Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structures of the diastereoisomers Λ(+)578-, (I), and Δ(−)578-bis­(ethane-1,2-diamine)[β-ethyl (S)-aspartato-κ2N,O1]cobalt(III) bis­(perchlorate) monohydrate, (II), both [Co(C6H10N2O4)(C2H8N2)2](ClO4)2·H2O, are compared. In both structures, the ester group of the amino acid side chain is engaged only in intra­molecular hydrogen bonding to coordinated amine groups. This inter­action is stronger in (I) and correlates with previously observed diastereoisomeric equilibrium ratios for related metal complex systems in aqueous media. The two perchlorate anions of (II) are located on twofold axes. Both perchlorates in (I) and one of the perchlorates in (II) are affected by disorder. Both structures exhibit extensive three-dimensional hydrogen-bonding net­works.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110036851/lg3040sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110036851/lg3040Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110036851/lg3040IIsup3.hkl
Contains datablock II

CCDC references: 804107; 804108

Comment top

Octahedral Δ/Λ-bis(ethane-1,2-diamine)[(R/S)-α-amino acidato-N,O]cobalt(III) complexes typically comprise two stereogenic centres, the metal and the α-C atom of the amino acid. The diastereoisomeric equilibrium ratio, Kc = [(Δ-S,Λ-R)]/[(Δ-R,Λ-S)], has been determined in 0.010 M NaOH at 298 K for a number of such systems, and values vary with the coordinated amino acid: 0.67 (3) for Asp, 0.77 (2) (A2pr), 0.85 (3) (Glu), 1.00 (2) (Ala), 1.2 (1) (Phe), 1.9 (1) (Val) (A2pr is 2,3-diaminopropanoic acid; Buckingham et al., 1990; Barfod et al., 1999). Even though these values evince modest levels of selectivity, it is notable that Kc < 1 only for those systems which carry side chains with potential hydrogen-bond acceptor sites. Thus, in these instances the (Δ-R,Λ-S) diastereoisomer is preferred over the (Δ-S,Λ-R) diastereoisomer, whereas the opposite preference applies for systems with bulky apolar side chains. Clearly, such preferences (in solution) are governed to a large extent by a number of intramolecular interactions, but at present it is unclear which interactions are decisive in determining these preferences. Crystal structures of relevant complexes, for example Λ(+)495-[Co(en)2{S-Glu(O-)O}]ClO4 (Gillard et al., 1970), Λ(+)578-[Co(en)2{S-Asp(OH)O}](ClO4)2 (Barfod et al., 1999) and rac-(Δ-R,Λ-S)-\[Co(en)2{O2CCH(CH[CO2Et]2)NH2}](ClO4)2 (Bendahl et al., 2002), reveal firm intramolecular hydrogen-bonding interactions from coordinated ligand amine groups to side-chain acceptor sites. However, in the structure of the asparagine complex, Λ-[Co(en)2(S-AsnO)]I1.6(NO3)0.4, the amino acid side chain is not engaged in intramolecular hydrogen bonding with coordinated ethane-1,2-diamine (Keyes et al., 1976). These structures each represent only one of two possible diastereoisomers and, incidentally, this is the thermodynamically favoured diastereoisomer (Δ-R,Λ-S) in all four instances. Investigations aimed at elucidating the origins of the stability preferences observed in solution for such systems through structural comparison of both diastereoisomers have not yet been published.

The title β-ethyl-(S)-aspartate complexes, (I), Λ-form, and (II), Δ-form, constitute such a diastereoisomeric pair. The crystals of (I) and (II) are constitutionally identical, thus providing an optimal basis for comparison. The two structures are illustrated in Figs. 1 and 2, respectively, and selected interatomic distances are given in Tables 1 and 3.

Both structures are characterized by extensive three-dimensional hydrogen-bonding networks (Tables 2 and 4), the only hydrogen-bond donors being the coordinated primary amine groups and the water molecules. The amino acid side chain carries only one hydrogen-bond acceptor, namely the ester carbonyl-O atom, but this is not engaged in intermolecular hydrogen bonding. Thus, it is noteworthy that in both structures the ester carbonyl-O atoms are only intramolecularly hydrogen-bonded to the amine group of the amino acid ligand and to the nearest amine group of one ethane-1,2-diamine ligand (Fig. 3). The interaction of the ester carbonyl with the amine of the amino acid ligand results in similar N1···O3 distances in both structures, but the two structures differ with respect to the intramolecular hydrogen-bonding to the nearest ethane-1,2-diamine ligand. Whereas the N11···O3(carbonyl) distances are identical in the two structures, the associated H11···O3 distances are notably different [in (I), H11B···O3 = 2.15 Å; in (II), H11A···O3 = 2.48 Å]. From Fig. 3(a) it is evident that the ethane-1,2-diamine chelate is optimally positioned relative to the amino acid ligand, pointing the N11—H11B bond almost directly towards the ester carbonyl atom O3, allowing the shorter, almost linear, hydrogen bond, consistent with a stronger interaction (Jeffrey, 1997). This is a consequence of the (Λ-S) relative absolute configuration of the complex of this structure. By contrast, in (II), the (Δ-S) relative configuration (Fig. 3b), neither of the relevant ethane-1,2-diamine N11—H11 bonds points directly towards the ester carbonyl-O atom in a manner similar to the situation for (I). This supports the notion that (I) displays the stronger interaction.

Even though the diastereoisomeric equilibrium ratio has not been determined in water for the two molecular diastereoisomers of this study (the ester would hydrolyse in the basic conditions required for attaining equilibrium), the observed structural features implying (I) to be the more stable diastereoisomer correlate with the stereochemical preferences observed in aqueous equilibrium studies of complexes bearing polar side chains, as outlined in the introduction (Buckingham et al., 1990; Barfod et al., 1999). The decisive hydrogen-bonding interactions of the amino acid side chains of (I) and (II) are all intramolecular and evidently not much governed by the `intermolecular' situation within the crystal structure. Thus, the present structures may serve to identify the likely decisive interaction governing the generally observed preferences in solution in the case of similar amino acid complexes with hydrogen-bond accepting side chains. The fact that amino acid complexes with nonpolar side chains display the opposite diastereoisomer stability preference remains unexplained, but since they lack hydrogen-bond acceptors in the side chains, weaker interactions must apply in these instances.

The insight provided by the present study is important for future application of the cis-bis(ethane-1,2-diamine)cobalt(III) moiety as a `chiral handle' in stereoselective syntheses of amino acids (Hammershøi et al., 1984; Curtis et al., 1987; Drok et al., 1993; Bendahl et al., 1996, 2002; Laval et al., 2002).

Experimental top

Complexes (I) and (II) were synthesized as described by Barfod et al. (1999). Caution! Although we experienced no difficulty with the perchlorate salts described here, these should be treated as potentially explosive and handled accordingly. [Crystallization from which solvent?]

Refinement top

The data set of (I) obtained at 298 K was chosen for refinement, since crystals of (I) disintegrated upon cooling to ~253 K and a tentative data set collected at 273 K showed signs of deterioration, evidenced by data of poor quality.

For both structures, H atoms were located in difference Fourier maps and were included in the refinement as constrained idealized H atoms riding the parent atom, with C—H = 0.96 (CH3), 0.97 (CH2) or 0.98 Å (CH) and N—H = 0.90 Å in (I), and C—H = 0.98 (CH3), 0.99 (CH2) or 1.00 Å (CH) and N—H = 0.92 Å in (II), and with Uiso(H) = 1.2Ueq(C,N). In the final refinement, the coordinates of the H atoms of the solvent water molecule in (I) had to be fixed, with O—H = 0.85 and 0.86 Å, and with Uiso(H) = 1.2Ueq(O). The H atoms of the solvent water molecule in (II) were refined as semi-free with a distance restraint, and with Uiso(H) = 1.2Ueq(O).

Both perchlorate anions of (I) are disordered. The disorder was resolved by refining two of the O atoms on Cl1 in two positions, with site-occupancy factors of 0.546 (9) and 0.454 (9). In the case of the second perchlorate ion, the entire anion was refined in two positions, with site-occupancy factors of 0.596 (9) and 0.404 (9) and with equal anisotropic displacement parameters for all O atoms. Furthermore, the perchlorates were restrained in an approximate tetrahedral geometry.

In (II), the Cl1 perchlorate anion is in a general position, but the other two, centred at Cl2 and Cl3, are located on the crystallographic twofold axis. [Please check rephrasing] Furthermore, one of these perchlorates is disordered. This disorder was resolved by refining the O atoms on Cl3 in two positions, with site-occupancy factors of 0.565 (13) and 0.435 (13).

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1999); cell refinement: COLLECT (Nonius, 1999); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. The disordered parts of the anions have been omitted for clarity. Dotted lines illustrate the intramolecular hydrogen bonds.
[Figure 2] Fig. 2. A view of the molecular structure of (II), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. The disordered parts of the anions have been omitted for clarity. Dotted lines illustrate the intramolecular hydrogen bonds. [Symmetry code: (i) y, x, -z.]
[Figure 3] Fig. 3. Highlighted views of the hydrogen bond between the ester carbonyl and the amine of the amino acid ligand in (a) (I) and (b) (II).
(I) Λ(+)578-bis(ethane-1,2-diamine)[β-ethyl (S)-aspartato- κ2N,O1]cobalt(III) bis(perchlorate) monohydrate top
Crystal data top
[Co(C6H10N2O4)(C2H8N2)2](ClO4)2·H2OF(000) = 576
Mr = 556.20Dx = 1.685 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 12384 reflections
a = 11.6507 (4) Åθ = 1.9–27.5°
b = 8.7600 (5) ŵ = 1.10 mm1
c = 11.7169 (6) ÅT = 298 K
β = 113.572 (4)°Prism, orange
V = 1096.04 (9) Å30.35 × 0.14 × 0.13 mm
Z = 2
Data collection top
Nonius KappaCCD area-detector
diffractometer
4996 independent reflections
Radiation source: fine-focus sealed tube4684 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω and ϕ scansθmax = 27.5°, θmin = 1.9°
Absorption correction: integration
(Gaussian integration; Coppens, 1970)
h = 1515
Tmin = 0.675, Tmax = 0.898k = 1111
31975 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.0895P)2 + 0.7174P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.016
4996 reflectionsΔρmax = 0.57 e Å3
285 parametersΔρmin = 0.36 e Å3
161 restraintsAbsolute structure: Flack (1983), 2329 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (2)
Crystal data top
[Co(C6H10N2O4)(C2H8N2)2](ClO4)2·H2OV = 1096.04 (9) Å3
Mr = 556.20Z = 2
Monoclinic, P21Mo Kα radiation
a = 11.6507 (4) ŵ = 1.10 mm1
b = 8.7600 (5) ÅT = 298 K
c = 11.7169 (6) Å0.35 × 0.14 × 0.13 mm
β = 113.572 (4)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
4996 independent reflections
Absorption correction: integration
(Gaussian integration; Coppens, 1970)
4684 reflections with I > 2σ(I)
Tmin = 0.675, Tmax = 0.898Rint = 0.033
31975 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.139Δρmax = 0.57 e Å3
S = 1.05Δρmin = 0.36 e Å3
4996 reflectionsAbsolute structure: Flack (1983), 2329 Friedel pairs
285 parametersAbsolute structure parameter: 0.01 (2)
161 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.38979 (4)0.09231 (6)0.75245 (4)0.03511 (14)
N10.2259 (3)0.1929 (4)0.6896 (3)0.0442 (7)
H1A0.19240.19220.60580.053*
H1B0.17380.14250.71610.053*
O10.4469 (2)0.2621 (3)0.8588 (2)0.0385 (5)
O20.3829 (3)0.4753 (4)0.9194 (3)0.0492 (7)
O30.1704 (5)0.2077 (6)0.9104 (4)0.0808 (13)
C10.2417 (4)0.3527 (5)0.7357 (4)0.0403 (8)
H10.24690.41840.67030.048*
C20.3641 (4)0.3658 (5)0.8484 (4)0.0374 (8)
C30.1317 (4)0.4078 (6)0.7641 (5)0.0531 (10)
H3A0.14050.51640.78160.064*
H3B0.05440.39200.69150.064*
C40.1243 (5)0.3265 (8)0.8718 (6)0.0632 (13)
O40.0557 (7)0.4030 (8)0.9200 (6)0.115 (2)
C50.0527 (8)0.3507 (18)1.0389 (11)0.143 (5)
H5A0.08120.43051.10140.171*
H5B0.10480.26111.07010.171*
C60.0840 (9)0.313 (2)1.0054 (15)0.160 (6)
H6A0.09590.28731.07950.192*
H6B0.10820.22860.94870.192*
H6C0.13460.40050.96670.192*
N110.3570 (3)0.0125 (4)0.8841 (3)0.0447 (7)
H11A0.42480.00620.95650.054*
H11B0.29230.03220.89450.054*
C120.3274 (7)0.1741 (7)0.8490 (7)0.0721 (17)
H12A0.40410.23330.87610.087*
H12B0.27570.21500.88920.087*
C130.2610 (7)0.1850 (8)0.7137 (8)0.0796 (19)
H13A0.25920.29050.68780.095*
H13B0.17520.15080.68920.095*
N140.3232 (4)0.0914 (5)0.6529 (4)0.0538 (9)
H14A0.26840.06520.57620.065*
H14B0.38590.14460.64540.065*
N150.5623 (3)0.0169 (4)0.8201 (3)0.0423 (7)
H15A0.59560.02450.90370.051*
H15B0.56380.08190.79960.051*
C160.6357 (4)0.1103 (8)0.7673 (5)0.0570 (12)
H16A0.71290.05850.77800.068*
H16B0.65640.20840.80900.068*
C170.5562 (5)0.1317 (6)0.6326 (4)0.0553 (11)
H17A0.54560.03540.58870.066*
H17B0.59490.20410.59620.066*
N180.4328 (4)0.1904 (5)0.6235 (3)0.0460 (8)
H18A0.37340.16970.54760.055*
H18B0.43660.29230.63420.055*
Cl10.41478 (12)0.0984 (2)0.27769 (12)0.0647 (3)
O110.4149 (6)0.2379 (5)0.3358 (6)0.0981 (17)
O120.5408 (5)0.0408 (7)0.3286 (6)0.1060 (19)
O130.3969 (12)0.1455 (15)0.1491 (8)0.115 (2)0.549 (10)
O140.3244 (12)0.0029 (13)0.2696 (11)0.115 (2)0.549 (10)
O13A0.3642 (16)0.062 (2)0.1538 (12)0.115 (2)0.451 (10)
O14A0.3617 (16)0.004 (2)0.3452 (13)0.115 (2)0.451 (10)
Cl20.1103 (7)0.0471 (14)0.5991 (7)0.085 (2)0.602 (9)
O210.0653 (14)0.060 (3)0.5078 (11)0.180 (3)0.602 (9)
O220.0066 (10)0.040 (2)0.7161 (10)0.180 (3)0.602 (9)
O230.1975 (15)0.074 (2)0.5713 (14)0.180 (3)0.602 (9)
O240.1681 (13)0.1870 (19)0.6051 (13)0.180 (3)0.602 (9)
Cl2A0.0974 (11)0.005 (2)0.6039 (11)0.089 (4)0.398 (9)
O21A0.043 (2)0.074 (4)0.5342 (18)0.180 (3)0.398 (9)
O22A0.0333 (17)0.120 (3)0.6786 (17)0.180 (3)0.398 (9)
O23A0.2246 (16)0.026 (4)0.5256 (18)0.180 (3)0.398 (9)
O24A0.1168 (17)0.100 (3)0.6964 (16)0.180 (3)0.398 (9)
O100.1670 (5)0.0841 (12)0.4106 (5)0.127 (2)
H10A0.21680.05790.37640.152*
H10B0.17890.18010.42280.152*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0371 (2)0.0355 (2)0.0305 (2)0.0014 (2)0.01125 (15)0.0046 (2)
N10.0375 (15)0.0494 (19)0.0387 (15)0.0014 (14)0.0078 (13)0.0043 (14)
O10.0386 (13)0.0380 (13)0.0337 (12)0.0008 (11)0.0091 (10)0.0054 (10)
O20.0606 (17)0.0422 (15)0.0437 (15)0.0026 (13)0.0196 (13)0.0089 (12)
O30.097 (3)0.088 (3)0.080 (3)0.031 (3)0.059 (3)0.027 (2)
C10.0403 (19)0.043 (2)0.0369 (18)0.0036 (16)0.0145 (15)0.0008 (15)
C20.0416 (19)0.0361 (18)0.0338 (17)0.0035 (15)0.0143 (15)0.0011 (14)
C30.044 (2)0.058 (3)0.058 (2)0.0091 (19)0.0215 (19)0.002 (2)
C40.049 (2)0.080 (4)0.068 (3)0.005 (2)0.031 (2)0.002 (3)
O40.142 (5)0.128 (5)0.124 (5)0.055 (4)0.104 (4)0.028 (4)
C50.091 (6)0.229 (16)0.132 (9)0.010 (8)0.070 (6)0.026 (10)
C60.135 (10)0.157 (11)0.184 (15)0.035 (8)0.061 (10)0.023 (10)
N110.0488 (18)0.0401 (17)0.0473 (18)0.0017 (14)0.0216 (15)0.0027 (14)
C120.095 (5)0.046 (3)0.082 (4)0.019 (3)0.042 (4)0.004 (3)
C130.083 (4)0.060 (3)0.101 (5)0.030 (3)0.042 (4)0.029 (3)
N140.059 (2)0.046 (2)0.051 (2)0.0029 (17)0.0155 (17)0.0162 (17)
N150.0442 (16)0.0424 (17)0.0405 (16)0.0044 (14)0.0171 (13)0.0025 (14)
C160.0453 (19)0.065 (4)0.064 (2)0.004 (2)0.0257 (18)0.002 (3)
C170.066 (3)0.058 (3)0.056 (2)0.0075 (19)0.039 (2)0.0037 (18)
N180.0554 (19)0.0492 (19)0.0339 (15)0.0003 (15)0.0182 (14)0.0002 (14)
Cl10.0729 (6)0.0564 (6)0.0657 (6)0.0045 (9)0.0286 (5)0.0010 (8)
O110.138 (5)0.059 (3)0.114 (4)0.013 (3)0.067 (4)0.002 (3)
O120.094 (3)0.110 (5)0.102 (4)0.034 (3)0.027 (3)0.006 (3)
O130.132 (5)0.118 (5)0.086 (3)0.037 (4)0.035 (4)0.008 (5)
O140.132 (5)0.118 (5)0.086 (3)0.037 (4)0.035 (4)0.008 (5)
O13A0.132 (5)0.118 (5)0.086 (3)0.037 (4)0.035 (4)0.008 (5)
O14A0.132 (5)0.118 (5)0.086 (3)0.037 (4)0.035 (4)0.008 (5)
Cl20.0484 (17)0.151 (7)0.0582 (19)0.014 (3)0.0236 (14)0.007 (3)
O210.122 (4)0.315 (10)0.101 (4)0.078 (6)0.042 (3)0.042 (5)
O220.122 (4)0.315 (10)0.101 (4)0.078 (6)0.042 (3)0.042 (5)
O230.122 (4)0.315 (10)0.101 (4)0.078 (6)0.042 (3)0.042 (5)
O240.122 (4)0.315 (10)0.101 (4)0.078 (6)0.042 (3)0.042 (5)
Cl2A0.057 (4)0.131 (8)0.063 (4)0.017 (4)0.008 (3)0.031 (4)
O21A0.122 (4)0.315 (10)0.101 (4)0.078 (6)0.042 (3)0.042 (5)
O22A0.122 (4)0.315 (10)0.101 (4)0.078 (6)0.042 (3)0.042 (5)
O23A0.122 (4)0.315 (10)0.101 (4)0.078 (6)0.042 (3)0.042 (5)
O24A0.122 (4)0.315 (10)0.101 (4)0.078 (6)0.042 (3)0.042 (5)
O100.105 (4)0.188 (7)0.072 (3)0.030 (6)0.019 (3)0.002 (5)
Geometric parameters (Å, º) top
Co1—O11.883 (3)C13—N141.455 (8)
Co1—N11.960 (3)C13—H13A0.9700
Co1—N111.959 (4)C13—H13B0.9700
Co1—N141.957 (4)N14—H14A0.9000
Co1—N151.957 (3)N14—H14B0.9000
Co1—N181.969 (3)N15—C161.486 (6)
N1—C11.485 (6)N15—H15A0.9000
N1—H1A0.9000N15—H15B0.9000
N1—H1B0.9000C16—C171.488 (7)
O1—C21.294 (5)C16—H16A0.9700
O2—C21.231 (5)C16—H16B0.9700
O3—C41.176 (8)C17—N181.491 (6)
C1—C21.511 (6)C17—H17A0.9700
C1—C31.525 (6)C17—H17B0.9700
C1—H10.9800N18—H18A0.9000
C3—C41.481 (7)N18—H18B0.9000
C3—H3A0.9700Cl1—O141.351 (9)
C3—H3B0.9700Cl1—O13A1.369 (13)
C4—O41.330 (7)Cl1—O111.398 (5)
O4—C51.480 (13)Cl1—O121.437 (5)
C5—C61.516 (5)Cl1—O14A1.484 (14)
C5—H5A0.9700Cl1—O131.494 (9)
C5—H5B0.9700Cl2—O211.371 (11)
C6—H6A0.9600Cl2—O241.414 (13)
C6—H6B0.9600Cl2—O231.416 (12)
C6—H6C0.9600Cl2—O221.421 (11)
N11—C121.477 (7)Cl2A—O21A1.362 (13)
N11—H11A0.9000Cl2A—O22A1.418 (14)
N11—H11B0.9000Cl2A—O23A1.423 (13)
C12—C131.463 (11)Cl2A—O24A1.454 (14)
C12—H12A0.9700O10—H10A0.860
C12—H12B0.9700O10—H10B0.860
O1—Co1—N1587.98 (13)H12A—C12—H12B108.3
O1—Co1—N14174.39 (16)N14—C13—C12110.0 (5)
N15—Co1—N1493.56 (16)N14—C13—H13A109.7
O1—Co1—N1188.69 (14)C12—C13—H13A109.7
N15—Co1—N1190.84 (15)N14—C13—H13B109.7
N14—Co1—N1185.89 (17)C12—C13—H13B109.7
O1—Co1—N185.79 (13)H13A—C13—H13B108.2
N15—Co1—N1172.98 (16)C13—N14—Co1109.2 (3)
N14—Co1—N192.95 (16)C13—N14—H14A109.8
N11—Co1—N192.24 (16)Co1—N14—H14A109.8
O1—Co1—N1891.85 (14)C13—N14—H14B109.8
N15—Co1—N1885.60 (15)Co1—N14—H14B109.8
N14—Co1—N1893.65 (17)H14A—N14—H14B108.3
N11—Co1—N18176.37 (17)C16—N15—Co1108.3 (3)
N1—Co1—N1891.38 (16)C16—N15—H15A110.0
C1—N1—Co1109.1 (2)Co1—N15—H15A110.0
C1—N1—H1A109.9C16—N15—H15B110.0
Co1—N1—H1A109.9Co1—N15—H15B110.0
C1—N1—H1B109.9H15A—N15—H15B108.4
Co1—N1—H1B109.9N15—C16—C17107.1 (4)
H1A—N1—H1B108.3N15—C16—H16A110.3
C2—O1—Co1116.1 (2)C17—C16—H16A110.3
N1—C1—C2109.0 (3)N15—C16—H16B110.3
N1—C1—C3112.6 (4)C17—C16—H16B110.3
C2—C1—C3111.6 (4)H16A—C16—H16B108.6
N1—C1—H1107.8C16—C17—N18107.0 (3)
C2—C1—H1107.8C16—C17—H17A110.3
C3—C1—H1107.8N18—C17—H17A110.3
O2—C2—O1124.0 (4)C16—C17—H17B110.3
O2—C2—C1120.0 (4)N18—C17—H17B110.3
O1—C2—C1115.9 (3)H17A—C17—H17B108.6
C4—C3—C1111.9 (4)C17—N18—Co1109.2 (3)
C4—C3—H3A109.2C17—N18—H18A109.8
C1—C3—H3A109.2Co1—N18—H18A109.8
C4—C3—H3B109.2C17—N18—H18B109.8
C1—C3—H3B109.2Co1—N18—H18B109.8
H3A—C3—H3B107.9H18A—N18—H18B108.3
O3—C4—O4122.8 (6)O14—Cl1—O13A77.1 (7)
O3—C4—C3125.5 (5)O14—Cl1—O11117.2 (6)
O4—C4—C3111.7 (5)O13A—Cl1—O11129.7 (8)
C4—O4—C5119.3 (7)O14—Cl1—O12115.8 (7)
O4—C5—C6103.9 (9)O13A—Cl1—O12107.0 (8)
O4—C5—H5A111.0O11—Cl1—O12107.7 (4)
C6—C5—H5A111.0O13A—Cl1—O14A109.2 (8)
O4—C5—H5B111.0O11—Cl1—O14A100.8 (7)
C6—C5—H5B111.0O12—Cl1—O14A98.1 (8)
H5A—C5—H5B109.0O14—Cl1—O13108.7 (6)
C5—C6—H6A109.5O11—Cl1—O13102.9 (5)
C5—C6—H6B109.5O12—Cl1—O13102.9 (6)
H6A—C6—H6B109.5O14A—Cl1—O13141.7 (7)
C5—C6—H6C109.5O21—Cl2—O24107.8 (13)
H6A—C6—H6C109.5O21—Cl2—O23110.2 (11)
H6B—C6—H6C109.5O24—Cl2—O23110.5 (10)
C12—N11—Co1109.1 (3)O21—Cl2—O22108.3 (9)
C12—N11—H11A109.9O24—Cl2—O22103.2 (11)
Co1—N11—H11A109.9O23—Cl2—O22116.3 (11)
C12—N11—H11B109.9O21A—Cl2A—O22A117.1 (17)
Co1—N11—H11B109.9O21A—Cl2A—O23A108.4 (14)
H11A—N11—H11B108.3O22A—Cl2A—O23A113.8 (15)
C13—C12—N11109.2 (5)O21A—Cl2A—O24A116.4 (17)
C13—C12—H12A109.8O22A—Cl2A—O24A100.6 (14)
N11—C12—H12A109.8O23A—Cl2A—O24A99.2 (13)
C13—C12—H12B109.8H10A—O10—H10B104.0
N11—C12—H12B109.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O30.902.362.909 (5)119
N1—H1A···O100.902.383.205 (7)152
N1—H1B···O220.902.293.147 (14)160
N1—H1B···O21A0.902.643.10 (2)113
N11—H11A···O2i0.902.132.985 (5)158
N11—H11B···O30.902.153.013 (6)160
N14—H14A···O100.902.243.099 (8)159
N15—H15A···O2i0.902.032.880 (5)157
N15—H15B···O11ii0.902.323.127 (6)149
N18—H18B···O12iii0.902.213.113 (7)176
O10—H10A···O140.862.173.017 (15)173
O10—H10A···O14A0.861.952.778 (19)165
O10—H10B···O23iv0.862.163.01 (2)173
O10—H10B···O22Aiv0.862.402.99 (2)127
Symmetry codes: (i) x+1, y1/2, z+2; (ii) x+1, y1/2, z+1; (iii) x+1, y+1/2, z+1; (iv) x, y+1/2, z+1.
(II) Δ(-)578-bis(ethane-1,2-diamine)[β-ethyl (S)-aspartato- κ2N,O1]cobalt(III) bis(perchlorate) monohydrate top
Crystal data top
[Co(C6H10N2O4)(C2H8N2)2](ClO4)2·H2ODx = 1.748 Mg m3
Mr = 556.20Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43212Cell parameters from 32707 reflections
Hall symbol: P 4nw 2abwθ = 1.7–27.5°
a = 9.2898 (3) ŵ = 1.14 mm1
c = 48.9696 (14) ÅT = 122 K
V = 4226.1 (2) Å3Prism, orange
Z = 80.20 × 0.19 × 0.07 mm
F(000) = 2304
Data collection top
Nonius KappaCCD area-detector
diffractometer
4818 independent reflections
Radiation source: fine-focus sealed tube4583 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ω and ϕ scansθmax = 27.5°, θmin = 2.2°
Absorption correction: integration
(Gaussian integration; Coppens, 1970)
h = 1212
Tmin = 0.810, Tmax = 0.924k = 1212
84126 measured reflectionsl = 6363
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0298P)2 + 3.6785P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4818 reflectionsΔρmax = 0.55 e Å3
302 parametersΔρmin = 0.87 e Å3
5 restraintsAbsolute structure: Flack (1983), with 1893 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.017 (11)
Crystal data top
[Co(C6H10N2O4)(C2H8N2)2](ClO4)2·H2OZ = 8
Mr = 556.20Mo Kα radiation
Tetragonal, P43212µ = 1.14 mm1
a = 9.2898 (3) ÅT = 122 K
c = 48.9696 (14) Å0.20 × 0.19 × 0.07 mm
V = 4226.1 (2) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
4818 independent reflections
Absorption correction: integration
(Gaussian integration; Coppens, 1970)
4583 reflections with I > 2σ(I)
Tmin = 0.810, Tmax = 0.924Rint = 0.055
84126 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.064Δρmax = 0.55 e Å3
S = 1.05Δρmin = 0.87 e Å3
4818 reflectionsAbsolute structure: Flack (1983), with 1893 Friedel pairs
302 parametersAbsolute structure parameter: 0.017 (11)
5 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.23045 (3)0.56261 (3)0.085906 (5)0.00832 (6)
N10.09632 (18)0.54275 (18)0.11644 (3)0.0103 (3)
H1A0.00350.55600.11040.012*
H1B0.10330.45180.12370.012*
O10.33189 (15)0.69449 (15)0.10829 (3)0.0098 (3)
O20.34389 (16)0.78129 (16)0.15067 (3)0.0131 (3)
O30.27508 (19)0.41040 (18)0.15997 (3)0.0220 (4)
O40.16021 (17)0.43102 (18)0.20028 (3)0.0191 (3)
C10.1315 (2)0.6519 (2)0.13766 (4)0.0090 (4)
H10.06360.73380.13450.011*
C20.2815 (2)0.7120 (2)0.13273 (4)0.0095 (4)
C30.1033 (2)0.6007 (2)0.16663 (4)0.0124 (4)
H3A0.12520.68020.17940.015*
H3B0.00020.57740.16850.015*
C40.1903 (2)0.4709 (2)0.17465 (4)0.0132 (4)
C50.2501 (3)0.3192 (3)0.21218 (5)0.0253 (5)
H5A0.27450.24690.19810.030*
H5B0.19670.26980.22700.030*
C60.3853 (3)0.3835 (3)0.22345 (6)0.0365 (7)
H6A0.44470.30750.23150.044*
H6B0.36080.45460.23750.044*
H6C0.43890.43070.20870.044*
N110.35455 (18)0.41039 (19)0.10045 (3)0.0120 (3)
H11A0.40160.44330.11580.014*
H11B0.29930.33240.10540.014*
C120.4613 (2)0.3662 (2)0.07960 (4)0.0167 (4)
H12A0.41640.30160.06600.020*
H12B0.54300.31510.08820.020*
C130.5120 (2)0.5037 (2)0.06626 (5)0.0160 (4)
H13A0.57010.56110.07930.019*
H13B0.57200.48170.05010.019*
N140.38064 (18)0.5852 (2)0.05796 (3)0.0133 (3)
H14A0.34760.55130.04150.016*
H14B0.40280.68120.05590.016*
N150.11508 (18)0.4312 (2)0.06352 (3)0.0134 (3)
H15A0.17110.39300.04980.016*
H15B0.08150.35660.07410.016*
C160.0088 (2)0.5115 (3)0.05141 (5)0.0200 (5)
H16A0.08930.51630.06460.024*
H16B0.04310.46230.03470.024*
C170.0432 (2)0.6613 (2)0.04456 (4)0.0177 (4)
H17A0.11080.65820.02890.021*
H17B0.03910.72380.03960.021*
N180.11710 (19)0.71749 (19)0.06940 (3)0.0123 (3)
H18A0.05000.75060.08170.015*
H18B0.17640.79290.06470.015*
Cl10.17332 (5)0.07588 (6)0.103024 (11)0.01638 (11)
O110.09154 (17)0.04003 (16)0.11450 (3)0.0192 (3)
O120.3110 (2)0.0861 (2)0.11591 (5)0.0457 (6)
O130.09670 (17)0.20982 (16)0.10747 (3)0.0203 (3)
O140.1915 (3)0.0541 (2)0.07447 (4)0.0501 (6)
Cl20.29250.29250.00000.01723 (15)
O210.2552 (2)0.2067 (2)0.02326 (3)0.0304 (4)
O220.2681 (2)0.4413 (2)0.00661 (4)0.0345 (5)
Cl30.67030.67030.00000.01984 (15)
O310.7031 (4)0.7125 (8)0.02820 (12)0.0405 (19)0.565 (13)
O320.5347 (8)0.7266 (10)0.00668 (14)0.060 (2)0.565 (13)
O31X0.7162 (9)0.7846 (10)0.0157 (2)0.069 (3)0.435 (13)
O32X0.5181 (8)0.6563 (15)0.00084 (16)0.066 (3)0.435 (13)
O100.3470 (2)0.8751 (2)0.03275 (4)0.0290 (4)
H10A0.416 (3)0.868 (3)0.0229 (5)0.035*
H10B0.330 (4)0.961 (2)0.0329 (6)0.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.00788 (13)0.00886 (13)0.00820 (11)0.00048 (10)0.00033 (10)0.00106 (10)
N10.0077 (8)0.0118 (8)0.0115 (7)0.0008 (6)0.0001 (6)0.0004 (6)
O10.0092 (6)0.0099 (7)0.0104 (6)0.0006 (5)0.0013 (5)0.0006 (5)
O20.0120 (7)0.0145 (7)0.0128 (7)0.0010 (6)0.0011 (6)0.0029 (6)
O30.0286 (9)0.0228 (8)0.0147 (7)0.0125 (7)0.0034 (7)0.0017 (6)
O40.0224 (8)0.0223 (8)0.0126 (7)0.0034 (7)0.0018 (6)0.0051 (6)
C10.0087 (9)0.0087 (9)0.0094 (8)0.0002 (7)0.0001 (7)0.0003 (7)
C20.0098 (9)0.0075 (8)0.0112 (9)0.0036 (7)0.0013 (7)0.0007 (7)
C30.0135 (10)0.0129 (10)0.0107 (9)0.0000 (8)0.0018 (8)0.0009 (8)
C40.0150 (10)0.0132 (10)0.0114 (9)0.0031 (7)0.0009 (8)0.0001 (8)
C50.0339 (14)0.0236 (12)0.0183 (11)0.0052 (11)0.0017 (10)0.0104 (9)
C60.0318 (15)0.0465 (18)0.0312 (14)0.0028 (12)0.0121 (12)0.0090 (13)
N110.0123 (8)0.0110 (8)0.0127 (8)0.0002 (6)0.0011 (6)0.0008 (6)
C120.0158 (11)0.0169 (10)0.0175 (10)0.0064 (8)0.0020 (8)0.0026 (8)
C130.0108 (10)0.0210 (11)0.0161 (10)0.0039 (8)0.0032 (8)0.0010 (9)
N140.0133 (8)0.0155 (9)0.0111 (8)0.0003 (7)0.0018 (6)0.0013 (7)
N150.0126 (8)0.0149 (9)0.0126 (8)0.0018 (7)0.0009 (7)0.0034 (7)
C160.0149 (11)0.0231 (12)0.0220 (11)0.0001 (9)0.0065 (9)0.0060 (9)
C170.0196 (11)0.0199 (11)0.0136 (10)0.0019 (9)0.0053 (8)0.0012 (8)
N180.0131 (8)0.0133 (8)0.0105 (8)0.0006 (7)0.0005 (6)0.0011 (7)
Cl10.0154 (2)0.0104 (2)0.0233 (3)0.00101 (19)0.00586 (19)0.00234 (19)
O110.0191 (8)0.0100 (7)0.0283 (8)0.0009 (6)0.0085 (7)0.0057 (6)
O120.0190 (9)0.0234 (10)0.0948 (18)0.0020 (8)0.0185 (11)0.0094 (11)
O130.0187 (8)0.0093 (7)0.0330 (9)0.0012 (6)0.0018 (7)0.0033 (7)
O140.0891 (18)0.0352 (12)0.0260 (10)0.0043 (12)0.0296 (11)0.0001 (9)
Cl20.0197 (4)0.0220.0102 (3)0.0020 (3)0.0000.000
O210.0380 (11)0.0336 (10)0.0196 (8)0.0037 (9)0.0089 (8)0.0074 (7)
O220.0552 (13)0.0237 (9)0.0246 (9)0.0050 (9)0.0024 (8)0.0099 (7)
Cl30.0192 (4)0.0230.0175 (3)0.0026 (3)0.0000.000
O310.037 (2)0.052 (4)0.033 (3)0.006 (2)0.0103 (18)0.023 (3)
O320.048 (4)0.094 (5)0.039 (3)0.048 (4)0.019 (3)0.020 (3)
O31X0.125 (7)0.037 (4)0.044 (5)0.011 (4)0.019 (4)0.028 (4)
O32X0.022 (3)0.140 (9)0.037 (3)0.005 (4)0.003 (2)0.034 (4)
O100.0335 (11)0.0249 (9)0.0287 (9)0.0027 (8)0.0006 (8)0.0042 (8)
Geometric parameters (Å, º) top
Co1—O11.8948 (14)C13—H13B0.9900
Co1—N11.9552 (16)N14—H14A0.9200
Co1—N111.9586 (17)N14—H14B0.9200
Co1—N141.9655 (17)N15—C161.494 (3)
Co1—N151.9600 (17)N15—H15A0.9200
Co1—N181.9575 (18)N15—H15B0.9200
N1—C11.488 (2)C16—C171.510 (3)
N1—H1A0.9200C16—H16A0.9900
N1—H1B0.9200C16—H16B0.9900
O1—C21.296 (2)C17—N181.491 (3)
O2—C21.234 (2)C17—H17A0.9900
O3—C41.206 (3)C17—H17B0.9900
C1—C21.521 (3)N18—H18A0.9200
C1—C31.519 (3)N18—H18B0.9200
C1—H11.0000Cl1—O141.4230 (19)
C3—C41.503 (3)Cl1—O121.429 (2)
O4—C41.338 (2)Cl1—O111.4327 (15)
O4—C51.455 (3)Cl1—O131.4499 (16)
C3—H3A0.9900Cl2—O211.4331 (17)
C3—H3B0.9900Cl2—O21i1.4332 (17)
C5—C61.496 (4)Cl2—O221.4375 (18)
C5—H5A0.9900Cl2—O22i1.4375 (18)
C5—H5B0.9900Cl3—O31X1.379 (5)
C6—H6A0.9800Cl3—O31Xi1.379 (5)
C6—H6B0.9800Cl3—O32i1.403 (5)
C6—H6C0.9800Cl3—O321.403 (5)
N11—C121.481 (3)Cl3—O32Xi1.421 (7)
N11—H11A0.9200Cl3—O32X1.421 (7)
N11—H11B0.9200Cl3—O311.468 (4)
C12—C131.510 (3)Cl3—O31i1.468 (4)
C12—H12A0.9900O31X—O31Xi1.784 (16)
C12—H12B0.9900O32X—O32Xi1.82 (2)
C13—N141.493 (3)O10—H10A0.802 (18)
C13—H13A0.9900O10—H10B0.814 (18)
O1—Co1—N186.31 (6)H13A—C13—H13B108.6
O1—Co1—N1891.78 (7)C13—N14—Co1109.68 (13)
N1—Co1—N1892.43 (7)C13—N14—H14A109.7
O1—Co1—N1187.92 (7)Co1—N14—H14A109.7
N1—Co1—N1191.66 (7)C13—N14—H14B109.7
N18—Co1—N11175.88 (7)Co1—N14—H14B109.7
O1—Co1—N15176.67 (7)H14A—N14—H14B108.2
N1—Co1—N1591.18 (7)C16—N15—Co1109.39 (14)
N18—Co1—N1586.14 (8)C16—N15—H15A109.8
N11—Co1—N1594.33 (8)Co1—N15—H15A109.8
O1—Co1—N1488.88 (7)C16—N15—H15B109.8
N1—Co1—N14174.23 (7)Co1—N15—H15B109.8
N18—Co1—N1490.91 (8)H15A—N15—H15B108.2
N11—Co1—N1484.98 (7)N15—C16—C17107.57 (18)
N15—Co1—N1493.75 (7)N15—C16—H16A110.2
C1—N1—Co1109.27 (12)C17—C16—H16A110.2
C1—N1—H1A109.8N15—C16—H16B110.2
Co1—N1—H1A109.8C17—C16—H16B110.2
C1—N1—H1B109.8H16A—C16—H16B108.5
Co1—N1—H1B109.8N18—C17—C16106.78 (17)
H1A—N1—H1B108.3N18—C17—H17A110.4
C2—O1—Co1115.84 (13)C16—C17—H17A110.4
C4—O4—C5116.99 (17)N18—C17—H17B110.4
N1—C1—C3113.65 (16)C16—C17—H17B110.4
N1—C1—C2109.90 (15)H17A—C17—H17B108.6
C3—C1—C2114.89 (16)C17—N18—Co1109.09 (13)
N1—C1—H1105.9C17—N18—H18A109.9
C3—C1—H1105.9Co1—N18—H18A109.9
C2—C1—H1105.9C17—N18—H18B109.9
O2—C2—O1123.61 (19)Co1—N18—H18B109.9
O2—C2—C1120.62 (17)H18A—N18—H18B108.3
O1—C2—C1115.57 (17)O14—Cl1—O12109.68 (16)
C4—C3—C1113.76 (16)O14—Cl1—O11109.97 (12)
C4—C3—H3A108.8O12—Cl1—O11110.55 (11)
C1—C3—H3A108.8O14—Cl1—O13109.15 (12)
C4—C3—H3B108.8O12—Cl1—O13108.43 (11)
C1—C3—H3B108.8O11—Cl1—O13109.01 (9)
H3A—C3—H3B107.7O21—Cl2—O21i111.27 (16)
O3—C4—O4124.49 (19)O21—Cl2—O22108.51 (11)
O3—C4—C3124.70 (18)O21i—Cl2—O22108.89 (11)
O4—C4—C3110.81 (17)O21—Cl2—O22i108.89 (11)
O4—C5—C6110.1 (2)O21i—Cl2—O22i108.51 (11)
O4—C5—H5A109.6O22—Cl2—O22i110.78 (17)
C6—C5—H5A109.6O31X—Cl3—O31Xi80.6 (9)
O4—C5—H5B109.6O31X—Cl3—O32i116.5 (8)
C6—C5—H5B109.6O31Xi—Cl3—O32i96.9 (4)
H5A—C5—H5B108.2O31X—Cl3—O3296.9 (4)
C5—C6—H6A109.5O31Xi—Cl3—O32116.5 (8)
C5—C6—H6B109.5O32i—Cl3—O32136.4 (9)
H6A—C6—H6B109.5O31X—Cl3—O32Xi144.2 (8)
C5—C6—H6C109.5O31Xi—Cl3—O32Xi111.2 (6)
H6A—C6—H6C109.5O32—Cl3—O32Xi106.4 (9)
H6B—C6—H6C109.5O31X—Cl3—O32X111.2 (6)
C12—N11—Co1110.10 (13)O31Xi—Cl3—O32X144.2 (8)
C12—N11—H11A109.6O32i—Cl3—O32X106.4 (9)
Co1—N11—H11A109.6O32—Cl3—O32X31.5 (3)
C12—N11—H11B109.6O32Xi—Cl3—O32X79.5 (11)
Co1—N11—H11B109.6O31Xi—Cl3—O31106.5 (7)
H11A—N11—H11B108.2O32i—Cl3—O3186.7 (6)
N11—C12—C13105.81 (17)O32—Cl3—O31107.8 (3)
N11—C12—H12A110.6O32Xi—Cl3—O31108.2 (6)
C13—C12—H12A110.6O32X—Cl3—O31101.8 (4)
N11—C12—H12B110.6O31X—Cl3—O31i106.5 (7)
C13—C12—H12B110.6O32i—Cl3—O31i107.8 (3)
H12A—C12—H12B108.7O32—Cl3—O31i86.7 (6)
N14—C13—C12106.97 (17)O32Xi—Cl3—O31i101.8 (4)
N14—C13—H13A110.3O32X—Cl3—O31i108.2 (6)
C12—C13—H13A110.3O31—Cl3—O31i140.8 (6)
N14—C13—H13B110.3H10A—O10—H10B104 (3)
C12—C13—H13B110.3
Symmetry code: (i) y, x, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2ii0.922.192.979 (2)144
N1—H1A···O12iii0.922.513.034 (3)117
N1—H1B···O130.922.393.124 (2)137
N1—H1B···O30.922.422.969 (2)119
N11—H11A···O11iv0.922.203.040 (2)151
N11—H11A···O30.922.483.007 (2)117
N11—H11B···O130.922.203.054 (2)154
N11—H11B···O120.922.353.133 (3)143
N14—H14A···O220.922.123.034 (2)171
N14—H14B···O100.922.192.979 (3)143
N15—H15A···O210.922.303.151 (3)153
N15—H15A···O220.922.343.129 (3)143
N15—H15B···O130.922.132.982 (2)153
N18—H18A···O2ii0.922.122.931 (2)146
N18—H18A···O11v0.922.553.164 (2)124
N18—H18B···O100.922.363.151 (3)145
O10—H10A···O320.80 (2)2.25 (2)2.944 (6)146 (3)
O10—H10B···O14v0.81 (2)2.56 (3)3.004 (3)116 (3)
Symmetry codes: (ii) x1/2, y+3/2, z+1/4; (iii) x1/2, y+1/2, z+1/4; (iv) x+1/2, y+1/2, z+1/4; (v) x, y+1, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[Co(C6H10N2O4)(C2H8N2)2](ClO4)2·H2O[Co(C6H10N2O4)(C2H8N2)2](ClO4)2·H2O
Mr556.20556.20
Crystal system, space groupMonoclinic, P21Tetragonal, P43212
Temperature (K)298122
a, b, c (Å)11.6507 (4), 8.7600 (5), 11.7169 (6)9.2898 (3), 9.2898 (3), 48.9696 (14)
α, β, γ (°)90, 113.572 (4), 9090, 90, 90
V3)1096.04 (9)4226.1 (2)
Z28
Radiation typeMo KαMo Kα
µ (mm1)1.101.14
Crystal size (mm)0.35 × 0.14 × 0.130.20 × 0.19 × 0.07
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Nonius KappaCCD area-detector
diffractometer
Absorption correctionIntegration
(Gaussian integration; Coppens, 1970)
Integration
(Gaussian integration; Coppens, 1970)
Tmin, Tmax0.675, 0.8980.810, 0.924
No. of measured, independent and
observed [I > 2σ(I)] reflections
31975, 4996, 4684 84126, 4818, 4583
Rint0.0330.055
(sin θ/λ)max1)0.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.139, 1.05 0.026, 0.064, 1.05
No. of reflections49964818
No. of parameters285302
No. of restraints1615
H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.57, 0.360.55, 0.87
Absolute structureFlack (1983), 2329 Friedel pairsFlack (1983), with 1893 Friedel pairs
Absolute structure parameter0.01 (2)0.017 (11)

Computer programs: COLLECT (Nonius, 1999), EVALCCD (Duisenberg et al., 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006).

Selected bond lengths (Å) for (I) top
Co1—O11.883 (3)O2—C21.231 (5)
Co1—N11.960 (3)O3—C41.176 (8)
Co1—N111.959 (4)C1—C21.511 (6)
Co1—N141.957 (4)C1—C31.525 (6)
Co1—N151.957 (3)C3—C41.481 (7)
Co1—N181.969 (3)C4—O41.330 (7)
N1—C11.485 (6)O4—C51.480 (13)
O1—C21.294 (5)C5—C61.516 (5)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O30.902.362.909 (5)119
N1—H1A···O100.902.383.205 (7)152
N1—H1B···O220.902.293.147 (14)160
N1—H1B···O21A0.902.643.10 (2)113
N11—H11A···O2i0.902.132.985 (5)158
N11—H11B···O30.902.153.013 (6)160
N14—H14A···O100.902.243.099 (8)159
N15—H15A···O2i0.902.032.880 (5)157
N15—H15B···O11ii0.902.323.127 (6)149
N18—H18B···O12iii0.902.213.113 (7)176
O10—H10A···O140.8602.173.017 (15)173
O10—H10A···O14A0.8601.952.778 (19)165
O10—H10B···O23iv0.8602.163.01 (2)173
O10—H10B···O22Aiv0.8602.402.99 (2)127
Symmetry codes: (i) x+1, y1/2, z+2; (ii) x+1, y1/2, z+1; (iii) x+1, y+1/2, z+1; (iv) x, y+1/2, z+1.
Selected bond lengths (Å) for (II) top
Co1—O11.8948 (14)O2—C21.234 (2)
Co1—N11.9552 (16)O3—C41.206 (3)
Co1—N111.9586 (17)C1—C21.521 (3)
Co1—N141.9655 (17)C1—C31.519 (3)
Co1—N151.9600 (17)C3—C41.503 (3)
Co1—N181.9575 (18)O4—C41.338 (2)
N1—C11.488 (2)O4—C51.455 (3)
O1—C21.296 (2)C5—C61.496 (4)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.922.192.979 (2)144
N1—H1A···O12ii0.922.513.034 (3)117
N1—H1B···O130.922.393.124 (2)137
N1—H1B···O30.922.422.969 (2)119
N11—H11A···O11iii0.922.203.040 (2)151
N11—H11A···O30.922.483.007 (2)117
N11—H11B···O130.922.203.054 (2)154
N11—H11B···O120.922.353.133 (3)143
N14—H14A···O220.922.123.034 (2)171
N14—H14B···O100.922.192.979 (3)143
N15—H15A···O210.922.303.151 (3)153
N15—H15A···O220.922.343.129 (3)143
N15—H15B···O130.922.132.982 (2)153
N18—H18A···O2i0.922.122.931 (2)146
N18—H18A···O11iv0.922.553.164 (2)124
N18—H18B···O100.922.363.151 (3)145
O10—H10A···O320.802 (18)2.25 (2)2.944 (6)146 (3)
O10—H10B···O14iv0.814 (18)2.56 (3)3.004 (3)116 (3)
Symmetry codes: (i) x1/2, y+3/2, z+1/4; (ii) x1/2, y+1/2, z+1/4; (iii) x+1/2, y+1/2, z+1/4; (iv) x, y+1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds