Download citation
Download citation
link to html
In the structure of the title compound, [Cd2(C4H4NO4S)2(C6H7N)2], the dinuclear CdII complex is located on a twofold axis with two Cd2+ ions bridged by two oxide O atoms. Each Cd2+ ion is additionally coordinated in an equatorial plane by two N and three O atoms of the acesulfamate ligands and axially by two N atoms of the 3-methyl­pyridine ligands, resulting in a distorted penta­gonal bipyramidal coordination. We present here an example of a supra­molecular assembly based on hydrogen bonds in a mixed-ligand metal complex; inter­molecular C—H...O hydrogen bonds give rise to R44(40) rings, which lead to one-dimensional chains.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109044515/lg3020sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109044515/lg3020Isup2.hkl
Contains datablock I

CCDC reference: 763584

Comment top

Acesulfame (C4H5SO4N) is an oxathiazinone dioxide and is systematically named as 6-methyl-1,2,3-oxathiazin-4(3H)-one 2,2-dioxide; it is also known as 6-methyl-3,4-dihydro-1,2,3-oxathiazin-4-one 2,2-dioxide or acetosulfam. It was discovered by chemist Karl Clauss in 1967 (Clauss & Jensen, 1973) and has been widely used as a non-calorific artificial sweetener since 1988, after the FDA (US Food and Drug Administration) granted approval (Duffy & Anderson, 1998). Many countries have approved the use of acesulfame K, viz. the potassium salt of acesulfame, in soft drinks, candies, toothpastes, mouthwashes, cosmetics and pharmacological preparations (Mukherjee & Chakrabarti, 1997). The acesulfamate ion (acs-), C4H5NO4S-, has several potential donor atoms and thus, as a polyfunctional ligand, it can engage in N, OCO, OOSO or O coordination with different metal ions. In order to examine the coordination behaviour of acesulfame in metal complexes, the title complex, (I), has been synthesized and its crystal structure is presented here.

The ongoing research carried out in our laboratory on the coordination behaviour of the acesulfamato ligand in transition metal complexes has revealed that four different bonding patterns may exist: N-coordination through imino N (İçbudak, Bulut et al., 2005), O-coordination through carbonyl O (İçbudak et al., 2006), N, O-coordination through imino N and carbonyl O as a bidendate ligand (Bulut et al., 2005), and the acesulfamate ion remaining outside the coordination sphere when the secondary ligand has strong chelating properties (İçbudak, Heren et al., 2005). Compound (I) is the first complex containing the bridging acesulfamato ligand.

In complex (I), located on a twofold axis, one of the crystallographically independent acesulfamato ligands shows bidendate behaviour and coordinates to a CdII ion both through the imino N and the O atom of the carbonyl group. The other acesulfamato ligand behaves as a bridging ligand between two CdII ions via O atom of the carbonyl group and also coordinates to one of the CdII ions via the imino N (see scheme and Fig.1).

Both Cd2+ ions are coordinated by three O atoms and two N atoms of the acesulfamato ligands and two N atoms of the 3-methylpyridine ligands. Thus, four four-membered chelate rings (Cd1/N3/C13/O4, Cd1/N4/C17/O5 and their symmetry-related counterparts) are formed. Two of the O atoms of the acesulfamato ligands act as a µ2 bridge connecting two Cd2+ ions, thus forming a rhomboidal Cd2O2 ring. The Cd···Cdi [symmetry code: (i) 1 - x, y, 1/2 - z] distance is 4.0526 (5) Å, and the dihedral angles between the rhomboid ring and the four-membered chelate rings are 11.07 (4)° and 2.31 (1)°, respectively. Each Cd2+ ion is seven-coordinate, forming a distorted pentagonal bipyramid, with atoms N3, O4, N4, O5 and O5i forming the distorted pentagonal plane. The coordination number seven for CdII is rare because of increased ligand–ligand repulsion, weaker bonds and, usually, reduced crystal field stabilization in comparison with octahedral complexes. Coordination seven is most commonly found in discrete complexes of second- and third-row transition metals, such as lanthanides and actinides (Arndt et al., 2002; Han et al., 1999). The three known coordination geometries for seven-coordination are (i) pentagonal bipyramidal (Rodesiler et al., 1985), (ii) capped octahedral with a seventh ligand added to a rectangular face (Chen et al., 2008) and (iii) capped trigonal prismatic with a seventh ligand added to a rectangular face (Yeşilel et al., 2007). These geometries are considered to have approximately equal a priori probabilities (Park et al., 1970). The first coordination geometry, viz. (i), is observed in (I). The pentagonal bipyramidal coordination of the d3sp3-hybridized Cd2+ ion is seldom observed as an octahedral d2sp3 hybridization with six coordination bonds is usually preferred. The acesulfame rings adopt a half-chair conformation, as evidenced from the puckering parameters (Cremer & Pople, 1975): Q = 0.391 (3) Å, θ = 62.5 (4)° and ϕ = 12.2 (6)° for S1/O3/C15/C14/C13/N3 and Q = 0.319 (2) Å, θ = 58.3 (5)° and ϕ = 13.9 (6)° for S2/O8/C19/C18/C17/N4. The pyridine rings are planar (χ2 = 3.3 and 5.0, respectively), with maximum deviations from the least-squares planes of 0.004 (5) Å for atom C2 and 0.002 (3) Å for atom N2.

Crystal packing is achieved via intermolecular hydrogen bonding (Fig. 2 and Table 2). The intramolecular C18—H18···O1i hydrogen bond can be described as an S(8) ring in graph-set notation (Bernstein et al., 1995). Atom C6 acts as hydrogen-bond donor, via atom H6C, to atom O6 in the molecule at (3/2 - x, -1/2 + y, 1/2 - z), thus forming C(9) and C(11) chains running parallel to the b axis. The combination of these chains generates a chain of edge-fused R44(40) rings parallel to the ab plane (Fig. 2).

Fig.3 shows two intermolecular ππ interactions between the two symmetry-related pyridine rings withing the complex (I). The ring 3, defined by atoms N1/C1/C2/C3/C4/C5, has perpendicular distance to its symmetry-related counterpart, 3.979 Å. The distance between the ring centroids Cg3 and Cg3i is 3.981 (2) Å. The ring 4, defined by atoms N2/C7/C8/C9/C10/C11, has perpendicular distance to its symmetry-related counterpart, 3.558 Å. The distance between the ring centroids Cg4 and Cg4i is 3.658 (2) Å.

Related literature top

For related literature, see: Arndt et al. (2002); Bernstein et al. (1995); Bulut et al. (2005); Chen et al. (2008); Clauss & Jensen (1973); Cremer & Pople (1975); Duffy & Anderson (1998); Han et al. (1999); Mukherjee & Chakrabarti (1997); Park et al. (1970); Rodesiler et al. (1985); Sheldrick (2008); Yeşilel et al. (2007); İçbudak et al. (2006); İçbudak, Bulut, Çetin & Kazak (2005); İçbudak, Heren, Uyanık & Odabaşoglu (2005).

Experimental top

The [Cd(acs)2(H2O)4] complex was synthesized as reported earlier (İçbudak et al., 2006). [Cd(acs)2(H2O)4] (0.5 mmol) was dissolved in 50 ml of acetone and a solution of 3-methyl pyridine (1 mmol) in 50 ml of acetone was added to the stirred solution, vigorously stirred for 3 h at 323 K and then cooled to ambient temperature. The resulting colourless crystals were washed with an acetone-1,2-dichloroethane (1:1) mixture and dried under vacuum (yield 92%).

Refinement top

All H atoms were positioned geometrically and refined with a riding model, fixing the bond lengths at 0.93 and 0.96 Å for CH and CH3 groups, respectively. The Uiso(H) values were constrained to be 1.2Ueq(parent) or 1.5Ueq(methyl C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry code as in Table 2.]
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of a chain of edge-fused R44(40) rings. Hydrogen bonds are indicated by dashed lines. For the sake of clarity, H atoms not involved in the motif shown have been omitted. [Symmetry codes: (i) 1 - x, y, 1/2 - z; (ii) 3/2 - x, -1/2 + y, 1/2 - z; (iii) x, -1 + y, z; (iv) 1 - x, -1 + y, 1/2 - z; (v) -1/2 + x, -1/2 + y, z.]
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the ππ interactions between pyridine rings. [Symmetry code as in Table 2.]
Di-µ-acesulfamato- κ3N,O:O;κ3O:N,O- bis[(acesulfamato-κ2N,O)bis(3-methylpyridine)cadmium(II)] top
Crystal data top
[Cd2(C4H4NO4S)2(C6H7N)2]F(000) = 2512
Mr = 1245.87Dx = 1.652 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 13627 reflections
a = 14.9475 (12) Åθ = 1.9–28.5°
b = 16.5004 (11) ŵ = 1.09 mm1
c = 21.4067 (15) ÅT = 296 K
β = 108.427 (6)°Prism, colourless
V = 5009.0 (7) Å30.47 × 0.43 × 0.28 mm
Z = 4
Data collection top
Stoe IPDS-2
diffractometer
4901 independent reflections
Radiation source: fine-focus sealed tube3749 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scan rotationθmax = 26.0°, θmin = 1.9°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 1818
Tmin = 0.637, Tmax = 0.763k = 2020
13627 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0356P)2 + 1.3644P]
where P = (Fo2 + 2Fc2)/3
4901 reflections(Δ/σ)max = 0.001
319 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Cd2(C4H4NO4S)2(C6H7N)2]V = 5009.0 (7) Å3
Mr = 1245.87Z = 4
Monoclinic, C2/cMo Kα radiation
a = 14.9475 (12) ŵ = 1.09 mm1
b = 16.5004 (11) ÅT = 296 K
c = 21.4067 (15) Å0.47 × 0.43 × 0.28 mm
β = 108.427 (6)°
Data collection top
Stoe IPDS-2
diffractometer
4901 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
3749 reflections with I > 2σ(I)
Tmin = 0.637, Tmax = 0.763Rint = 0.029
13627 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.05Δρmax = 0.50 e Å3
4901 reflectionsΔρmin = 0.37 e Å3
319 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.622132 (15)0.377488 (13)0.227824 (9)0.04753 (8)
S10.62964 (7)0.38141 (6)0.04405 (4)0.0665 (2)
S20.80066 (5)0.38415 (6)0.39819 (4)0.0619 (2)
O10.5588 (2)0.3228 (2)0.01634 (14)0.0963 (9)
O20.6117 (2)0.46149 (18)0.02057 (15)0.1035 (10)
O30.71960 (18)0.35070 (16)0.02395 (12)0.0748 (7)
O40.77421 (18)0.39902 (15)0.21741 (11)0.0718 (7)
O50.54530 (15)0.37428 (14)0.31906 (10)0.0634 (5)
O60.8222 (2)0.46656 (19)0.40701 (14)0.1059 (10)
O70.8678 (2)0.3312 (3)0.38644 (16)0.1204 (12)
O80.79133 (18)0.35291 (19)0.46705 (11)0.0833 (8)
N10.61301 (17)0.23936 (15)0.21994 (11)0.0510 (6)
N20.60304 (19)0.51496 (16)0.22082 (12)0.0560 (6)
N30.6619 (2)0.37658 (17)0.12156 (13)0.0598 (6)
N40.69991 (17)0.37044 (17)0.34621 (10)0.0536 (6)
C10.6602 (2)0.1911 (2)0.26968 (15)0.0594 (8)
H10.69700.21460.30890.071*
C20.6562 (3)0.1081 (2)0.26484 (17)0.0720 (10)
H20.69030.07600.30000.086*
C30.6012 (3)0.0734 (2)0.20728 (17)0.0634 (8)
H30.59730.01730.20350.076*
C40.5518 (2)0.1209 (2)0.15539 (15)0.0549 (7)
C50.5605 (2)0.20393 (19)0.16434 (15)0.0547 (7)
H50.52770.23710.12950.066*
C60.4906 (3)0.0857 (2)0.09149 (18)0.0769 (10)
H6A0.46960.12830.05960.115*
H6B0.43690.05980.09820.115*
H6C0.52600.04670.07580.115*
C70.6357 (2)0.5595 (2)0.27548 (16)0.0602 (8)
H70.66020.53220.31530.072*
C80.6356 (3)0.6427 (2)0.27687 (19)0.0679 (10)
C90.5993 (3)0.6815 (2)0.2175 (2)0.0816 (12)
H90.59810.73780.21600.098*
C100.5650 (3)0.6380 (2)0.1608 (2)0.0799 (12)
H100.54030.66450.12070.096*
C110.5674 (3)0.5543 (2)0.16345 (17)0.0657 (9)
H110.54380.52470.12470.079*
C120.6761 (4)0.6856 (3)0.3418 (2)0.1045 (16)
H12A0.72810.71900.34040.157*
H12B0.69770.64630.37640.157*
H12C0.62840.71890.35000.157*
C130.7525 (3)0.39350 (17)0.15649 (17)0.0593 (8)
C140.8239 (3)0.3997 (2)0.12323 (17)0.0641 (9)
H140.88310.42030.14640.077*
C150.8074 (3)0.3772 (2)0.06145 (17)0.0635 (8)
C160.8769 (3)0.3719 (3)0.0247 (2)0.0859 (12)
H16A0.87830.31750.00910.129*
H16B0.93830.38650.05330.129*
H16C0.85870.40840.01220.129*
C170.6226 (2)0.37382 (17)0.36462 (12)0.0481 (6)
C180.6287 (2)0.3742 (2)0.43282 (14)0.0629 (8)
H180.57380.38140.44370.076*
C190.7090 (2)0.3647 (2)0.48068 (14)0.0576 (8)
C200.7229 (3)0.3606 (3)0.55236 (15)0.0898 (13)
H20A0.74490.41210.57220.135*
H20B0.76860.31950.57200.135*
H20C0.66410.34750.55920.135*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.05297 (12)0.04807 (12)0.04017 (10)0.00260 (11)0.01279 (8)0.00171 (10)
S10.0704 (5)0.0736 (5)0.0619 (5)0.0096 (5)0.0299 (4)0.0004 (4)
S20.0476 (4)0.0869 (6)0.0490 (4)0.0101 (4)0.0122 (3)0.0055 (4)
O10.0815 (19)0.128 (3)0.0839 (18)0.0167 (18)0.0320 (15)0.0280 (17)
O20.127 (3)0.092 (2)0.099 (2)0.0414 (19)0.0469 (19)0.0322 (17)
O30.0742 (17)0.0911 (18)0.0696 (15)0.0036 (14)0.0375 (13)0.0122 (13)
O40.0789 (16)0.0822 (18)0.0604 (13)0.0085 (13)0.0307 (12)0.0037 (11)
O50.0485 (11)0.0794 (15)0.0508 (11)0.0045 (12)0.0004 (9)0.0005 (11)
O60.106 (2)0.103 (2)0.090 (2)0.0534 (19)0.0047 (17)0.0039 (16)
O70.0711 (19)0.190 (4)0.093 (2)0.040 (2)0.0157 (16)0.026 (2)
O80.0612 (15)0.137 (2)0.0429 (11)0.0018 (15)0.0038 (10)0.0082 (13)
N10.0521 (14)0.0530 (14)0.0459 (13)0.0015 (12)0.0128 (11)0.0016 (11)
N20.0686 (18)0.0497 (14)0.0533 (15)0.0000 (12)0.0247 (13)0.0001 (11)
N30.0667 (17)0.0595 (15)0.0617 (14)0.0012 (15)0.0322 (13)0.0001 (13)
N40.0495 (14)0.0715 (16)0.0377 (11)0.0056 (13)0.0106 (10)0.0023 (11)
C10.070 (2)0.063 (2)0.0423 (15)0.0071 (17)0.0126 (14)0.0004 (13)
C20.098 (3)0.059 (2)0.0561 (18)0.013 (2)0.0190 (18)0.0087 (15)
C30.074 (2)0.0507 (19)0.070 (2)0.0017 (17)0.0294 (18)0.0008 (15)
C40.0470 (15)0.0581 (18)0.0607 (16)0.0012 (16)0.0187 (13)0.0078 (16)
C50.0492 (17)0.0594 (19)0.0509 (16)0.0031 (14)0.0093 (13)0.0002 (14)
C60.062 (2)0.080 (2)0.080 (2)0.0056 (19)0.0086 (18)0.021 (2)
C70.073 (2)0.0533 (19)0.0590 (19)0.0075 (16)0.0282 (17)0.0031 (14)
C80.080 (2)0.050 (2)0.089 (3)0.0096 (17)0.048 (2)0.0072 (17)
C90.098 (3)0.053 (2)0.115 (3)0.006 (2)0.064 (3)0.010 (2)
C100.095 (3)0.075 (3)0.087 (3)0.025 (2)0.053 (2)0.028 (2)
C110.077 (2)0.072 (2)0.0546 (18)0.0091 (19)0.0300 (17)0.0059 (16)
C120.123 (4)0.074 (3)0.123 (4)0.029 (3)0.048 (3)0.039 (3)
C130.079 (2)0.0411 (17)0.070 (2)0.0029 (15)0.0411 (18)0.0027 (13)
C140.068 (2)0.059 (2)0.073 (2)0.0083 (16)0.0328 (18)0.0018 (15)
C150.072 (2)0.0541 (17)0.076 (2)0.0031 (18)0.0406 (18)0.0069 (18)
C160.089 (3)0.095 (3)0.094 (3)0.005 (3)0.059 (2)0.003 (2)
C170.0503 (15)0.0464 (15)0.0422 (13)0.0053 (15)0.0070 (12)0.0000 (13)
C180.0560 (18)0.090 (2)0.0435 (14)0.0049 (19)0.0174 (13)0.0016 (17)
C190.0642 (19)0.067 (2)0.0412 (14)0.0054 (16)0.0155 (13)0.0023 (14)
C200.111 (3)0.117 (3)0.0387 (16)0.011 (3)0.0191 (18)0.0028 (19)
Geometric parameters (Å, º) top
Cd1—N12.286 (3)C4—C51.384 (4)
Cd1—N22.285 (3)C4—C61.501 (4)
Cd1—N32.526 (2)C5—H50.9300
Cd1—N42.434 (2)C6—H6A0.9600
Cd1—O42.380 (3)C6—H6B0.9600
Cd1—O5i2.384 (2)C6—H6C0.9600
Cd1—O52.560 (2)C7—C81.374 (5)
S1—N31.577 (3)C7—H70.9300
S2—N41.581 (2)C8—C91.371 (5)
S1—O11.418 (3)C8—C121.506 (5)
S1—O21.409 (3)C9—C101.363 (6)
S1—O31.617 (2)C9—H90.9300
S2—O61.396 (3)C10—C111.383 (5)
S2—O71.412 (3)C10—H100.9300
S2—O81.609 (2)C11—H110.9300
O3—C151.376 (4)C12—H12A0.9600
O4—C131.244 (4)C12—H12B0.9600
O5—C171.254 (3)C12—H12C0.9600
O5—Cd1i2.384 (2)C13—C141.463 (5)
O8—C191.366 (4)C14—C151.320 (5)
N1—C51.336 (4)C14—H140.9300
N1—C11.338 (4)C15—C161.491 (4)
N2—C71.336 (4)C16—H16A0.9600
N2—C111.342 (4)C16—H16B0.9600
N3—C131.353 (4)C16—H16C0.9600
N4—C171.335 (4)C17—C181.433 (4)
C1—C21.373 (5)C18—C191.318 (4)
C1—H10.9300C18—H180.9300
C2—C31.372 (5)C19—C201.483 (4)
C2—H20.9300C20—H20A0.9600
C3—C41.369 (5)C20—H20B0.9600
C3—H30.9300C20—H20C0.9600
N1—Cd1—N2168.93 (8)C5—C4—C6120.8 (3)
N1—Cd1—N387.31 (9)N1—C5—C4124.0 (3)
N1—Cd1—N491.55 (9)N1—C5—H5118.0
N1—Cd1—O590.29 (8)C4—C5—H5118.0
N1—Cd1—O5i85.22 (8)C4—C6—H6A109.5
N2—Cd1—N390.39 (9)C4—C6—H6B109.5
N2—Cd1—N497.14 (9)H6A—C6—H6B109.5
N2—Cd1—O5i84.36 (9)C4—C6—H6C109.5
N2—Cd1—O589.64 (8)H6A—C6—H6C109.5
N3—Cd1—O5167.60 (8)H6B—C6—H6C109.5
O4—Cd1—N487.06 (8)N2—C7—C8124.5 (3)
O5i—Cd1—N397.76 (8)N2—C7—H7117.8
O5i—Cd1—O569.90 (7)C8—C7—H7117.8
O2—S1—O1117.2 (2)C9—C8—C7116.7 (3)
O6—S2—O7118.7 (2)C9—C8—C12124.2 (4)
C17—O5—Cd193.93 (18)C7—C8—C12119.1 (4)
Cd1i—O5—Cd1110.04 (7)C10—C9—C8120.4 (4)
N2—Cd1—O487.07 (9)C10—C9—H9119.8
N1—Cd1—O4100.27 (9)C8—C9—H9119.8
O4—Cd1—O5i150.51 (8)C9—C10—C11119.5 (4)
O5i—Cd1—N4121.97 (8)C9—C10—H10120.3
O4—Cd1—N354.07 (9)C11—C10—H10120.3
N4—Cd1—N3140.03 (9)N2—C11—C10121.2 (3)
O4—Cd1—O5138.30 (7)N2—C11—H11119.4
N4—Cd1—O552.16 (7)C10—C11—H11119.4
O2—S1—N3112.53 (18)C8—C12—H12A109.5
O1—S1—N3110.19 (17)C8—C12—H12B109.5
O2—S1—O3106.25 (17)H12A—C12—H12B109.5
O1—S1—O3104.39 (16)C8—C12—H12C109.5
N3—S1—O3105.14 (14)H12A—C12—H12C109.5
O6—S2—N4111.21 (17)H12B—C12—H12C109.5
O7—S2—N4111.04 (17)O4—C13—N3118.6 (3)
O6—S2—O8105.72 (17)O4—C13—C14121.1 (3)
O7—S2—O8103.75 (19)N3—C13—C14120.2 (3)
N4—S2—O8105.07 (13)C15—C14—C13122.2 (3)
C15—O3—S1117.7 (2)C15—C14—H14118.9
C13—O4—Cd198.4 (2)C13—C14—H14118.9
C17—O5—Cd1i156.0 (2)C14—C15—O3121.1 (3)
C19—O8—S2119.7 (2)C14—C15—C16127.2 (4)
C5—N1—C1117.5 (3)O3—C15—C16111.6 (3)
C5—N1—Cd1120.4 (2)C15—C16—H16A109.5
C1—N1—Cd1122.0 (2)C15—C16—H16B109.5
C7—N2—C11117.7 (3)H16A—C16—H16B109.5
C7—N2—Cd1119.0 (2)C15—C16—H16C109.5
C11—N2—Cd1123.1 (2)H16A—C16—H16C109.5
C13—N3—S1119.4 (2)H16B—C16—H16C109.5
C13—N3—Cd188.88 (19)O5—C17—N4116.2 (2)
S1—N3—Cd1150.09 (16)O5—C17—C18122.6 (3)
C17—N4—S2120.50 (18)N4—C17—C18121.2 (2)
C17—N4—Cd197.59 (16)C19—C18—C17122.8 (3)
S2—N4—Cd1139.58 (14)C19—C18—H18118.6
N1—C1—C2122.3 (3)C17—C18—H18118.6
N1—C1—H1118.9C18—C19—O8120.7 (3)
C2—C1—H1118.9C18—C19—C20127.2 (3)
C3—C2—C1118.9 (3)O8—C19—C20111.9 (3)
C3—C2—H2120.5C19—C20—H20A109.5
C1—C2—H2120.5C19—C20—H20B109.5
C4—C3—C2120.4 (3)H20A—C20—H20B109.5
C4—C3—H3119.8C19—C20—H20C109.5
C2—C3—H3119.8H20A—C20—H20C109.5
C3—C4—C5116.8 (3)H20B—C20—H20C109.5
C3—C4—C6122.4 (3)
O2—S1—O3—C1577.7 (3)O5—Cd1—N3—S113.5 (7)
O1—S1—O3—C15157.8 (3)O6—S2—N4—C1784.2 (3)
N3—S1—O3—C1541.8 (3)O7—S2—N4—C17141.2 (3)
N2—Cd1—O4—C1391.49 (19)O8—S2—N4—C1729.7 (3)
N1—Cd1—O4—C1380.16 (19)O6—S2—N4—Cd173.9 (3)
O5i—Cd1—O4—C1318.4 (3)O7—S2—N4—Cd160.6 (3)
N4—Cd1—O4—C13171.20 (19)O8—S2—N4—Cd1172.2 (2)
N3—Cd1—O4—C131.13 (18)N2—Cd1—N4—C1781.80 (19)
O5—Cd1—O4—C13177.65 (17)N1—Cd1—N4—C1791.32 (19)
N2—Cd1—O5—C1797.06 (19)O4—Cd1—N4—C17168.47 (19)
N1—Cd1—O5—C1794.01 (19)O5i—Cd1—N4—C176.0 (2)
O4—Cd1—O5—C1711.9 (2)N3—Cd1—N4—C17178.98 (17)
O5i—Cd1—O5—C17178.81 (15)O5—Cd1—N4—C172.15 (16)
N4—Cd1—O5—C172.28 (17)N2—Cd1—N4—S279.3 (2)
N3—Cd1—O5—C17172.7 (4)N1—Cd1—N4—S2107.6 (2)
N2—Cd1—O5—Cd1i81.42 (10)O4—Cd1—N4—S27.3 (2)
N1—Cd1—O5—Cd1i87.51 (10)O5i—Cd1—N4—S2167.1 (2)
O4—Cd1—O5—Cd1i166.60 (9)N3—Cd1—N4—S219.9 (3)
O5i—Cd1—O5—Cd1i2.71 (12)O5—Cd1—N4—S2163.3 (3)
N4—Cd1—O5—Cd1i179.24 (15)C5—N1—C1—C20.3 (5)
N3—Cd1—O5—Cd1i8.8 (5)Cd1—N1—C1—C2178.9 (3)
O6—S2—O8—C1981.9 (3)N1—C1—C2—C30.7 (6)
O7—S2—O8—C19152.4 (3)C1—C2—C3—C40.6 (6)
N4—S2—O8—C1935.8 (3)C2—C3—C4—C50.1 (5)
N2—Cd1—N1—C527.2 (6)C2—C3—C4—C6180.0 (4)
O4—Cd1—N1—C5103.7 (2)C1—N1—C5—C40.3 (5)
O5i—Cd1—N1—C547.0 (2)Cd1—N1—C5—C4179.5 (2)
N4—Cd1—N1—C5169.0 (2)C3—C4—C5—N10.4 (5)
N3—Cd1—N1—C551.0 (2)C6—C4—C5—N1179.5 (3)
O5—Cd1—N1—C5116.8 (2)C11—N2—C7—C80.3 (5)
N2—Cd1—N1—C1153.6 (4)Cd1—N2—C7—C8174.3 (3)
O4—Cd1—N1—C175.4 (3)N2—C7—C8—C90.1 (6)
O5i—Cd1—N1—C1133.8 (3)N2—C7—C8—C12179.0 (3)
N4—Cd1—N1—C111.9 (3)C7—C8—C9—C100.3 (6)
N3—Cd1—N1—C1128.1 (3)C12—C8—C9—C10179.2 (4)
O5—Cd1—N1—C164.0 (3)C8—C9—C10—C110.2 (6)
N1—Cd1—N2—C7142.7 (4)C7—N2—C11—C100.4 (5)
O4—Cd1—N2—C785.3 (2)Cd1—N2—C11—C10173.9 (3)
O5i—Cd1—N2—C7122.9 (2)C9—C10—C11—N20.2 (6)
N4—Cd1—N2—C71.3 (3)Cd1—O4—C13—N31.9 (3)
N3—Cd1—N2—C7139.3 (2)Cd1—O4—C13—C14177.9 (2)
O5—Cd1—N2—C753.1 (2)S1—N3—C13—O4171.4 (2)
N1—Cd1—N2—C1142.9 (6)Cd1—N3—C13—O41.8 (3)
O4—Cd1—N2—C1189.0 (3)S1—N3—C13—C1412.5 (4)
O5i—Cd1—N2—C1162.8 (3)Cd1—N3—C13—C14177.9 (3)
N4—Cd1—N2—C11175.6 (3)O4—C13—C14—C15165.1 (3)
N3—Cd1—N2—C1135.0 (3)N3—C13—C14—C1510.8 (5)
O5—Cd1—N2—C11132.6 (3)C13—C14—C15—O33.7 (5)
O2—S1—N3—C1380.0 (3)C13—C14—C15—C16172.7 (3)
O1—S1—N3—C13147.1 (3)S1—O3—C15—C1424.9 (4)
O3—S1—N3—C1335.2 (3)S1—O3—C15—C16158.1 (3)
O2—S1—N3—Cd178.8 (4)Cd1i—O5—C17—N4179.9 (4)
O1—S1—N3—Cd154.0 (4)Cd1—O5—C17—N43.7 (3)
O3—S1—N3—Cd1165.9 (3)Cd1i—O5—C17—C181.8 (7)
N2—Cd1—N3—C1385.07 (19)Cd1—O5—C17—C18178.3 (3)
N1—Cd1—N3—C13105.77 (19)S2—N4—C17—O5169.8 (2)
O4—Cd1—N3—C131.03 (16)Cd1—N4—C17—O53.9 (3)
O5i—Cd1—N3—C13169.43 (18)S2—N4—C17—C1812.2 (4)
N4—Cd1—N3—C1316.6 (3)Cd1—N4—C17—C18178.1 (3)
O5—Cd1—N3—C13175.2 (3)O5—C17—C18—C19172.3 (3)
N2—Cd1—N3—S176.6 (3)N4—C17—C18—C195.6 (5)
N1—Cd1—N3—S192.6 (3)C17—C18—C19—O80.8 (6)
O4—Cd1—N3—S1162.7 (4)C17—C18—C19—C20177.2 (3)
O5i—Cd1—N3—S17.8 (3)S2—O8—C19—C1823.9 (5)
N4—Cd1—N3—S1178.3 (3)S2—O8—C19—C20159.1 (3)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O1i0.932.583.419 (4)150
C6—H6C···O6ii0.962.553.413 (5)150
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd2(C4H4NO4S)2(C6H7N)2]
Mr1245.87
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)14.9475 (12), 16.5004 (11), 21.4067 (15)
β (°) 108.427 (6)
V3)5009.0 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.09
Crystal size (mm)0.47 × 0.43 × 0.28
Data collection
DiffractometerStoe IPDS2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.637, 0.763
No. of measured, independent and
observed [I > 2σ(I)] reflections
13627, 4901, 3749
Rint0.029
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.072, 1.05
No. of reflections4901
No. of parameters319
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.37

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Cd1—N12.286 (3)S1—O11.418 (3)
Cd1—N22.285 (3)S1—O21.409 (3)
Cd1—N32.526 (2)S1—O31.617 (2)
Cd1—N42.434 (2)S2—O61.396 (3)
Cd1—O42.380 (3)S2—O71.412 (3)
Cd1—O5i2.384 (2)S2—O81.609 (2)
Cd1—O52.560 (2)O4—C131.244 (4)
S1—N31.577 (3)O5—C171.254 (3)
S2—N41.581 (2)
N1—Cd1—N2168.93 (8)N3—Cd1—O5167.60 (8)
N1—Cd1—N387.31 (9)O4—Cd1—N487.06 (8)
N1—Cd1—N491.55 (9)O5i—Cd1—N397.76 (8)
N1—Cd1—O590.29 (8)O5i—Cd1—O569.90 (7)
N1—Cd1—O5i85.22 (8)O2—S1—O1117.2 (2)
N2—Cd1—N390.39 (9)O6—S2—O7118.7 (2)
N2—Cd1—N497.14 (9)C17—O5—Cd193.93 (18)
N2—Cd1—O5i84.36 (9)Cd1i—O5—Cd1110.04 (7)
N2—Cd1—O589.64 (8)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O1i0.932.583.419 (4)150
C6—H6C···O6ii0.962.553.413 (5)150
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+3/2, y1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds