be nearly entirely attributed to changes in the [Te4O9]2- interlayer distance. A comparison with other compounds containing elements with lone-pair electrons shows that the high compressibility of the title compound is comparable with that of TlTeVO5 [32 (1) GPa; Grzechnik et al., 2009], which contains both Tl+ and Te4+ cations, or with the compressibilites of Tl+-containing compounds, e.g. Tl2MoO4 (B0 = 24.6; Machon et al., 2010) or Tl2SeO4 [B0 = 29 (1); Grzechnik et al., 2008].

At ambient pressure, atom Te1 is coordinated by three O atoms, atoms Te2 and Te4 by four O atoms, and atom Te3 by five O atoms (Table 1). The shapes of the coordination polyhedra around the three symmetrically independent Te ions, as well as the average Te—O distances, do not change substantially with increasing pressure (Fig. 2, Table 1), although a detailed comparison is difficult as the estimated errors in the Te—O distances are very large for the high-pressure data. This is a consequence of the limited availibility of data, due to the restricted access to reciprocal space in the diamond anvil cell experiment, which in combination with the relatively large unit cell and the low symmetry of the compound leads to a low data-to-parameter ratio. All these observations suggest that the application of pressure has no pronounced influence on the stereochemical activity of the lone-pair electrons in NH4RbTe4O9.2H2O.

Related literature top

For related literature, see: Arora et al. (2004); Boehler (2006); Dinnebier et al. (2009); Friedrich et al. (2010); Friese et al. (2009); Grzechnik (2007, 2009); Grzechnik & Friese (2008, 2010a, 2010b); Grzechnik et al. (2010); Grzechnik, Breczewski & Friese (2008); Grzechnik, Halasyamani, Chang & Friese (2009); Kabsch (2010); Kim & Halasyamani (2008); Kim et al. (2007); Machon et al. (2010); Mao et al. (1986); Marukhnov et al. (2007); Meng et al. (1998); Olsen et al. (2008, 2011); Petříček et al. (2006); Posse et al. (2011); Stoe & Cie (2005, 2006).

Experimental top

The crystals were synthesized according to the method described by Kim & Halasyamani (2008). Ambient-pressure data were measured on a crystal mounted on a glass pin on a Stoe IPDS 2T diffractometer and integrated using the X-AREA program (Stoe & Cie, 2006). A series of other crystals were tested on the same diffractometer and the best one was chosen for the high-pressure experiments. High-pressure data were collected at 1.13, 2.52, 3.45, 5.05 and 7.40 GPa in an Almax-type diamond anvil cell (Boehler, 2006) at room temperature on beamline D3 of the DORIS III storage ring at DESY at a wavelength of 0.3978 Å. A 0.250 mm hole was drilled into a stainless steel gasket preindented to a thickness of about 0.120 mm. A 1:1 mixture of pentane and isopentane was used as the pressure medium. The ruby luminescence method (Mao et al., 1986) was used for pressure calibration. For the high-pressure measurements up to 5.05 GPa, the intensities were indexed and integrated using the program XDS (Kabsch, 2010). Further data treatment was carried out according to the procedures described by Posse et al. (2011). Reflections affected by overlap with diamond reflections or strong gasket rings were identified according to the criteria described by Friese et al. (2009). The faces of the crystals were optimized using the program X-SHAPE (Stoe & Cie, 2005) and a numerical absorption correction was applied with the program JANA2006 (Petříček et al., 2006). The data at 7.40 GPa were not of sufficient quality for structure refinement, although lattice parameters could still be extracted.

Refinement top

Coordinates from Kim & Halasyamani (2008) were used as a starting model. Correction factors for resonant scattering were taken from the DABAX library (https://www.esrf.eu/UsersAndScience/Experiments/TBS/SciSoft/xop2.3/Main). For the refinement at ambient pressure, all atoms were treated anisotropically. Occupancies for the Rb positions were refined, but restrained to give a full occupancy per formula unit. For nitrogen, the assumption of one single position as in Kim & Halasyamani (2008) led to very large displacement parameters. Therefore, split atom positions were introduced. Refinement of occupation factors led to an equal occupancy for both positions and these were fixed to 0.5 in the final refinement cycles. As only some of the H atoms could be located in the difference Fourier maps, H atoms were not included in the model.

For the high-pressure data, measured at the synchrotron, Te ions were refined anisotropically, and Rb, O and N were refined isotropically. Occupation factors for Rb and N were fixed at the ambient-pressure values for all pressures, as trial refinements showed no significant deviations. The displacement parameters of the O atoms forming the coordination polyhedra of Te were restrained to be equal, as were those of the two water O atoms (O10 and O11).

The relatively large positive and negative residual densities for the high-pressure data can be explained by the experimental set up, so not all parts of reciprocal space were accessible. The high-pressure data are also affected by larger experimental errors than the ambient-pressure data. This might lead to artefacts in the electron density. Difference density maxima/distances from closest atom sites: ambient: 0.403 Å from Rb1; 1.13 GPa: 0.481 Å from Rb1; 2.52 GPa: 0.552 Å from Rb1; 3.45 GPa: 0.700 Å from Rb2; 5.05 GPa: 1.48Å from O11. Difference density minima/distances from closest atom sites: ambient: 1.544 Å from Te1; 1.13 GPa: 1.480 Å from Te1; 2.52 GPa: 1.420 Å from Te1; 3.45 GPa: 1.64 Å from O2; 5.05 GPa: 1.60 Å from O11.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2006) for I_ambient; Automar (Marresearch, 2009) for I_1.13GPa, I_2.52GPa, I_3.45GPa, I_5.05GPa. Cell refinement: X-AREA (Stoe & Cie, 2006) for I_ambient; XDS (Kabsch, 2010) for I_1.13GPa, I_2.52GPa, I_3.45GPa, I_5.05GPa. Data reduction: X-AREA (Stoe & Cie, 2006) and JANA2006 (Petříček et al., 2006) for I_ambient; XDS (Kabsch, 2010) and JANA2006 (Petříček et al., 2006) for I_1.13GPa, I_2.52GPa, I_3.45GPa, I_5.05GPa. For all compounds, program(s) used to solve structure: coordinates from Kim & Halasyamani (2008); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: ATOMS (Dowty, 1999); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).

Figures top
[Figure 1] Fig. 1. The atom-numbering scheme for the title compound, with atomic displacement ellipsoids drawn at the 50% probability level for ambient-pressure data. [Symmetry codes: (i) -x, y - 1/2, -z + 1/2; (ii) -x + 1/2, -y + 1/2, -z + 1/2.]
[Figure 2] Fig. 2. Partial views along [010] (top) and [100] (bottom) of the structure of NH4RbTe4O9.2H2O at ambient pressure (left) and 5.05 GPa (right). Te—O bonds are indicated. Rb cations are shown as large circles, Te cations as middle-sized circles and O atoms as small circles. N atoms are indicated by hatched circles.
[Figure 3] Fig. 3. Lattice parameters and unit-cell volume of NH4RbTe4O9.2H2O as a function of pressure. The solid line is the fit of the Murnaghan equation of state to the compressibility data.
(I_ambient) ammonium rubidium nonaoxotetratellurate(IV) dihydrate top
Crystal data top
NH4RbTe4O9·2H2OF(000) = 2784
Mr = 793.9Ambient conditions
Monoclinic, I2/aDx = 3.942 Mg m3
Hall symbol: -I 2yaMo Kα radiation, λ = 0.71069 Å
a = 18.999 (1) ÅCell parameters from 2941 reflections
b = 6.7318 (4) Åθ = 3.2–31.8°
c = 21.1835 (11) ŵ = 12.41 mm1
β = 101.887 (4)°T = 293 K
V = 2651.2 (3) Å3Irregular, light yellow
Z = 80.18 × 0.12 × 0.06 mm
Data collection top
Stoe IPDS 2T
diffractometer
2836 reflections with I > 3σ(I)
Radiation source: X-ray tubeRint = 0.060
ϕ scansθmax = 31.8°, θmin = 3.2°
Absorption correction: numerical
(JANA2006; Petříček et al., 2006)
h = 2828
Tmin = 0.055, Tmax = 0.226k = 99
22317 measured reflectionsl = 3131
4518 independent reflections
Refinement top
Refinement on F6 constraints
R[F2 > 2σ(F2)] = 0.037H-atom parameters not defined
wR(F2) = 0.043Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2)
S = 1.50(Δ/σ)max = 0.017
4518 reflectionsΔρmax = 3.11 e Å3
163 parametersΔρmin = 2.15 e Å3
0 restraints
Crystal data top
NH4RbTe4O9·2H2OV = 2651.2 (3) Å3
Mr = 793.9Z = 8
Monoclinic, I2/aMo Kα radiation
a = 18.999 (1) ŵ = 12.41 mm1
b = 6.7318 (4) ÅT = 293 K
c = 21.1835 (11) Å0.18 × 0.12 × 0.06 mm
β = 101.887 (4)°
Data collection top
Stoe IPDS 2T
diffractometer
4518 independent reflections
Absorption correction: numerical
(JANA2006; Petříček et al., 2006)
2836 reflections with I > 3σ(I)
Tmin = 0.055, Tmax = 0.226Rint = 0.060
22317 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.043H-atom parameters not defined
S = 1.50Δρmax = 3.11 e Å3
4518 reflectionsΔρmin = 2.15 e Å3
163 parameters
Special details top

Experimental. Stoe IPDS 2T

Refinement. Occupation factors of Rb were refined, but restrained to give a full occupancy per formula. Trial refinement of occupation factors for N1/N1A show them to be 0.5:0.5 within error (fixed at these values). Displacement parameters of N1 and N1A constrained to be equal.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Te10.12062 (3)0.60950 (8)0.30889 (3)0.02009 (16)
Te20.05612 (3)0.11337 (9)0.19897 (3)0.01965 (15)
Te30.21968 (3)0.18854 (8)0.31354 (3)0.01775 (15)
Te40.31367 (3)0.66521 (8)0.35614 (3)0.02181 (16)
Rb10.250.4054 (3)0.50.0366 (6)0.781 (6)
Rb20.03410 (8)0.0994 (2)0.39071 (8)0.0289 (5)0.610 (3)
O10.0584 (3)0.6722 (10)0.3644 (3)0.0256 (19)
O20.2061 (3)0.7075 (10)0.3678 (3)0.028 (2)
O30.1400 (4)0.3445 (9)0.3419 (3)0.027 (2)
O40.0014 (4)0.0224 (10)0.2450 (3)0.028 (2)
O50.4268 (3)0.5892 (10)0.3580 (3)0.0254 (19)
O60.1446 (4)0.0212 (9)0.2614 (3)0.027 (2)
O70.2100 (3)0.3968 (9)0.2501 (3)0.0212 (17)
O80.3027 (3)0.3939 (9)0.3732 (3)0.0253 (19)
O90.3443 (4)0.7642 (10)0.4381 (3)0.032 (2)
O100.0819 (6)0.3721 (14)0.0598 (5)0.062 (4)
O110.3214 (5)0.5041 (12)0.0465 (4)0.045 (3)
N10.0849 (11)0.497 (3)0.4794 (8)0.033 (5)0.5
N1A0.0470 (12)0.531 (3)0.4898 (8)0.033 (5)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Te10.0175 (3)0.0198 (2)0.0238 (3)0.0016 (2)0.0061 (2)0.0003 (2)
Te20.0159 (3)0.0214 (2)0.0217 (3)0.0034 (2)0.0041 (2)0.0005 (2)
Te30.0154 (2)0.0175 (2)0.0198 (3)0.0006 (2)0.00242 (19)0.0012 (2)
Te40.0242 (3)0.0191 (2)0.0212 (3)0.0026 (2)0.0026 (2)0.0009 (2)
Rb10.0425 (11)0.0446 (11)0.0280 (9)00.0196 (8)0
Rb20.0208 (7)0.0218 (7)0.0465 (9)0.0051 (6)0.0125 (6)0.0079 (6)
O10.018 (3)0.033 (3)0.026 (3)0.008 (3)0.006 (2)0.004 (3)
O20.017 (3)0.031 (3)0.033 (4)0.001 (3)0.003 (3)0.010 (3)
O30.026 (3)0.022 (3)0.037 (4)0.002 (3)0.016 (3)0.002 (3)
O40.023 (3)0.032 (3)0.031 (4)0.003 (3)0.010 (3)0.004 (3)
O50.019 (3)0.032 (3)0.025 (3)0.005 (3)0.003 (2)0.007 (3)
O60.024 (3)0.023 (3)0.029 (3)0.007 (3)0.005 (3)0.000 (3)
O70.023 (3)0.018 (3)0.025 (3)0.005 (2)0.010 (2)0.001 (2)
O80.025 (3)0.022 (3)0.027 (3)0.001 (3)0.002 (3)0.000 (3)
O90.035 (4)0.034 (4)0.027 (4)0.004 (3)0.003 (3)0.012 (3)
O100.059 (6)0.056 (6)0.079 (7)0.019 (5)0.031 (5)0.009 (5)
O110.056 (6)0.041 (4)0.038 (5)0.002 (4)0.012 (4)0.002 (3)
N10.048 (11)0.035 (7)0.012 (5)0.009 (7)0.002 (6)0.002 (4)
N1A0.048 (11)0.035 (7)0.012 (5)0.009 (7)0.002 (6)0.002 (4)
Geometric parameters (Å, º) top
Te1—O11.879 (7)Rb1—O83.055 (7)
Te1—O21.949 (6)Rb1—O8iii3.055 (7)
Te1—O31.924 (6)Rb1—O93.425 (8)
Te2—O1i2.343 (6)Rb1—O9iii3.425 (8)
Te2—O41.849 (7)Rb1—O11ii3.140 (8)
Te2—O5ii1.893 (7)Rb1—O11iv3.140 (8)
Te2—O62.012 (6)Rb1—N13.14 (2)
Te3—O32.033 (7)Rb1—N1iii3.14 (2)
Te3—O61.968 (6)Rb2—O1v2.983 (7)
Te3—O71.925 (6)Rb2—O32.948 (7)
Te3—O7ii2.161 (7)Rb2—O43.130 (7)
Te3—O82.275 (6)Rb2—O5vi2.906 (6)
Te4—O22.127 (7)Rb2—O10i3.042 (11)
Te4—O52.202 (7)Rb2—O11ii2.878 (9)
Te4—O81.882 (6)Rb2—N13.297 (18)
Te4—O91.839 (7)N1—N1A0.83 (3)
Rb1—O23.422 (7)N1A—N1Avii1.97 (3)
Rb1—O2iii3.422 (7)
O1—Te1—O294.1 (3)O8—Rb1—O9iii130.28 (17)
O1—Te1—O394.5 (3)O8—Rb1—O11ii84.3 (2)
O1—Te1—O4viii74.7 (3)O8—Rb1—O11iv93.1 (2)
O2—Te1—O390.6 (3)O8—Rb1—N1112.5 (3)
O2—Te1—O4viii167.8 (3)O8—Rb1—N1iii68.2 (3)
O3—Te1—O4viii85.6 (2)O8iii—Rb1—O9130.28 (17)
O1i—Te2—O478.8 (3)O8iii—Rb1—O9iii52.37 (17)
O1i—Te2—O5ii91.0 (2)O8iii—Rb1—O11ii93.1 (2)
O1i—Te2—O6168.8 (3)O8iii—Rb1—O11iv84.3 (2)
O4—Te2—O5ii100.2 (3)O8iii—Rb1—N168.2 (3)
O4—Te2—O690.3 (3)O8iii—Rb1—N1iii112.5 (3)
O5ii—Te2—O688.1 (3)O9—Rb1—O9iii90.30 (18)
O3—Te3—O687.9 (3)O9—Rb1—O11ii136.5 (2)
O3—Te3—O782.0 (3)O9—Rb1—O11iv120.9 (2)
O3—Te3—O7ii156.3 (2)O9—Rb1—N1113.3 (4)
O3—Te3—O889.8 (2)O9—Rb1—N1iii47.8 (4)
O6—Te3—O794.1 (3)O9iii—Rb1—O11ii120.9 (2)
O6—Te3—O7ii88.1 (3)O9iii—Rb1—O11iv136.5 (2)
O6—Te3—O8177.3 (2)O9iii—Rb1—N147.8 (4)
O7—Te3—O7ii75.0 (2)O9iii—Rb1—N1iii113.3 (4)
O7—Te3—O884.3 (2)O11ii—Rb1—O11iv57.2 (2)
O7ii—Te3—O893.5 (2)O11ii—Rb1—N176.9 (4)
O2—Te4—O5170.6 (2)O11ii—Rb1—N1iii124.8 (4)
O2—Te4—O887.8 (3)O11iv—Rb1—N1124.8 (4)
O2—Te4—O988.1 (3)O11iv—Rb1—N1iii76.9 (4)
O5—Te4—O885.2 (3)N1—Rb1—N1iii157.4 (5)
O5—Te4—O987.1 (3)O1v—Rb2—O3109.33 (19)
O8—Te4—O9101.3 (3)O1v—Rb2—O464.77 (17)
O2—Rb1—O2iii107.08 (16)O1v—Rb2—O5vi141.15 (17)
O2—Rb1—O850.53 (17)O1v—Rb2—O10i74.4 (2)
O2—Rb1—O8iii131.76 (17)O1v—Rb2—O11ii71.5 (2)
O2—Rb1—O947.64 (15)O1v—Rb2—N1148.2 (3)
O2—Rb1—O9iii80.54 (17)O3—Rb2—O479.91 (19)
O2—Rb1—O11ii104.37 (18)O3—Rb2—O5vi90.48 (19)
O2—Rb1—O11iv142.7 (2)O3—Rb2—O10i176.0 (2)
O2—Rb1—N172.6 (4)O3—Rb2—O11ii69.1 (2)
O2—Rb1—N1iii93.8 (3)O3—Rb2—N166.7 (4)
O2iii—Rb1—O8131.76 (17)O4—Rb2—O5vi87.47 (18)
O2iii—Rb1—O8iii50.53 (17)O4—Rb2—O10i100.6 (2)
O2iii—Rb1—O980.54 (17)O4—Rb2—O11ii112.5 (2)
O2iii—Rb1—O9iii47.64 (15)O4—Rb2—N1138.8 (3)
O2iii—Rb1—O11ii142.7 (2)O5vi—Rb2—O10i85.6 (2)
O2iii—Rb1—O11iv104.37 (18)O5vi—Rb2—O11ii147.1 (2)
O2iii—Rb1—N193.8 (3)O5vi—Rb2—N170.1 (4)
O2iii—Rb1—N1iii72.6 (4)O10i—Rb2—O11ii114.1 (3)
O8—Rb1—O8iii177.08 (18)O10i—Rb2—N1111.1 (4)
O8—Rb1—O952.37 (17)O11ii—Rb2—N178.1 (4)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y, z+1; (iv) x, y+1/2, z+1/2; (v) x, y1, z; (vi) x1/2, y+1, z; (vii) x, y+1, z+1; (viii) x, y+1/2, z+1/2.
(I_1.13GPa) ammonium rubidium nonaoxotetratellurate(IV) dihydrate top
Crystal data top
NH4RbTe4O9·2H2OF(000) = 2784
Mr = 793.9Pressure = 1.13 GPa
Monoclinic, I2/aDx = 4.112 Mg m3
Hall symbol: -I 2yaSynchrotron radiation, λ = 0.3978 Å
a = 18.770 (4) ÅCell parameters from 2941 reflections
b = 6.645 (4) Åθ = 1.2–20.9°
c = 20.800 (7) ŵ = 2.22 mm1
β = 101.61 (18)°T = 293 K
V = 2541 (3) Å3Irregular, light yellow
Z = 80.22 × 0.12 × 0.03 mm
Data collection top
Huber four-circle
diffractometer with Marresearch MarCCD165 area detector
987 reflections with I > 3σ(I)
Radiation source: HASYLABRint = 0.189
ϕ scansθmax = 20.9°, θmin = 1.2°
Absorption correction: numerical
(JANA2006; Petříček et al., 2006)
h = 3332
Tmin = 0.532, Tmax = 0.786k = 1111
2941 measured reflectionsl = 1813
987 independent reflections
Refinement top
Refinement on F0 constraints
R[F2 > 2σ(F2)] = 0.125H-atom parameters not defined
wR(F2) = 0.115Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2)
S = 3.38(Δ/σ)max = 0.004
987 reflectionsΔρmax = 4.36 e Å3
85 parametersΔρmin = 3.28 e Å3
0 restraints
Crystal data top
NH4RbTe4O9·2H2OV = 2541 (3) Å3
Mr = 793.9Z = 8
Monoclinic, I2/aSynchrotron radiation, λ = 0.3978 Å
a = 18.770 (4) ŵ = 2.22 mm1
b = 6.645 (4) ÅT = 293 K
c = 20.800 (7) Å0.22 × 0.12 × 0.03 mm
β = 101.61 (18)°
Data collection top
Huber four-circle
diffractometer with Marresearch MarCCD165 area detector
987 independent reflections
Absorption correction: numerical
(JANA2006; Petříček et al., 2006)
987 reflections with I > 3σ(I)
Tmin = 0.532, Tmax = 0.786Rint = 0.189
2941 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.1250 restraints
wR(F2) = 0.115H-atom parameters not defined
S = 3.38Δρmax = 4.36 e Å3
987 reflectionsΔρmin = 3.28 e Å3
85 parameters
Special details top

Experimental. Pressure = 1.13 GPa; Almax diamond anvil cell Beamline D3, HASYLAB MarCCD165 detector

Refinement. Te anisotropic; Rb, O and N isotropic; all displacement parameters of oxygen coordinating Te (O1—O9) set equal; displacement parameters of oxygen belonging to water moelcules (O10, O11) restricted to be equal. Occupation factors of Rb and N fixed to values from ambient pressure dataset.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Te10.1211 (2)0.6159 (6)0.3071 (5)0.020 (5)
Te20.0556 (2)0.1224 (5)0.1987 (5)0.030 (5)
Te30.2200 (2)0.1902 (5)0.3163 (5)0.015 (4)
Te40.3146 (2)0.6700 (6)0.3544 (5)0.029 (5)
Rb10.250.4185 (13)0.50.026 (2)*0.78
Rb20.0345 (4)0.1016 (11)0.3951 (10)0.0154 (16)*0.61
O10.0529 (19)0.672 (5)0.359 (4)0.019 (3)*
O20.205 (2)0.718 (5)0.358 (4)0.019 (3)*
O30.1397 (19)0.359 (4)0.343 (4)0.019 (3)*
O40.007 (2)0.016 (5)0.246 (5)0.019 (3)*
O50.429 (2)0.581 (5)0.358 (4)0.019 (3)*
O60.1492 (19)0.024 (5)0.263 (4)0.019 (3)*
O70.2115 (19)0.405 (5)0.249 (4)0.019 (3)*
O80.3003 (19)0.400 (5)0.374 (4)0.019 (3)*
O90.3445 (19)0.789 (5)0.428 (4)0.019 (3)*
O100.077 (2)0.368 (5)0.057 (5)0.025 (7)*
O110.313 (2)0.496 (5)0.040 (5)0.025 (7)*
N10.098 (4)0.487 (11)0.507 (10)0.009 (13)*0.5
N1A0.052 (4)0.535 (11)0.487 (9)0.009 (13)*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Te10.0139 (17)0.0175 (18)0.027 (14)0.0014 (17)0.001 (4)0.005 (3)
Te20.0112 (16)0.0155 (17)0.065 (14)0.0060 (16)0.009 (4)0.002 (3)
Te30.0127 (16)0.0156 (17)0.016 (12)0.0000 (15)0.003 (3)0.000 (3)
Te40.0200 (19)0.0134 (17)0.049 (15)0.0050 (16)0.000 (4)0.004 (3)
Geometric parameters (Å, º) top
Te1—O11.87 (7)Rb1—O82.97 (8)
Te1—O21.84 (5)Rb1—O8iii2.97 (8)
Te1—O31.87 (4)Rb1—O11ii3.04 (4)
Te2—O1i2.17 (5)Rb1—O11iv3.04 (4)
Te2—O41.92 (7)Rb1—N12.93 (9)
Te2—O5ii1.85 (6)Rb1—N1iii2.93 (9)
Te2—O62.09 (5)Rb2—O1v2.99 (4)
Te3—O32.05 (5)Rb2—O32.97 (6)
Te3—O61.90 (5)Rb2—O43.14 (9)
Te3—O71.99 (7)Rb2—O5vi2.88 (4)
Te3—O7ii2.14 (7)Rb2—O10i2.93 (6)
Te3—O82.21 (5)Rb2—O10iv3.31 (9)
Te4—O22.09 (4)Rb2—O11ii2.99 (4)
Te4—O52.22 (4)Rb2—N1A3.44 (12)
Te4—O81.87 (4)N1—N1A0.94 (12)
Te4—O91.71 (8)N1A—N1Avii2.16 (16)
O1—Te1—O2102 (3)O8iii—Rb1—N1iii123 (4)
O1—Te1—O392 (3)O11ii—Rb1—O11iv50.3 (13)
O1—Te1—O4viii72 (3)O11ii—Rb1—N180.0 (19)
O2—Te1—O392 (2)O11ii—Rb1—N1iii117 (2)
O2—Te1—O4viii173 (4)O11iv—Rb1—N1117 (2)
O3—Te1—O4viii85.8 (17)O11iv—Rb1—N1iii80.0 (19)
O1i—Te2—O476 (3)N1—Rb1—N1iii162 (2)
O1i—Te2—O5ii90 (2)O1v—Rb2—O3109.9 (17)
O1i—Te2—O6168 (2)O1v—Rb2—O462.2 (17)
O4—Te2—O5ii99 (3)O1v—Rb2—O5vi137.6 (15)
O4—Te2—O693 (2)O1v—Rb2—O10i72.8 (16)
O5ii—Te2—O688 (2)O1v—Rb2—O10iv107.3 (18)
O3—Te3—O690 (2)O1v—Rb2—O11ii76.0 (12)
O3—Te3—O781 (3)O1v—Rb2—N1A160 (3)
O3—Te3—O7ii155 (3)O3—Rb2—O480.6 (18)
O3—Te3—O888.1 (18)O3—Rb2—O5vi87.2 (13)
O6—Te3—O793 (3)O3—Rb2—O10i176.2 (11)
O6—Te3—O7ii84 (2)O3—Rb2—O10iv107.1 (17)
O6—Te3—O8176 (2)O3—Rb2—O11ii69.1 (16)
O7—Te3—O7ii75 (2)O3—Rb2—N1A74 (3)
O7—Te3—O883 (2)O4—Rb2—O5vi84.0 (18)
O7ii—Te3—O896 (2)O4—Rb2—O10i98.6 (19)
O2—Te4—O5172 (2)O4—Rb2—O10iv169.0 (10)
O2—Te4—O887.4 (16)O4—Rb2—O11ii114.9 (19)
O2—Te4—O993 (3)O4—Rb2—N1A137 (3)
O5—Te4—O885.3 (16)O5vi—Rb2—O10i89.0 (13)
O5—Te4—O987 (2)O5vi—Rb2—O10iv103.9 (19)
O8—Te4—O9107 (3)O5vi—Rb2—O11ii145.4 (11)
O8—Rb1—O8iii175.2 (9)O5vi—Rb2—N1A61 (2)
O8—Rb1—O11ii84.1 (19)O10i—Rb2—O10iv74.2 (19)
O8—Rb1—O11iv91.5 (19)O10i—Rb2—O11ii114.5 (18)
O8—Rb1—N1123 (4)O10i—Rb2—N1A104 (3)
O8—Rb1—N1iii58 (4)O10iv—Rb2—O11ii63 (2)
O8iii—Rb1—O11ii91.5 (19)O10iv—Rb2—N1A53 (3)
O8iii—Rb1—O11iv84.1 (19)O11ii—Rb2—N1A87.4 (18)
O8iii—Rb1—N158 (4)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y, z+1; (iv) x, y+1/2, z+1/2; (v) x, y1, z; (vi) x1/2, y+1, z; (vii) x, y+1, z+1; (viii) x, y+1/2, z+1/2.
(I_2.52GPa) ammonium rubidium nonaoxotetratellurate(IV) dihydrate top
Crystal data top
NH4RbTe4O9·2H2OF(000) = 2784
Mr = 793.9Pressure 2.52 GPa
Monoclinic, I2/aDx = 4.290 Mg m3
Hall symbol: -I 2yaSynchrotron radiation, λ = 0.3978 Å
a = 18.604 (4) ÅCell parameters from 3724 reflections
b = 6.583 (2) Åθ = 1.3–22.3°
c = 20.295 (11) ŵ = 2.22 mm1
β = 101.5 (2)°T = 293 K
V = 2436 (2) Å3Irregular, light yellow
Z = 80.22 × 0.12 × 0.03 mm
Data collection top
Huber four-circle
diffractometer with Marresearch MarCCD165 area detector
1119 reflections with I > 3σ(I)
Radiation source: HASYLABRint = 0.139
ϕ scansθmax = 22.3°, θmin = 1.3°
Absorption correction: numerical
(JANA2006; Petříček et al., 2006)
h = 3232
Tmin = 0.553, Tmax = 0.824k = 1212
3724 measured reflectionsl = 2414
1119 independent reflections
Refinement top
Refinement on F0 constraints
R[F2 > 2σ(F2)] = 0.108H-atom parameters not defined
wR(F2) = 0.092Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2)
S = 2.97(Δ/σ)max = 0.027
1119 reflectionsΔρmax = 3.99 e Å3
85 parametersΔρmin = 3.83 e Å3
0 restraints
Crystal data top
NH4RbTe4O9·2H2OV = 2436 (2) Å3
Mr = 793.9Z = 8
Monoclinic, I2/aSynchrotron radiation, λ = 0.3978 Å
a = 18.604 (4) ŵ = 2.22 mm1
b = 6.583 (2) ÅT = 293 K
c = 20.295 (11) Å0.22 × 0.12 × 0.03 mm
β = 101.5 (2)°
Data collection top
Huber four-circle
diffractometer with Marresearch MarCCD165 area detector
1119 independent reflections
Absorption correction: numerical
(JANA2006; Petříček et al., 2006)
1119 reflections with I > 3σ(I)
Tmin = 0.553, Tmax = 0.824Rint = 0.139
3724 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.1080 restraints
wR(F2) = 0.092H-atom parameters not defined
S = 2.97Δρmax = 3.99 e Å3
1119 reflectionsΔρmin = 3.83 e Å3
85 parameters
Special details top

Experimental. Pressure = 2.52 GPa; Almax diamond anvil cell Beamline D3, HASYLAB MarCCD165 detector

Refinement. Te anisotropic; Rb, O and N isotropic; all displacement parameters of oxygen coordinating Te (O1—O9) set equal; displacement parameters of oxygen belonging to water moelcules (O10, O11) restricted to be equal. Occupation factors of Rb and N fixed to values from ambient pressure dataset.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Te10.12072 (16)0.6219 (4)0.3053 (3)0.019 (3)
Te20.05491 (15)0.1309 (4)0.1980 (3)0.024 (3)
Te30.22035 (16)0.1918 (4)0.3181 (3)0.018 (3)
Te40.31567 (17)0.6748 (4)0.3533 (4)0.021 (3)
Rb10.250.4304 (10)0.50.0243 (17)*0.78
Rb20.0347 (3)0.1072 (7)0.3973 (6)0.0127 (11)*0.61
O10.0565 (14)0.687 (4)0.361 (3)0.016 (2)*
O20.2094 (14)0.715 (3)0.365 (3)0.016 (2)*
O30.1391 (14)0.355 (3)0.342 (3)0.016 (2)*
O40.0040 (15)0.005 (3)0.249 (3)0.016 (2)*
O50.4315 (14)0.584 (3)0.360 (3)0.016 (2)*
O60.1422 (15)0.024 (4)0.261 (3)0.016 (2)*
O70.2128 (14)0.404 (3)0.250 (3)0.016 (2)*
O80.3024 (14)0.402 (3)0.378 (3)0.016 (2)*
O90.3466 (14)0.795 (4)0.436 (3)0.016 (2)*
O100.0753 (16)0.360 (4)0.055 (3)0.022 (5)*
O110.3186 (15)0.496 (4)0.040 (3)0.022 (5)*
N10.095 (3)0.510 (8)0.484 (7)0.012 (9)*0.5
N1A0.049 (3)0.532 (8)0.488 (7)0.012 (9)*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Te10.0155 (13)0.0136 (12)0.028 (9)0.0011 (11)0.007 (3)0.001 (2)
Te20.0140 (12)0.0120 (12)0.049 (9)0.0040 (10)0.011 (3)0.0028 (19)
Te30.0150 (13)0.0127 (12)0.028 (9)0.0003 (10)0.006 (3)0.0021 (19)
Te40.0224 (14)0.0119 (12)0.030 (9)0.0045 (11)0.007 (3)0.005 (2)
Geometric parameters (Å, º) top
Te1—O11.86 (5)Rb1—O82.84 (6)
Te1—O21.94 (4)Rb1—O8iii2.84 (6)
Te1—O31.91 (3)Rb1—O93.41 (4)
Te2—O1i2.21 (3)Rb1—O9iii3.41 (4)
Te2—O41.87 (5)Rb1—O11ii3.13 (3)
Te2—O5ii1.88 (4)Rb1—O11iv3.13 (3)
Te2—O61.99 (4)Rb1—N12.89 (6)
Te3—O31.99 (3)Rb1—N1iii2.89 (6)
Te3—O62.00 (3)Rb2—O1v2.91 (3)
Te3—O71.95 (5)Rb2—O32.92 (4)
Te3—O7ii2.13 (5)Rb2—O43.05 (6)
Te3—O82.23 (3)Rb2—O5vi2.80 (3)
Te4—O22.05 (3)Rb2—O10i2.92 (4)
Te4—O52.22 (3)Rb2—O10iv3.15 (6)
Te4—O81.90 (3)Rb2—O11ii2.85 (3)
Te4—O91.83 (5)Rb2—N13.26 (8)
Rb1—O23.29 (5)Rb2—N1A3.32 (9)
Rb1—O2iii3.29 (5)N1—N1A0.87 (11)
Rb1—O33.48 (5)N1A—N1Avii2.04 (12)
Rb1—O3iii3.48 (5)
O1—Te1—O297 (2)O3iii—Rb1—N1iii62 (3)
O1—Te1—O393.0 (18)O8—Rb1—O8iii172.3 (7)
O1—Te1—O4viii73.9 (18)O8—Rb1—O954.1 (10)
O2—Te1—O389.0 (13)O8—Rb1—O9iii132.8 (10)
O2—Te1—O4viii169 (2)O8—Rb1—O11ii84.6 (13)
O3—Te1—O4viii86.3 (12)O8—Rb1—O11iv88.5 (13)
O1i—Te2—O478.0 (18)O8—Rb1—N1115 (3)
O1i—Te2—O5ii90.6 (15)O8—Rb1—N1iii66 (3)
O1i—Te2—O6165.3 (15)O8iii—Rb1—O9132.8 (10)
O4—Te2—O5ii98.9 (18)O8iii—Rb1—O9iii54.1 (10)
O4—Te2—O688.1 (18)O8iii—Rb1—O11ii88.5 (13)
O5ii—Te2—O686.9 (17)O8iii—Rb1—O11iv84.6 (13)
O3—Te3—O686.5 (14)O8iii—Rb1—N166 (3)
O3—Te3—O780.8 (18)O8iii—Rb1—N1iii115 (3)
O3—Te3—O7ii152.8 (19)O9—Rb1—O9iii90.6 (9)
O3—Te3—O890.2 (13)O9—Rb1—O11ii138.7 (15)
O6—Te3—O792.6 (17)O9—Rb1—O11iv120.9 (9)
O6—Te3—O7ii85.2 (17)O9—Rb1—N1114.9 (18)
O6—Te3—O8175.3 (11)O9—Rb1—N1iii47 (2)
O7—Te3—O7ii73.7 (16)O9iii—Rb1—O11ii120.9 (9)
O7—Te3—O883.6 (16)O9iii—Rb1—O11iv138.7 (15)
O7ii—Te3—O896.3 (15)O9iii—Rb1—N147 (2)
O2—Te4—O5167.0 (19)O9iii—Rb1—N1iii114.9 (18)
O2—Te4—O885.1 (12)O11ii—Rb1—O11iv52.1 (9)
O2—Te4—O988.4 (18)O11ii—Rb1—N177.7 (13)
O5—Te4—O884.3 (11)O11ii—Rb1—N1iii122.6 (14)
O5—Te4—O986.4 (16)O11iv—Rb1—N1122.6 (14)
O8—Te4—O9102 (2)O11iv—Rb1—N1iii77.7 (13)
O2—Rb1—O2iii110.4 (10)N1—Rb1—N1iii159.1 (15)
O2—Rb1—O347.0 (7)O1v—Rb2—O3107.4 (11)
O2—Rb1—O3iii147.7 (7)O1v—Rb2—O462.6 (12)
O2—Rb1—O851.1 (9)O1v—Rb2—O5vi138.2 (11)
O2—Rb1—O8iii134.7 (9)O1v—Rb2—O10i72.2 (11)
O2—Rb1—O947.9 (8)O1v—Rb2—O10iv107.6 (12)
O2—Rb1—O9iii82.4 (12)O1v—Rb2—O11ii73.4 (9)
O2—Rb1—O11ii106.3 (12)O1v—Rb2—N1149.4 (14)
O2—Rb1—O11iv138.2 (14)O1v—Rb2—N1A160 (2)
O2—Rb1—N175 (3)O3—Rb2—O478.6 (12)
O2—Rb1—N1iii93 (2)O3—Rb2—O5vi87.8 (9)
O2iii—Rb1—O3147.7 (7)O3—Rb2—O10i176.7 (15)
O2iii—Rb1—O3iii47.0 (7)O3—Rb2—O10iv107.9 (12)
O2iii—Rb1—O8134.7 (9)O3—Rb2—O11ii69.7 (12)
O2iii—Rb1—O8iii51.1 (9)O3—Rb2—N165 (2)
O2iii—Rb1—O982.4 (12)O3—Rb2—N1A76 (2)
O2iii—Rb1—O9iii47.9 (8)O4—Rb2—O5vi83.8 (13)
O2iii—Rb1—O11ii138.2 (14)O4—Rb2—O10i98.4 (13)
O2iii—Rb1—O11iv106.3 (12)O4—Rb2—O10iv169.9 (7)
O2iii—Rb1—N193 (2)O4—Rb2—O11ii113.5 (14)
O2iii—Rb1—N1iii75 (3)O4—Rb2—N1136 (2)
O3—Rb1—O3iii163.6 (6)O4—Rb2—N1A137 (2)
O3—Rb1—O855.5 (9)O5vi—Rb2—O10i90.4 (9)
O3—Rb1—O8iii123.2 (9)O5vi—Rb2—O10iv103.9 (13)
O3—Rb1—O990.5 (11)O5vi—Rb2—O11ii147.1 (8)
O3—Rb1—O9iii101.0 (9)O5vi—Rb2—N172.4 (14)
O3—Rb1—O11ii59.7 (11)O5vi—Rb2—N1A61.0 (17)
O3—Rb1—O11iv104.4 (11)O10i—Rb2—O10iv75.3 (13)
O3—Rb1—N162 (3)O10i—Rb2—O11ii113.0 (12)
O3—Rb1—N1iii122 (3)O10i—Rb2—N1118 (2)
O3iii—Rb1—O8123.2 (9)O10i—Rb2—N1A106 (2)
O3iii—Rb1—O8iii55.5 (9)O10iv—Rb2—O11ii63.3 (14)
O3iii—Rb1—O9101.0 (9)O10iv—Rb2—N154 (2)
O3iii—Rb1—O9iii90.5 (11)O10iv—Rb2—N1A53 (2)
O3iii—Rb1—O11ii104.4 (11)O11ii—Rb2—N176.2 (13)
O3iii—Rb1—O11iv59.7 (11)O11ii—Rb2—N1A89.5 (15)
O3iii—Rb1—N1122 (3)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y, z+1; (iv) x, y+1/2, z+1/2; (v) x, y1, z; (vi) x1/2, y+1, z; (vii) x, y+1, z+1; (viii) x, y+1/2, z+1/2.
(I_3.45GPa) ammonium rubidium nonaoxotetratellurate(IV) dihydrate top
Crystal data top
NH4RbTe4O9·2H2OF(000) = 2784
Mr = 793.9Pressure 3.45 GPa
Monoclinic, I2/aDx = 4.394 Mg m3
Hall symbol: -I 2yaSynchrotron radiation, λ = 0.3978 Å
a = 18.501 (3) ÅCell parameters from 3087 reflections
b = 6.542 (1) Åθ = 1.3–22.1°
c = 20.045 (7) ŵ = 2.22 mm1
β = 101.41 (10)°T = 293 K
V = 2378.2 (13) Å3Irregular, light yellow
Z = 80.22 × 0.12 × 0.03 mm
Data collection top
Huber four-circle
diffractometer with Marresearch MarCCD165 area detector
1036 reflections with I > 3σ(I)
Radiation source: HASYLABRint = 0.133
ϕ scansθmax = 22.1°, θmin = 1.3°
Absorption correction: numerical
(JANA2006; Petříček et al., 2006)
h = 3234
Tmin = 0.554, Tmax = 0.824k = 1212
3087 measured reflectionsl = 1823
1036 independent reflections
Refinement top
Refinement on F0 constraints
R[F2 > 2σ(F2)] = 0.098H-atom parameters not defined
wR(F2) = 0.085Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2)
S = 2.70(Δ/σ)max = 0.016
1036 reflectionsΔρmax = 3.43 e Å3
85 parametersΔρmin = 2.90 e Å3
0 restraints
Crystal data top
NH4RbTe4O9·2H2OV = 2378.2 (13) Å3
Mr = 793.9Z = 8
Monoclinic, I2/aSynchrotron radiation, λ = 0.3978 Å
a = 18.501 (3) ŵ = 2.22 mm1
b = 6.542 (1) ÅT = 293 K
c = 20.045 (7) Å0.22 × 0.12 × 0.03 mm
β = 101.41 (10)°
Data collection top
Huber four-circle
diffractometer with Marresearch MarCCD165 area detector
1036 independent reflections
Absorption correction: numerical
(JANA2006; Petříček et al., 2006)
1036 reflections with I > 3σ(I)
Tmin = 0.554, Tmax = 0.824Rint = 0.133
3087 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0980 restraints
wR(F2) = 0.085H-atom parameters not defined
S = 2.70Δρmax = 3.43 e Å3
1036 reflectionsΔρmin = 2.90 e Å3
85 parameters
Special details top

Experimental. Pressure = 3.45 GPa; Almax diamond anvil cell Beamline D3, HASYLAB MarCCD165 detector

Refinement. Te anisotropic; Rb, O and N isotropic all displacement parameters of oxygen coordinating Te (O1—O9) set equal; displacement parameters of oxygen belonging to water moelcules (O10, O11) restricted to be equal Occupation factors of Rb and N fixed to values from ambient pressure dataset.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Te10.12091 (16)0.6245 (4)0.3045 (3)0.017 (3)
Te20.05480 (16)0.1351 (4)0.1979 (3)0.024 (3)
Te30.22050 (16)0.1923 (4)0.3190 (3)0.018 (3)
Te40.31619 (17)0.6774 (4)0.3521 (4)0.023 (3)
Rb10.250.4378 (10)0.50.0244 (16)*0.78
Rb20.0349 (3)0.1098 (7)0.3985 (6)0.0106 (10)*0.61
O10.0542 (14)0.695 (4)0.361 (3)0.018 (2)*
O20.2093 (15)0.724 (3)0.366 (3)0.018 (2)*
O30.1435 (14)0.355 (3)0.353 (3)0.018 (2)*
O40.0058 (16)0.001 (3)0.251 (3)0.018 (2)*
O50.4288 (15)0.583 (3)0.358 (3)0.018 (2)*
O60.1429 (15)0.018 (4)0.260 (3)0.018 (2)*
O70.2085 (15)0.400 (3)0.244 (3)0.018 (2)*
O80.3045 (15)0.407 (3)0.379 (3)0.018 (2)*
O90.3480 (14)0.799 (4)0.436 (3)0.018 (2)*
O100.0737 (16)0.354 (4)0.052 (3)0.023 (5)*
O110.3162 (16)0.492 (4)0.041 (3)0.023 (5)*
N10.094 (3)0.520 (7)0.483 (6)0.002 (8)*0.5
N1A0.055 (3)0.514 (7)0.472 (6)0.002 (8)*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Te10.0138 (13)0.0154 (12)0.022 (9)0.0004 (11)0.005 (3)0.0019 (19)
Te20.0141 (12)0.0102 (11)0.050 (9)0.0018 (10)0.010 (3)0.0002 (18)
Te30.0150 (13)0.0111 (12)0.029 (9)0.0002 (10)0.007 (3)0.0034 (18)
Te40.0193 (14)0.0135 (12)0.037 (9)0.0021 (11)0.006 (3)0.003 (2)
Geometric parameters (Å, º) top
Te1—O11.89 (5)Rb1—O82.82 (6)
Te1—O21.95 (4)Rb1—O8iii2.82 (6)
Te1—O32.01 (3)Rb1—O93.39 (4)
Te2—O1i2.16 (3)Rb1—O9iii3.39 (4)
Te2—O41.90 (5)Rb1—O11ii3.11 (3)
Te2—O5ii1.88 (4)Rb1—O11iv3.11 (3)
Te2—O62.00 (4)Rb1—N12.89 (5)
Te3—O32.00 (4)Rb1—N1iii2.89 (5)
Te3—O62.02 (4)Rb2—O1v2.85 (3)
Te3—O72.01 (5)Rb2—O32.86 (4)
Te3—O7ii2.08 (5)Rb2—O43.00 (6)
Te3—O82.25 (3)Rb2—O5vi2.81 (3)
Te4—O22.07 (3)Rb2—O10i2.94 (4)
Te4—O52.15 (3)Rb2—O10iv3.02 (6)
Te4—O81.87 (3)Rb2—O11ii2.86 (3)
Te4—O91.84 (5)Rb2—N13.25 (7)
Rb1—O23.24 (5)Rb2—N1A3.02 (7)
Rb1—O2iii3.24 (5)N1—N1A0.72 (8)
Rb1—O33.26 (5)N1A—N1Avii2.50 (12)
Rb1—O3iii3.26 (5)
O1—Te1—O296.1 (19)O3iii—Rb1—N1iii61 (2)
O1—Te1—O391.4 (18)O8—Rb1—O8iii171.7 (7)
O1—Te1—O4viii74.2 (18)O8—Rb1—O953.9 (10)
O2—Te1—O385.7 (13)O8—Rb1—O9iii133.6 (11)
O2—Te1—O4viii169 (2)O8—Rb1—O11ii83.9 (12)
O3—Te1—O4viii90.4 (12)O8—Rb1—O11iv88.6 (13)
O1i—Te2—O478.4 (18)O8—Rb1—N1116 (2)
O1i—Te2—O5ii93.0 (15)O8—Rb1—N1iii66 (2)
O1i—Te2—O6165.6 (13)O8iii—Rb1—O9133.6 (11)
O4—Te2—O5ii99.5 (17)O8iii—Rb1—O9iii53.9 (10)
O4—Te2—O688.6 (18)O8iii—Rb1—O11ii88.6 (13)
O5ii—Te2—O682.8 (18)O8iii—Rb1—O11iv83.9 (12)
O3—Te3—O691.4 (15)O8iii—Rb1—N166 (2)
O3—Te3—O785.1 (18)O8iii—Rb1—N1iii116 (2)
O3—Te3—O7ii159.4 (18)O9—Rb1—O9iii91.4 (9)
O3—Te3—O887.3 (13)O9—Rb1—O11ii137.8 (14)
O6—Te3—O788.9 (17)O9—Rb1—O11iv121.3 (9)
O6—Te3—O7ii86.9 (17)O9—Rb1—N1115.0 (15)
O6—Te3—O8175.5 (16)O9—Rb1—N1iii46.9 (16)
O7—Te3—O7ii74.3 (16)O9iii—Rb1—O11ii121.3 (9)
O7—Te3—O886.7 (16)O9iii—Rb1—O11iv137.8 (14)
O7ii—Te3—O892.8 (15)O9iii—Rb1—N146.9 (16)
O2—Te4—O5167 (2)O9iii—Rb1—N1iii115.0 (15)
O2—Te4—O886.3 (13)O11ii—Rb1—O11iv50.9 (9)
O2—Te4—O987.6 (18)O11ii—Rb1—N178.8 (11)
O5—Te4—O883.0 (12)O11ii—Rb1—N1iii122.1 (12)
O5—Te4—O986.6 (17)O11iv—Rb1—N1122.1 (12)
O8—Te4—O9101 (2)O11iv—Rb1—N1iii78.8 (11)
O2—Rb1—O2iii109.4 (10)N1—Rb1—N1iii158.6 (13)
O2—Rb1—O349.0 (8)O1v—Rb2—O3108.5 (11)
O2—Rb1—O3iii148.1 (7)O1v—Rb2—O462.4 (12)
O2—Rb1—O852.4 (9)O1v—Rb2—O5vi136.0 (11)
O2—Rb1—O8iii133.9 (9)O1v—Rb2—O10i71.2 (11)
O2—Rb1—O948.3 (9)O1v—Rb2—O10iv108.8 (12)
O2—Rb1—O9iii81.9 (12)O1v—Rb2—O11ii74.3 (9)
O2—Rb1—O11ii106.6 (12)O1v—Rb2—N1151.2 (12)
O2—Rb1—O11iv139.2 (14)O1v—Rb2—N1A162.2 (17)
O2—Rb1—N174 (2)O3—Rb2—O482.5 (13)
O2—Rb1—N1iii93 (2)O3—Rb2—O5vi90.1 (9)
O2iii—Rb1—O3148.1 (7)O3—Rb2—O10i178.6 (12)
O2iii—Rb1—O3iii49.0 (8)O3—Rb2—O10iv104.1 (12)
O2iii—Rb1—O8133.9 (9)O3—Rb2—O11ii65.6 (11)
O2iii—Rb1—O8iii52.4 (9)O3—Rb2—N161 (2)
O2iii—Rb1—O981.9 (12)O3—Rb2—N1A69 (2)
O2iii—Rb1—O9iii48.3 (9)O4—Rb2—O5vi82.0 (13)
O2iii—Rb1—O11ii139.2 (14)O4—Rb2—O10i98.5 (13)
O2iii—Rb1—O11iv106.6 (12)O4—Rb2—O10iv170.7 (7)
O2iii—Rb1—N193 (2)O4—Rb2—O11ii113.3 (14)
O2iii—Rb1—N1iii74 (2)O4—Rb2—N1135 (2)
O3—Rb1—O3iii160.8 (6)O4—Rb2—N1A132 (2)
O3—Rb1—O857.4 (10)O5vi—Rb2—O10i91.0 (9)
O3—Rb1—O8iii121.0 (10)O5vi—Rb2—O10iv104.4 (13)
O3—Rb1—O992.5 (11)O5vi—Rb2—O11ii147.9 (8)
O3—Rb1—O9iii100.9 (10)O5vi—Rb2—N172.7 (13)
O3—Rb1—O11ii58.1 (11)O5vi—Rb2—N1A61.6 (15)
O3—Rb1—O11iv103.1 (10)O10i—Rb2—O10iv74.8 (13)
O3—Rb1—N161 (2)O10i—Rb2—O11ii113.0 (12)
O3—Rb1—N1iii123 (2)O10i—Rb2—N1118 (2)
O3iii—Rb1—O8121.0 (10)O10i—Rb2—N1A111 (2)
O3iii—Rb1—O8iii57.4 (10)O10iv—Rb2—O11ii64.8 (14)
O3iii—Rb1—O9100.9 (10)O10iv—Rb2—N154.4 (19)
O3iii—Rb1—O9iii92.5 (11)O10iv—Rb2—N1A57 (2)
O3iii—Rb1—O11ii103.1 (10)O11ii—Rb2—N177.1 (12)
O3iii—Rb1—O11iv58.1 (11)O11ii—Rb2—N1A89.1 (13)
O3iii—Rb1—N1123 (2)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y, z+1; (iv) x, y+1/2, z+1/2; (v) x, y1, z; (vi) x1/2, y+1, z; (vii) x, y+1, z+1; (viii) x, y+1/2, z+1/2.
(I_5.05GPa) ammonium rubidium nonaoxotetratellurate(IV) dihydrate top
Crystal data top
NH4RbTe4O9·2H2OF(000) = 2784
Mr = 793.9Pressure = 5.05 GPa
Monoclinic, I2/aDx = 4.576 Mg m3
Hall symbol: -I 2yaSynchrotron radiation, λ = 0.3978 Å
a = 18.344 (4) ÅCell parameters from 2411 reflections
b = 6.473 (3) Åθ = 1.3–22.3°
c = 19.62 (1) ŵ = 2.49 mm1
β = 101.4 (2)°T = 293 K
V = 2283 (2) Å3Irregular, light yellow
Z = 80.22 × 0.12 × 0.03 mm
Data collection top
Huber four-circle
diffractometer with Marresearch MarCCD165 area detector
644 reflections with I > 3σ(I)
Radiation source: HASYLABRint = 0.229
ϕ scansθmax = 18.9°, θmin = 1.3°
Absorption correction: numerical
(JANA2006; Petříček et al., 2006)
h = 2727
Tmin = 0.498, Tmax = 0.783k = 1010
2411 measured reflectionsl = 1711
645 independent reflections
Refinement top
Refinement on F0 constraints
R[F2 > 2σ(F2)] = 0.119H-atom parameters not defined
wR(F2) = 0.096Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2)
S = 3.13(Δ/σ)max = 0.020
645 reflectionsΔρmax = 3.87 e Å3
82 parametersΔρmin = 3.50 e Å3
1 restraint
Crystal data top
NH4RbTe4O9·2H2OV = 2283 (2) Å3
Mr = 793.9Z = 8
Monoclinic, I2/aSynchrotron radiation, λ = 0.3978 Å
a = 18.344 (4) ŵ = 2.49 mm1
b = 6.473 (3) ÅT = 293 K
c = 19.62 (1) Å0.22 × 0.12 × 0.03 mm
β = 101.4 (2)°
Data collection top
Huber four-circle
diffractometer with Marresearch MarCCD165 area detector
645 independent reflections
Absorption correction: numerical
(JANA2006; Petříček et al., 2006)
644 reflections with I > 3σ(I)
Tmin = 0.498, Tmax = 0.783Rint = 0.229
2411 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.1191 restraint
wR(F2) = 0.096H-atom parameters not defined
S = 3.13Δρmax = 3.87 e Å3
645 reflectionsΔρmin = 3.50 e Å3
82 parameters
Special details top

Experimental. Pressure = 5.05 GPa; Almax diamond anvil cell Beamline D3, HASYLAB MarCCD165 detector

Refinement. Te anisotropic; Rb, O and N isotropic; all displacement parameters of oxygen coordinating Te (O1—O9) set equal; displacement parameters of oxygen belonging to water moelcules (O10, O11) restricted to be equal. Occupation factors of Rb fixed to values from ambient pressure dataset.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Te10.1212 (3)0.6280 (7)0.3042 (6)0.023 (6)
Te20.0552 (3)0.1415 (6)0.1987 (6)0.016 (6)
Te30.2209 (3)0.1936 (6)0.3211 (5)0.012 (6)
Te40.3169 (3)0.6809 (7)0.3503 (6)0.018 (6)
Rb10.250.4503 (16)0.50.020 (3)*0.78
Rb20.0346 (5)0.1128 (13)0.4000 (12)0.010 (2)*0.61
O10.055 (2)0.693 (6)0.365 (5)0.017 (4)*
O20.209 (2)0.723 (6)0.360 (5)0.017 (4)*
O30.146 (2)0.360 (6)0.362 (5)0.017 (4)*
O40.005 (3)0.005 (5)0.272 (5)0.017 (4)*
O50.427 (2)0.586 (6)0.361 (5)0.017 (4)*
O60.147 (2)0.013 (6)0.266 (5)0.017 (4)*
O70.213 (2)0.397 (5)0.249 (5)0.017 (4)*
O80.304 (3)0.406 (5)0.370 (5)0.017 (4)*
O90.352 (2)0.796 (6)0.430 (5)0.017 (4)*
O100.069 (3)0.350 (6)0.039 (4)0.033 (10)*
O110.316 (3)0.486 (7)0.051 (6)0.033 (10)*
N10.078 (3)0.528 (7)0.491 (6)0.013 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Te10.019 (3)0.008 (2)0.043 (18)0.001 (2)0.007 (6)0.006 (4)
Te20.013 (2)0.006 (2)0.023 (17)0.0007 (18)0.012 (5)0.003 (3)
Te30.015 (2)0.004 (2)0.015 (16)0.0009 (19)0.001 (5)0.002 (3)
Te40.019 (3)0.009 (2)0.022 (17)0.001 (2)0.003 (6)0.002 (4)
Geometric parameters (Å, º) top
Te1—O11.91 (8)Rb1—O33.05 (8)
Te1—O21.86 (6)Rb1—O3iii3.05 (8)
Te1—O32.07 (6)Rb1—O82.92 (10)
Te2—O1i2.19 (5)Rb1—O8iii2.92 (10)
Te2—O42.05 (9)Rb1—O93.37 (7)
Te2—O5ii1.94 (7)Rb1—O9iii3.37 (7)
Te2—O62.09 (6)Rb1—O11ii3.15 (5)
Te3—O32.03 (6)Rb1—O11iv3.15 (5)
Te3—O61.95 (6)Rb1—N13.17 (5)
Te3—O71.92 (8)Rb1—N1iii3.17 (5)
Te3—O7ii2.08 (8)Rb2—O1v2.84 (5)
Te3—O82.13 (5)Rb2—O32.81 (6)
Te4—O22.04 (5)Rb2—O42.56 (10)
Te4—O52.09 (4)Rb2—O5vi2.77 (4)
Te4—O81.85 (4)Rb2—O10i2.97 (6)
Te4—O91.74 (9)Rb2—O10iv2.68 (8)
Rb1—O23.23 (9)Rb2—O11ii2.79 (5)
Rb1—O2iii3.23 (9)Rb2—N13.23 (7)
O1—Te1—O298 (3)O3iii—Rb1—O11iv54.0 (18)
O1—Te1—O386 (3)O3iii—Rb1—N1122 (3)
O2—Te1—O384 (2)O3iii—Rb1—N1iii62 (2)
O1i—Te2—O489 (3)O8—Rb1—O8iii168.6 (11)
O1i—Te2—O5ii91 (2)O8—Rb1—O953.4 (16)
O1i—Te2—O6163.7 (19)O8—Rb1—O9iii136.8 (17)
O4—Te2—O5ii104 (3)O8—Rb1—O11ii79 (2)
O4—Te2—O679 (3)O8—Rb1—O11iv91 (2)
O5ii—Te2—O682 (3)O8—Rb1—N1118 (2)
O3—Te3—O695 (2)O8—Rb1—N1iii64 (2)
O3—Te3—O789 (3)O8iii—Rb1—O9136.8 (17)
O3—Te3—O7ii159 (3)O8iii—Rb1—O9iii53.4 (16)
O3—Te3—O888 (2)O8iii—Rb1—O11ii91 (2)
O6—Te3—O793 (3)O8iii—Rb1—O11iv79 (2)
O6—Te3—O7ii84 (3)O8iii—Rb1—N164 (2)
O6—Te3—O8173 (4)O8iii—Rb1—N1iii118 (2)
O7—Te3—O7ii71 (3)O9—Rb1—O9iii96.8 (15)
O7—Te3—O880 (3)O9—Rb1—O11ii132 (2)
O7ii—Te3—O891 (3)O9—Rb1—O11iv121.0 (14)
O2—Te4—O5166 (3)O9—Rb1—N1119.9 (15)
O2—Te4—O887 (2)O9—Rb1—N1iii45.0 (16)
O2—Te4—O993 (3)O9iii—Rb1—O11ii121.0 (14)
O5—Te4—O882.0 (19)O9iii—Rb1—O11iv132 (2)
O5—Te4—O982 (3)O9iii—Rb1—N145.0 (16)
O8—Te4—O9105 (4)O9iii—Rb1—N1iii119.9 (15)
O2—Rb1—O2iii113.7 (16)O11ii—Rb1—O11iv53.0 (17)
O2—Rb1—O349.4 (13)O11ii—Rb1—N178.9 (13)
O2—Rb1—O3iii149.5 (12)O11ii—Rb1—N1iii118.3 (15)
O2—Rb1—O851.2 (15)O11iv—Rb1—N1118.3 (15)
O2—Rb1—O8iii137.3 (15)O11iv—Rb1—N1iii78.9 (13)
O2—Rb1—O949.1 (14)N1—Rb1—N1iii161.8 (12)
O2—Rb1—O9iii86 (2)O1v—Rb2—O3109.9 (18)
O2—Rb1—O11ii102 (2)O1v—Rb2—O461 (2)
O2—Rb1—O11iv140 (2)O1v—Rb2—O5vi136.7 (18)
O2—Rb1—N179 (2)O1v—Rb2—O10i71.1 (18)
O2—Rb1—N1iii91 (2)O1v—Rb2—O10iv108 (2)
O2iii—Rb1—O3149.5 (12)O1v—Rb2—O11ii72.3 (15)
O2iii—Rb1—O3iii49.4 (13)O1v—Rb2—N1153.6 (18)
O2iii—Rb1—O8137.3 (15)O3—Rb2—O485 (2)
O2iii—Rb1—O8iii51.2 (15)O3—Rb2—O5vi92.2 (15)
O2iii—Rb1—O986 (2)O3—Rb2—O10i172 (2)
O2iii—Rb1—O9iii49.1 (14)O3—Rb2—O10iv100 (2)
O2iii—Rb1—O11ii140 (2)O3—Rb2—O11ii60.4 (18)
O2iii—Rb1—O11iv102 (2)O3—Rb2—N164 (2)
O2iii—Rb1—N191 (2)O4—Rb2—O5vi85 (2)
O2iii—Rb1—N1iii79 (2)O4—Rb2—O10i102.3 (18)
O3—Rb1—O3iii157.8 (11)O4—Rb2—O10iv169.3 (13)
O3—Rb1—O857.8 (17)O4—Rb2—O11ii106 (2)
O3—Rb1—O8iii119.7 (17)O4—Rb2—N1138 (2)
O3—Rb1—O993.9 (19)O5vi—Rb2—O10i92.2 (16)
O3—Rb1—O9iii100.8 (16)O5vi—Rb2—O10iv103 (2)
O3—Rb1—O11ii54.0 (18)O5vi—Rb2—O11ii148.4 (13)
O3—Rb1—O11iv104.1 (17)O5vi—Rb2—N169.6 (17)
O3—Rb1—N162 (2)O10i—Rb2—O10iv71.6 (17)
O3—Rb1—N1iii122 (3)O10i—Rb2—O11ii113.2 (19)
O3iii—Rb1—O8119.7 (17)O10i—Rb2—N1111 (2)
O3iii—Rb1—O8iii57.8 (17)O10iv—Rb2—O11ii70 (2)
O3iii—Rb1—O9100.8 (16)O10iv—Rb2—N152 (2)
O3iii—Rb1—O9iii93.9 (19)O11ii—Rb2—N183.3 (16)
O3iii—Rb1—O11ii104.1 (17)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y, z+1; (iv) x, y+1/2, z+1/2; (v) x, y1, z; (vi) x1/2, y+1, z.

Experimental details

(I_ambient)(I_1.13GPa)(I_2.52GPa)(I_3.45GPa)
Crystal data
Chemical formulaNH4RbTe4O9·2H2ONH4RbTe4O9·2H2ONH4RbTe4O9·2H2ONH4RbTe4O9·2H2O
Mr793.9793.9793.9793.9
Crystal system, space groupMonoclinic, I2/aMonoclinic, I2/aMonoclinic, I2/aMonoclinic, I2/a
Temperature (K)293293293293
a, b, c (Å)18.999 (1), 6.7318 (4), 21.1835 (11)18.770 (4), 6.645 (4), 20.800 (7)18.604 (4), 6.583 (2), 20.295 (11)18.501 (3), 6.542 (1), 20.045 (7)
β (°) 101.887 (4) 101.61 (18) 101.5 (2) 101.41 (10)
V3)2651.2 (3)2541 (3)2436 (2)2378.2 (13)
Z8888
Radiation typeMo KαSynchrotron, λ = 0.3978 ÅSynchrotron, λ = 0.3978 ÅSynchrotron, λ = 0.3978 Å
µ (mm1)12.412.222.222.22
Crystal size (mm)0.18 × 0.12 × 0.060.22 × 0.12 × 0.030.22 × 0.12 × 0.030.22 × 0.12 × 0.03
Data collection
DiffractometerStoe IPDS 2T
diffractometer
Huber four-circle
diffractometer with Marresearch MarCCD165 area detector
Huber four-circle
diffractometer with Marresearch MarCCD165 area detector
Huber four-circle
diffractometer with Marresearch MarCCD165 area detector
Absorption correctionNumerical
(JANA2006; Petříček et al., 2006)
Numerical
(JANA2006; Petříček et al., 2006)
Numerical
(JANA2006; Petříček et al., 2006)
Numerical
(JANA2006; Petříček et al., 2006)
Tmin, Tmax0.055, 0.2260.532, 0.7860.553, 0.8240.554, 0.824
No. of measured, independent and
observed [I > 3σ(I)] reflections
22317, 4518, 2836 2941, 987, 987 3724, 1119, 1119 3087, 1036, 1036
Rint0.0600.1890.1390.133
(sin θ/λ)max1)0.7420.8970.9520.947
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.043, 1.50 0.125, 0.115, 3.38 0.108, 0.092, 2.97 0.098, 0.085, 2.70
No. of reflections451898711191036
No. of parameters163858585
No. of restraints0000
H-atom treatmentH-atom parameters not definedH-atom parameters not definedH-atom parameters not definedH-atom parameters not defined
Δρmax, Δρmin (e Å3)3.11, 2.154.36, 3.283.99, 3.833.43, 2.90


(I_5.05GPa)
Crystal data
Chemical formulaNH4RbTe4O9·2H2O
Mr793.9
Crystal system, space groupMonoclinic, I2/a
Temperature (K)293
a, b, c (Å)18.344 (4), 6.473 (3), 19.62 (1)
β (°) 101.4 (2)
V3)2283 (2)
Z8
Radiation typeSynchrotron, λ = 0.3978 Å
µ (mm1)2.49
Crystal size (mm)0.22 × 0.12 × 0.03
Data collection
DiffractometerHuber four-circle
diffractometer with Marresearch MarCCD165 area detector
Absorption correctionNumerical
(JANA2006; Petříček et al., 2006)
Tmin, Tmax0.498, 0.783
No. of measured, independent and
observed [I > 3σ(I)] reflections
2411, 645, 644
Rint0.229
(sin θ/λ)max1)0.815
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.119, 0.096, 3.13
No. of reflections645
No. of parameters82
No. of restraints1
H-atom treatmentH-atom parameters not defined
Δρmax, Δρmin (e Å3)3.87, 3.50

Computer programs: , Automar (Marresearch, 2009), X-AREA (Stoe & Cie, 2006) and JANA2006 (Petříček et al., 2006), XDS (Kabsch, 2010) and JANA2006 (Petříček et al., 2006), coordinates from Kim & Halasyamani (2008), JANA2006 (Petříček et al., 2006), ATOMS (Dowty, 1999).

Te—O distances below 2.4 Å as a function of pressure top
Pressure (GPa)Ambient1.132.523.455.05
Te1—O11.879 (7)1.87 (7)1.86 (5)1.89 (5)1.91 (8)
Te1—O21.949 (6)1.84 (5)1.94 (4)1.95 (4)1.86 (6)
Te1—O31.924 (6)1.87 (4)1.91 (3)2.01 (3)2.07 (6)
Te2—O1i2.343 (6)2.17 (5)2.21 (3)2.16 (3)2.19 (5)
Te2—O41.849 (7)1.92 (7)1.87 (5)1.90 (5)2.05 (9)
Te2—O5ii1.893 (7)1.85 (6)1.88 (4)1.88 (4)1.94 (7)
Te2—O62.012 (6)2.09 (5)1.99 (4)2.00 (4)2.09 (6)
Te3—O32.033 (7)2.05 (5)1.99 (3)2.00 (4)2.03 (7)
Te3—O61.968 (6)1.90 (5)2.00 (3)2.02 (4)1.95 (6)
Te3—O71.925 (6)1.99 (7)1.95 (5)2.01 (5)1.92 (8)
Te3—O7ii2.161 (7)2.14 (7)2.13 (5)2.08 (5)2.08 (8)
Te3—O82.275 (6)2.21 (5)2.23 (3)2.25 (3)2.13 (5)
Te4—O22.127 (7)2.09 (4)2.05 (3)2.07 (3)2.04 (5)
Te4—O52.202 (7)2.22 (4)2.22 (3)2.15 (3)2.09 (4)
Te4—O81.882 (6)1.87 (4)1.90 (3)1.87 (3)1.85 (4)
Te4—O91.839 (7)1.71 (8)1.83 (5)1.84 (5)1.74 (9)
Symmetry codes: (i) -x, y - 1/2, -z + 1/2; (ii) -x + 1/2, -y + 1/2, -z + 1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds