Download citation
Download citation
link to html
Methanol- and temperature-induced dissolution–recrystallization structural transformation (DRST) was observed among two novel CuII com­plexes. This is first time that the combination of X-ray crystallography, mass spectrometry and density functional theory (DFT) theoretical calculations has been used to describe the fragmentation and recombination of a mononuclear CuII com­plex at 60 °C in methanol to obtain a binuclear copper(II) com­plex. Combining time-dependent high-resolution electrospray mass spectrometry, we propose a possible mechanism for the conversion of bis­(8-meth­oxy­quinoline-κ2N,O)bis­(thio­cyanato-κN)copper(II), [Cu(NCS)2(C10H9NO)2], Cu1, to di-μ-methano­l­ato-κ4O:O-bis­[(8-meth­oxy­quinoline-κ2N,O)(thio­cyanato-κN)copper(II)], [Cu2(CH3O)2(NCS)2(C10H9NO)2], Cu2, viz. [Cu(SCN)2(L)2] (Cu1) → [Cu(L)2] → [Cu(L)]/L → [Cu2(CH3O)2(NCS)2(L)2] (Cu2). We screened the anti­tumour activities of L (8-meth­oxy­quinoline), Cu1 and Cu2 and found that the anti­proliferative effect of Cu2 on some tumour cells was much greater than that of L and Cu1.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229620006701/lf3115sup1.cif
Contains datablocks Cu1, Cu2, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229620006701/lf3115Cu1sup2.hkl
Contains datablock Cu1_

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229620006701/lf3115Cu2sup3.hkl
Contains datablock Cu2_

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229620006701/lf3115sup4.pdf
Additional tables and figures

CCDC references: 1864414; 1864415

Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Bis(8-methoxyquinoline-κ2N,O)bis(thiocyanato-κN)copper(II) (Cu1) top
Crystal data top
[Cu(NCS)2(C10H9NO)2]Dx = 1.503 Mg m3
Mr = 498.06Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3221Cell parameters from 1978 reflections
a = 9.7940 (3) Åθ = 3.9–23.9°
c = 19.8673 (8) ŵ = 1.21 mm1
V = 1650.40 (10) Å3T = 293 K
Z = 3Block, green
F(000) = 7650.05 × 0.03 × 0.03 mm
Data collection top
Rigaku SuperNova Single Source
diffractometer with an Eos detector
1937 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source1685 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.036
Detector resolution: 15.9784 pixels mm-1θmax = 25.0°, θmin = 3.9°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD 2015)
k = 1111
Tmin = 0.812, Tmax = 1.000l = 2322
7518 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.0663P)2 + 2.3337P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
1937 reflectionsΔρmax = 0.77 e Å3
142 parametersΔρmin = 0.43 e Å3
0 restraintsAbsolute structure: Flack (1983)
Primary atom site location: dualAbsolute structure parameter: 0.32 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Diffraction data for these complexes were collected on a Rigaku Oxford Diffraction (Mo-Kα radiation and λ = 0.71073 Å) in Φ and ω scan modes. The structures were solved by direct methods followed by difference Fourier syntheses, and then refined by full-matrix least-squares techniques on F2 using SHELXL (Sheldrick, 2015). All other non-hydrogen atoms were refined with anisotropic thermal parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu11.00000.56436 (10)0.33330.0441 (3)
S10.6161 (3)0.0593 (3)0.26515 (12)0.0835 (7)
O10.8579 (5)0.5224 (5)0.4387 (2)0.0562 (12)
N21.1163 (5)0.7683 (5)0.3867 (2)0.0429 (10)
C110.7492 (8)0.2376 (9)0.2879 (3)0.0538 (16)
C71.0685 (6)0.7794 (7)0.4510 (3)0.0414 (13)
C61.1538 (7)0.9182 (7)0.4888 (3)0.0511 (15)
N10.8560 (8)0.3562 (7)0.2996 (3)0.079 (2)
C51.1037 (9)0.9244 (10)0.5550 (4)0.072 (2)
H51.15811.01540.58080.087*
C91.3276 (8)1.0289 (9)0.3973 (3)0.0653 (19)
H91.41391.11370.37700.078*
C101.2426 (7)0.8887 (7)0.3623 (3)0.0519 (16)
H101.27700.88030.31970.062*
C20.9323 (7)0.6492 (7)0.4793 (3)0.0455 (14)
C40.9746 (10)0.7952 (10)0.5803 (4)0.077 (2)
H40.94410.79800.62440.092*
C81.2865 (8)1.0435 (8)0.4600 (3)0.0599 (17)
H81.34621.13640.48400.072*
C30.8876 (8)0.6606 (9)0.5428 (3)0.0654 (16)
H30.79730.57660.56110.078*
C10.7280 (8)0.3808 (8)0.4657 (4)0.070 (2)
H1A0.63870.39540.47140.104*
H1B0.75730.35770.50850.104*
H1C0.70110.29480.43530.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0366 (5)0.0413 (4)0.0530 (6)0.0183 (3)0.0053 (5)0.0026 (2)
S10.0744 (14)0.0687 (13)0.0966 (15)0.0277 (11)0.0044 (11)0.0115 (11)
O10.046 (2)0.049 (2)0.055 (2)0.010 (2)0.007 (2)0.007 (2)
N20.036 (2)0.041 (2)0.046 (2)0.015 (2)0.002 (2)0.008 (2)
C110.047 (4)0.071 (5)0.049 (3)0.034 (4)0.006 (3)0.013 (3)
C70.036 (3)0.047 (3)0.043 (3)0.023 (2)0.005 (2)0.003 (2)
C60.046 (4)0.051 (4)0.051 (3)0.020 (3)0.002 (3)0.001 (3)
N10.076 (5)0.049 (3)0.099 (5)0.022 (3)0.034 (4)0.019 (3)
C50.066 (5)0.077 (5)0.060 (4)0.026 (4)0.002 (4)0.021 (4)
C90.051 (4)0.058 (4)0.063 (4)0.010 (3)0.006 (3)0.010 (4)
C100.044 (3)0.044 (3)0.051 (3)0.009 (3)0.002 (3)0.005 (3)
C20.038 (3)0.048 (4)0.046 (3)0.017 (2)0.004 (3)0.001 (3)
C40.072 (5)0.097 (6)0.055 (4)0.038 (5)0.012 (4)0.007 (4)
C80.053 (4)0.047 (4)0.064 (4)0.013 (3)0.005 (3)0.007 (3)
C30.051 (4)0.068 (4)0.058 (3)0.014 (3)0.006 (3)0.004 (4)
C10.048 (4)0.048 (4)0.092 (5)0.008 (3)0.012 (4)0.013 (4)
Geometric parameters (Å, º) top
Cu1—O12.432 (4)C6—C81.389 (9)
Cu1—O1i2.432 (4)C5—H50.9300
Cu1—N2i2.034 (5)C5—C41.361 (11)
Cu1—N22.034 (5)C9—H90.9300
Cu1—N1i1.928 (6)C9—C101.385 (9)
Cu1—N11.928 (6)C9—C81.339 (9)
S1—C111.636 (8)C10—H100.9300
O1—C21.349 (7)C2—C31.357 (8)
O1—C11.437 (7)C4—H40.9300
N2—C71.384 (7)C4—C31.377 (10)
N2—C101.303 (7)C8—H80.9300
C11—N11.132 (8)C3—H30.9300
C7—C61.405 (8)C1—H1A0.9600
C7—C21.422 (8)C1—H1B0.9600
C6—C51.415 (9)C1—H1C0.9600
O1i—Cu1—O1166.6 (2)C11—N1—Cu1165.4 (7)
N2—Cu1—O173.11 (15)C6—C5—H5120.5
N2i—Cu1—O1i73.11 (15)C4—C5—C6118.9 (7)
N2—Cu1—O1i97.25 (16)C4—C5—H5120.5
N2i—Cu1—O197.25 (16)C10—C9—H9119.7
N2i—Cu1—N290.8 (3)C8—C9—H9119.7
N1i—Cu1—O1i93.8 (2)C8—C9—C10120.6 (6)
N1i—Cu1—O195.5 (2)N2—C10—C9122.6 (6)
N1—Cu1—O1i95.5 (2)N2—C10—H10118.7
N1—Cu1—O193.8 (2)C9—C10—H10118.7
N1i—Cu1—N289.8 (2)O1—C2—C7114.9 (5)
N1i—Cu1—N2i166.8 (2)O1—C2—C3125.7 (6)
N1—Cu1—N2i89.8 (2)C3—C2—C7119.3 (6)
N1—Cu1—N2166.8 (2)C5—C4—H4118.9
N1—Cu1—N1i92.5 (4)C5—C4—C3122.2 (7)
C2—O1—Cu1111.1 (3)C3—C4—H4118.9
C2—O1—C1118.3 (5)C6—C8—H8120.4
C1—O1—Cu1129.8 (4)C9—C8—C6119.1 (6)
C7—N2—Cu1120.9 (3)C9—C8—H8120.4
C10—N2—Cu1120.5 (4)C2—C3—C4120.8 (7)
C10—N2—C7118.5 (5)C2—C3—H3119.6
N1—C11—S1170.4 (7)C4—C3—H3119.6
N2—C7—C6120.6 (5)O1—C1—H1A109.5
N2—C7—C2119.8 (5)O1—C1—H1B109.5
C6—C7—C2119.6 (5)O1—C1—H1C109.5
C7—C6—C5119.2 (6)H1A—C1—H1B109.5
C8—C6—C7118.4 (5)H1A—C1—H1C109.5
C8—C6—C5122.4 (6)H1B—C1—H1C109.5
Cu1—O1—C2—C73.4 (5)C7—N2—C10—C92.2 (9)
Cu1—O1—C2—C3176.7 (5)C7—C6—C5—C40.4 (11)
Cu1—N2—C7—C6177.0 (4)C7—C6—C8—C90.8 (10)
Cu1—N2—C7—C22.7 (6)C7—C2—C3—C41.5 (10)
Cu1—N2—C10—C9178.7 (5)C6—C7—C2—O1179.3 (5)
S1—C11—N1—Cu1170 (2)C6—C7—C2—C30.6 (8)
O1i—Cu1—O1—C249.0 (3)C6—C5—C4—C32.5 (13)
O1i—Cu1—O1—C1141.5 (5)N1i—Cu1—O1—C284.5 (4)
O1i—Cu1—N2—C7173.7 (4)N1—Cu1—O1—C2177.4 (4)
O1—Cu1—N2—C73.3 (4)N1i—Cu1—O1—C185.0 (5)
O1—Cu1—N2—C10179.7 (5)N1—Cu1—O1—C17.9 (6)
O1i—Cu1—N2—C109.9 (5)N1—Cu1—N2—C77.8 (13)
O1—Cu1—N1—C1130 (3)N1i—Cu1—N2—C792.6 (4)
O1i—Cu1—N1—C11140 (2)N1—Cu1—N2—C10175.8 (10)
O1—C2—C3—C4178.7 (7)N1i—Cu1—N2—C1083.9 (5)
N2—Cu1—O1—C23.6 (3)N1i—Cu1—N1—C11126 (3)
N2i—Cu1—O1—C292.3 (4)C5—C6—C8—C9179.6 (7)
N2—Cu1—O1—C1173.2 (6)C5—C4—C3—C23.1 (13)
N2i—Cu1—O1—C198.2 (5)C10—N2—C7—C60.5 (8)
N2i—Cu1—N2—C7100.6 (4)C10—N2—C7—C2179.2 (5)
N2i—Cu1—N2—C1083.0 (5)C10—C9—C8—C62.5 (11)
N2i—Cu1—N1—C1167 (3)C2—C7—C6—C51.1 (9)
N2—Cu1—N1—C1126 (3)C2—C7—C6—C8179.9 (6)
N2—C7—C6—C5178.6 (6)C8—C6—C5—C4178.3 (8)
N2—C7—C6—C80.2 (8)C8—C9—C10—N23.2 (11)
N2—C7—C2—O11.0 (7)C1—O1—C2—C7174.3 (5)
N2—C7—C2—C3179.1 (5)C1—O1—C2—C35.8 (9)
Symmetry code: (i) x+2, x+y+1, z+2/3.
Di-µ-methanolato-κ4O:O-bis[(8-methoxyquinoline-κ2N,O)(thiocyanato-κN)copper(II)] (Cu2) top
Crystal data top
[Cu2(CH3O)2(NCS)2(C10H9NO)2]Z = 1
Mr = 623.67F(000) = 318
Triclinic, P1Dx = 1.575 Mg m3
a = 7.5050 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.9967 (7) ÅCell parameters from 1310 reflections
c = 11.9102 (19) Åθ = 3.5–22.2°
α = 76.112 (10)°µ = 1.81 mm1
β = 71.827 (14)°T = 293 K
γ = 82.057 (9)°Block, blue
V = 657.73 (15) Å30.08 × 0.06 × 0.04 mm
Data collection top
Rigaku SuperNova Single Source
diffractometer with an Eos detector
2588 independent reflections
Radiation source: fine-focus sealed tube1548 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.099
Detector resolution: 15.9784 pixels mm-1θmax = 26.0°, θmin = 3.5°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD 2015)
k = 99
Tmin = 0.784, Tmax = 1.000l = 1414
8594 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.084Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.272H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0999P)2 + 2.0616P]
where P = (Fo2 + 2Fc2)/3
2588 reflections(Δ/σ)max < 0.001
165 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.62 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.46152 (12)0.57333 (11)0.88048 (8)0.0504 (3)
S10.0147 (3)0.9640 (3)0.7692 (2)0.0688 (7)
O10.6627 (7)0.4724 (7)0.9488 (5)0.0605 (15)
O20.4171 (8)0.3172 (6)0.8267 (5)0.0682 (17)
N20.6150 (8)0.5851 (7)0.7094 (5)0.0485 (15)
N10.2642 (9)0.7331 (9)0.8329 (6)0.066 (2)
C100.6192 (9)0.4606 (8)0.6483 (7)0.0455 (18)
C110.1494 (11)0.8269 (9)0.8072 (7)0.053 (2)
C60.7245 (10)0.4732 (9)0.5265 (7)0.0489 (18)
C90.7131 (10)0.7211 (9)0.6486 (7)0.056 (2)
H90.71020.80650.69030.067*
C10.3331 (12)0.1671 (10)0.9000 (8)0.071 (3)
H1A0.42760.07330.90240.106*
H1B0.24150.13940.86750.106*
H1C0.27280.18570.98030.106*
C20.5144 (10)0.3129 (9)0.7107 (7)0.0516 (19)
C50.7257 (10)0.3361 (11)0.4685 (8)0.064 (2)
H50.79350.34180.38780.076*
C80.8187 (10)0.7468 (9)0.5291 (8)0.058 (2)
H80.88440.84540.49150.070*
C70.8226 (10)0.6218 (10)0.4687 (7)0.059 (2)
H70.89150.63490.38770.071*
C30.5245 (11)0.1847 (9)0.6535 (7)0.057 (2)
H30.46190.08570.69580.068*
C0AA0.8453 (11)0.4199 (13)0.8903 (8)0.078 (3)
H0AA0.84950.30310.88140.118*
H0AB0.92690.42630.93700.118*
H0AC0.88610.49400.81200.118*
C40.6250 (12)0.1958 (10)0.5337 (8)0.067 (2)
H40.62460.10630.49630.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0578 (5)0.0515 (5)0.0453 (5)0.0031 (4)0.0145 (4)0.0172 (4)
S10.0663 (12)0.0612 (12)0.0762 (16)0.0026 (10)0.0225 (11)0.0081 (11)
O10.052 (3)0.076 (3)0.050 (3)0.007 (2)0.012 (2)0.017 (3)
O20.084 (3)0.058 (3)0.062 (4)0.030 (3)0.004 (3)0.021 (3)
N20.057 (3)0.045 (3)0.052 (3)0.008 (3)0.019 (3)0.017 (3)
N10.065 (4)0.072 (4)0.055 (4)0.010 (3)0.017 (3)0.012 (3)
C100.049 (4)0.041 (3)0.050 (4)0.002 (3)0.016 (3)0.015 (3)
C110.061 (4)0.055 (4)0.039 (4)0.017 (3)0.002 (3)0.010 (3)
C60.052 (4)0.050 (4)0.047 (4)0.003 (3)0.014 (3)0.018 (3)
C90.064 (4)0.046 (4)0.064 (5)0.008 (3)0.026 (4)0.009 (3)
C10.090 (5)0.053 (4)0.067 (6)0.024 (4)0.021 (5)0.001 (4)
C20.051 (4)0.050 (4)0.059 (5)0.010 (3)0.014 (3)0.018 (3)
C50.048 (4)0.086 (5)0.065 (5)0.003 (4)0.015 (4)0.037 (4)
C80.059 (4)0.045 (4)0.066 (5)0.015 (3)0.015 (4)0.002 (4)
C70.048 (4)0.072 (5)0.046 (5)0.004 (4)0.003 (3)0.004 (4)
C30.068 (4)0.046 (4)0.066 (5)0.007 (3)0.022 (4)0.024 (3)
C0AA0.046 (4)0.106 (7)0.060 (6)0.022 (4)0.003 (4)0.005 (5)
C40.075 (5)0.062 (4)0.081 (5)0.011 (4)0.031 (4)0.046 (4)
Geometric parameters (Å, º) top
Cu1—Cu1i3.0083 (19)C9—H90.9300
Cu1—O1i1.922 (5)C9—C81.378 (11)
Cu1—O11.925 (5)C1—H1A0.9600
Cu1—O22.381 (5)C1—H1B0.9600
Cu1—N21.990 (6)C1—H1C0.9600
Cu1—N11.949 (7)C2—C31.343 (11)
S1—C111.631 (8)C5—H50.9300
O1—Cu1i1.922 (5)C5—C41.372 (11)
O1—C0AA1.388 (9)C8—H80.9300
O2—C11.401 (9)C8—C71.358 (12)
O2—C21.352 (9)C7—H70.9300
N2—C101.358 (9)C3—H30.9300
N2—C91.327 (9)C3—C41.378 (11)
N1—C111.129 (10)C0AA—H0AA0.9600
C10—C61.405 (10)C0AA—H0AB0.9600
C10—C21.428 (9)C0AA—H0AC0.9600
C6—C51.427 (11)C4—H40.9300
C6—C71.400 (10)
O1i—Cu1—Cu1i38.61 (15)N2—C9—C8125.6 (8)
O1—Cu1—Cu1i38.52 (15)C8—C9—H9117.2
O1i—Cu1—O177.1 (2)O2—C1—H1A109.5
O1i—Cu1—O2101.7 (2)O2—C1—H1B109.5
O1—Cu1—O295.3 (2)O2—C1—H1C109.5
O1i—Cu1—N2170.7 (2)H1A—C1—H1B109.5
O1—Cu1—N295.3 (2)H1A—C1—H1C109.5
O1i—Cu1—N196.6 (2)H1B—C1—H1C109.5
O1—Cu1—N1162.5 (3)O2—C2—C10113.9 (6)
O2—Cu1—Cu1i100.90 (15)C3—C2—O2126.8 (7)
N2—Cu1—Cu1i133.64 (18)C3—C2—C10119.3 (7)
N2—Cu1—O273.2 (2)C6—C5—H5120.6
N1—Cu1—Cu1i133.2 (2)C4—C5—C6118.9 (8)
N1—Cu1—O2102.0 (3)C4—C5—H5120.6
N1—Cu1—N292.2 (3)C9—C8—H8121.5
Cu1i—O1—Cu1102.9 (2)C7—C8—C9117.0 (7)
C0AA—O1—Cu1i127.6 (5)C7—C8—H8121.5
C0AA—O1—Cu1128.8 (5)C6—C7—H7119.5
C1—O2—Cu1129.8 (5)C8—C7—C6121.0 (7)
C2—O2—Cu1111.7 (4)C8—C7—H7119.5
C2—O2—C1117.7 (6)C2—C3—H3119.1
C10—N2—Cu1122.6 (4)C2—C3—C4121.8 (7)
C9—N2—Cu1120.3 (5)C4—C3—H3119.1
C9—N2—C10117.1 (6)O1—C0AA—H0AA109.5
C11—N1—Cu1178.7 (7)O1—C0AA—H0AB109.5
N2—C10—C6121.9 (6)O1—C0AA—H0AC109.5
N2—C10—C2118.6 (6)H0AA—C0AA—H0AB109.5
C6—C10—C2119.6 (7)H0AA—C0AA—H0AC109.5
N1—C11—S1179.4 (8)H0AB—C0AA—H0AC109.5
C10—C6—C5118.9 (6)C5—C4—C3121.4 (8)
C10—C6—C7117.5 (7)C5—C4—H4119.3
C7—C6—C5123.6 (7)C3—C4—H4119.3
N2—C9—H9117.2
Cu1i—Cu1—O1—C0AA170.9 (8)N2—Cu1—O2—C1168.4 (7)
Cu1i—Cu1—O2—C135.9 (7)N2—Cu1—O2—C20.7 (5)
Cu1i—Cu1—O2—C2133.2 (5)N2—Cu1—N1—C11144 (30)
Cu1i—Cu1—N2—C1090.7 (6)N2—C10—C6—C5178.8 (7)
Cu1i—Cu1—N2—C991.9 (6)N2—C10—C6—C71.4 (10)
Cu1i—Cu1—N1—C1126 (30)N2—C10—C2—O21.3 (10)
Cu1—O2—C2—C100.1 (8)N2—C10—C2—C3176.7 (7)
Cu1—O2—C2—C3177.8 (7)N2—C9—C8—C70.1 (12)
Cu1—N2—C10—C6178.3 (5)N1—Cu1—O1—Cu1i70.5 (9)
Cu1—N2—C10—C22.2 (9)N1—Cu1—O1—C0AA118.6 (10)
Cu1—N2—C9—C8177.6 (6)N1—Cu1—O2—C1102.9 (7)
Cu1—N1—C11—S191 (80)N1—Cu1—O2—C287.9 (5)
O1i—Cu1—O1—Cu1i0.0N1—Cu1—N2—C10100.3 (6)
O1i—Cu1—O1—C0AA170.9 (8)N1—Cu1—N2—C977.0 (6)
O1—Cu1—O2—C174.4 (7)C10—N2—C9—C80.0 (11)
O1i—Cu1—O2—C13.5 (7)C10—C6—C5—C40.5 (11)
O1i—Cu1—O2—C2172.6 (5)C10—C6—C7—C81.3 (11)
O1—Cu1—O2—C294.7 (5)C10—C2—C3—C43.7 (12)
O1i—Cu1—N2—C1059.8 (17)C6—C10—C2—O2179.1 (6)
O1—Cu1—N2—C1095.4 (6)C6—C10—C2—C32.8 (11)
O1i—Cu1—N2—C9122.8 (14)C6—C5—C4—C30.3 (12)
O1—Cu1—N2—C987.2 (6)C9—N2—C10—C60.8 (10)
O1i—Cu1—N1—C1140 (30)C9—N2—C10—C2179.6 (6)
O1—Cu1—N1—C1128 (30)C9—C8—C7—C60.6 (12)
O2—Cu1—O1—Cu1i100.9 (2)C1—O2—C2—C10170.7 (7)
O2—Cu1—O1—C0AA70.0 (7)C1—O2—C2—C37.2 (12)
O2—Cu1—N2—C101.5 (5)C2—C10—C6—C50.8 (10)
O2—Cu1—N2—C9178.9 (6)C2—C10—C6—C7179.0 (7)
O2—Cu1—N1—C11143 (29)C2—C3—C4—C52.5 (13)
O2—C2—C3—C4178.5 (8)C5—C6—C7—C8178.9 (7)
N2—Cu1—O1—Cu1i174.5 (2)C7—C6—C5—C4179.7 (7)
N2—Cu1—O1—C0AA3.6 (7)
Symmetry code: (i) x+1, y+1, z+2.
IC50M) values of L, Cu1, Cu2 and cisplatin on the seven tumour cells for 48 h (IC50 values are presented as the mean±SD (standard error of the mean) from five independent experiments. Cisplatin was dissolved at a concentration of 1.0 mM in 0.154 M NaCl) [Bold represents?] top
Tumour cellsCu1Cu2LCisplatin
NCI-H46021.83±1.066.19±0.0932.54±1.5420.74±1.52
Hela21.43±1.026.52±0.4048.33±2.0614.83±1.05
T2430.99±2.0116.29±0.9436.52±0.36
A54929.55±1.9638.55±2.0139.66±0.97
MCG80-330.33±2.0324.29±0.32> 200
HL-770227.29±1.2228.72±0.5631.10±0.66
Wi3826.92±1.1918.82±0.72> 200
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds