Download citation
Download citation
link to html
In recent years, viologens and their derivatives have received much attention due to their various potential applications, ranging from electro- or photochromic devices to clean energy. Generally, viologen compounds exhibit a colour change upon being subjected to an external stimulus. However, the chromic mechanism is still ambiguous, because there are many electron-transfer pathways for a chromic compound that need to be considered. Thus, exploring new chromic viologen-based compounds with one pathway should be important and meaningful. In this article, two new viologen-based derivatives, namely 1-(2-cyano­benz­yl)-4,4′-bipyridinium chloride (o-CBbpy·Cl), C18H14N3+·Cl (1), and 1-(2-cyano­benz­yl)-4,4′-bipyridinium bromide (o-CBbpy·Br), C18H14N3+·Br (2), have been synthesized and characterized. Inter­estingly, both isomorphic compounds possess only one electron-transfer pathway, in which 1-(2-cyano­benz­yl)-4,4′-bi­pyri­din­ium cations (o-CBbpy) and halide anions are employed as electron donors and acceptors, respectively. Salts 1 and 2 consist of o-CBbpy cations involved in π–π inter­actions and hydrogen-bond inter­actions, and halide anions weakly hydrogen bonded to the viologen cations. The salts show different photoresponsive characteristics under identical conditions, which should be mainly related to the distances between the halide cations and the cationic N atoms of o-CBbpy but not the electronegativities of the halogen atoms. These results should not only help in understanding that the distance of the electron-transfer pathway plays an important role in viologen-based photochromism, but should also guide the design and synthesis of additional photochromic materials.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229619015225/lf3103sup1.cif
Contains datablocks 1, 2, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619015225/lf31031sup2.hkl
Contains datablock 1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619015225/lf31032sup3.hkl
Contains datablock 2

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229619015225/lf3103sup4.pdf
Additional figures

CCDC references: 1936548; 1936549

Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2017) for (1); CrysAlis PRO (Rigaku OD, 2015) for (2). Cell refinement: CrysAlis PRO (Rigaku OD, 2017) for (1); CrysAlis PRO (Rigaku OD, 2015) for (2). Data reduction: CrysAlis PRO (Rigaku OD, 2017) for (1); CrysAlis PRO (Rigaku OD, 2015) for (2). Program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007; Palatinus & van der Lee, 2008; Palatinus et al., 2012) for (1); SHELXS97 (Sheldrick, 2008) for (2). For both structures, program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

1-(2-Cyanobenzyl)-4,4'-bipyridin-1-ium chloride (1) top
Crystal data top
C18H14N3+·ClF(000) = 640
Mr = 307.77Dx = 1.317 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 8.1413 (7) ÅCell parameters from 1475 reflections
b = 19.3495 (17) Åθ = 6.7–72.5°
c = 9.9395 (7) ŵ = 2.16 mm1
β = 97.440 (8)°T = 293 K
V = 1552.6 (2) Å3Block, colourless
Z = 40.42 × 0.32 × 0.29 mm
Data collection top
Rigaku Xcalibur Eos Gemini
diffractometer
3101 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source2369 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 16.0710 pixels mm-1θmax = 73.5°, θmin = 4.6°
ω scansh = 107
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2017)
k = 2323
Tmin = 0.937, Tmax = 1.000l = 1210
8128 measured reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.0649P)2 + 0.3167P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3101 reflectionsΔρmax = 0.18 e Å3
199 parametersΔρmin = 0.23 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.03751 (7)0.15235 (3)0.19601 (5)0.0604 (2)
N20.0470 (2)0.34640 (9)0.30000 (16)0.0450 (4)
C120.3164 (2)0.28778 (12)0.38061 (19)0.0476 (5)
C30.2223 (2)0.48474 (11)0.0209 (2)0.0478 (5)
C60.1285 (2)0.43689 (11)0.1188 (2)0.0463 (5)
C170.4346 (3)0.33361 (12)0.4451 (2)0.0526 (5)
N10.4032 (3)0.57365 (13)0.1668 (2)0.0745 (6)
C110.1358 (2)0.29512 (12)0.3954 (2)0.0491 (5)
H11A0.0825570.2504460.3800520.059*
H11B0.1255700.3089990.4876990.059*
C100.1056 (3)0.44884 (14)0.2576 (2)0.0648 (7)
H100.1503110.4884060.2916090.078*
C90.0183 (3)0.40344 (13)0.3456 (2)0.0609 (6)
H90.0045320.4126520.4382090.073*
C40.2890 (3)0.54584 (14)0.0612 (3)0.0684 (7)
H40.2749140.5587790.1520790.082*
C130.3698 (3)0.23350 (13)0.3070 (2)0.0601 (6)
H130.2930460.2027800.2629450.072*
N30.3409 (3)0.43772 (15)0.5755 (3)0.0869 (8)
C20.2490 (3)0.46967 (14)0.1169 (2)0.0630 (6)
H20.2063940.4293970.1498890.076*
C180.3833 (3)0.39149 (15)0.5182 (2)0.0632 (6)
C80.0286 (4)0.33325 (14)0.1667 (2)0.0695 (7)
H80.0750480.2933900.1354560.083*
C160.6029 (3)0.32352 (16)0.4379 (3)0.0694 (7)
H160.6809450.3535920.4822890.083*
C140.5377 (3)0.22449 (16)0.2983 (3)0.0707 (7)
H140.5725190.1882850.2473020.085*
C70.0568 (4)0.37702 (14)0.0760 (2)0.0671 (7)
H70.0673830.3666730.0160800.080*
C10.3393 (4)0.51495 (16)0.2041 (3)0.0726 (7)
H10.3566280.5034490.2956460.087*
C150.6523 (3)0.26905 (17)0.3649 (3)0.0753 (8)
H150.7644440.2620980.3603370.090*
C50.3770 (4)0.58741 (16)0.0358 (3)0.0815 (8)
H50.4210550.6282340.0064710.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0572 (3)0.0769 (4)0.0472 (3)0.0085 (3)0.0073 (2)0.0021 (3)
N20.0409 (8)0.0541 (10)0.0400 (9)0.0017 (7)0.0052 (7)0.0015 (7)
C120.0441 (10)0.0602 (13)0.0380 (9)0.0004 (9)0.0035 (8)0.0070 (9)
C30.0425 (10)0.0548 (12)0.0461 (11)0.0052 (9)0.0061 (8)0.0004 (9)
C60.0418 (10)0.0552 (12)0.0424 (10)0.0049 (9)0.0067 (8)0.0031 (9)
C170.0477 (11)0.0693 (15)0.0400 (10)0.0057 (10)0.0023 (8)0.0021 (10)
N10.0773 (14)0.0759 (15)0.0676 (14)0.0039 (12)0.0005 (11)0.0160 (12)
C110.0460 (10)0.0589 (12)0.0423 (10)0.0015 (9)0.0046 (8)0.0038 (10)
C100.0734 (15)0.0699 (16)0.0493 (12)0.0223 (13)0.0013 (11)0.0105 (11)
C90.0661 (14)0.0743 (16)0.0414 (11)0.0134 (12)0.0033 (10)0.0109 (11)
C40.0878 (18)0.0624 (15)0.0540 (14)0.0131 (13)0.0055 (12)0.0009 (12)
C130.0546 (12)0.0665 (15)0.0586 (13)0.0030 (11)0.0056 (10)0.0025 (12)
N30.0824 (16)0.0941 (18)0.0846 (17)0.0142 (14)0.0121 (13)0.0306 (15)
C20.0704 (15)0.0657 (15)0.0511 (13)0.0032 (12)0.0012 (11)0.0007 (11)
C180.0568 (13)0.0787 (17)0.0532 (13)0.0137 (12)0.0037 (11)0.0055 (13)
C80.0962 (19)0.0646 (15)0.0460 (12)0.0218 (14)0.0037 (12)0.0102 (11)
C160.0464 (12)0.098 (2)0.0622 (15)0.0124 (13)0.0004 (11)0.0019 (14)
C140.0606 (14)0.0816 (18)0.0714 (16)0.0157 (13)0.0139 (12)0.0057 (14)
C70.0915 (18)0.0686 (16)0.0386 (11)0.0176 (14)0.0009 (11)0.0084 (11)
C10.0792 (17)0.0827 (19)0.0525 (14)0.0036 (15)0.0047 (12)0.0052 (13)
C150.0445 (12)0.105 (2)0.0765 (17)0.0072 (13)0.0082 (12)0.0063 (16)
C50.102 (2)0.0679 (17)0.0738 (18)0.0191 (16)0.0088 (16)0.0068 (15)
Geometric parameters (Å, º) top
N2—C111.493 (3)C17—C161.395 (3)
N2—C91.330 (3)N1—C11.322 (4)
N2—C81.338 (3)N1—C51.319 (4)
C12—C171.401 (3)C10—C91.372 (3)
C12—C111.503 (3)C4—C51.383 (4)
C12—C131.382 (3)C13—C141.392 (3)
C3—C61.481 (3)N3—C181.138 (3)
C3—C41.382 (3)C2—C11.376 (4)
C3—C21.390 (3)C8—C71.361 (3)
C6—C101.388 (3)C16—C151.369 (4)
C6—C71.388 (3)C14—C151.375 (4)
C17—C181.426 (4)
C9—N2—C11121.14 (18)C5—N1—C1115.5 (2)
C9—N2—C8119.8 (2)N2—C11—C12113.58 (16)
C8—N2—C11119.03 (19)C9—C10—C6121.3 (2)
C17—C12—C11121.2 (2)N2—C9—C10120.7 (2)
C13—C12—C17118.6 (2)C3—C4—C5118.9 (2)
C13—C12—C11120.2 (2)C12—C13—C14120.5 (2)
C4—C3—C6122.2 (2)C1—C2—C3119.3 (3)
C4—C3—C2116.6 (2)N3—C18—C17179.2 (3)
C2—C3—C6121.2 (2)N2—C8—C7121.3 (2)
C10—C6—C3122.7 (2)C15—C16—C17119.5 (2)
C10—C6—C7115.8 (2)C15—C14—C13120.1 (3)
C7—C6—C3121.44 (19)C8—C7—C6121.0 (2)
C12—C17—C18120.1 (2)N1—C1—C2124.6 (3)
C16—C17—C12120.6 (2)C16—C15—C14120.7 (2)
C16—C17—C18119.4 (2)N1—C5—C4125.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl1i0.932.703.581 (3)159
C10—H10···N3ii0.932.593.473 (4)158
C11—H11A···Cl10.972.733.581 (2)147
C11—H11B···Cl1iii0.972.713.612 (2)156
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z+1; (iii) x, y+1/2, z+1/2.
1-(2-Cyanobenzyl)-4,4'-bipyridin-1-ium bromide (2) top
Crystal data top
C18H14N3+·BrF(000) = 712
Mr = 352.23Dx = 1.469 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 8.2921 (3) ÅCell parameters from 2557 reflections
b = 18.943 (1) Åθ = 8.0–72.9°
c = 10.2348 (4) ŵ = 3.50 mm1
β = 97.849 (4)°T = 293 K
V = 1592.59 (12) Å3Block, green
Z = 40.52 × 0.43 × 0.27 mm
Data collection top
Rigaku Xcalibur Eos Gemini
diffractometer
3193 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source2560 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 16.0710 pixels mm-1θmax = 73.1°, θmin = 4.7°
ω scansh = 710
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 2323
Tmin = 0.376, Tmax = 1.000l = 1212
9143 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0601P)2 + 0.3099P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3193 reflectionsΔρmax = 0.30 e Å3
199 parametersΔρmin = 0.78 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.45832 (4)0.35139 (2)0.68924 (3)0.05344 (14)
N20.5529 (3)0.34953 (14)0.2934 (2)0.0423 (6)
C170.9365 (4)0.33828 (19)0.4365 (3)0.0509 (8)
C120.8213 (4)0.29204 (17)0.3715 (3)0.0447 (7)
C60.3713 (3)0.44024 (16)0.1190 (3)0.0419 (6)
C30.2730 (4)0.48833 (17)0.0251 (3)0.0453 (7)
C80.5356 (5)0.3366 (2)0.1648 (3)0.0602 (9)
H80.58470.29690.13400.072*
C110.6421 (4)0.29785 (18)0.3869 (3)0.0453 (7)
H11A0.59170.25180.37240.054*
H11B0.63250.31210.47650.054*
C70.4459 (5)0.3810 (2)0.0764 (3)0.0592 (9)
H70.43530.37090.01330.071*
N30.8436 (5)0.4412 (2)0.5720 (4)0.0883 (12)
C130.8740 (4)0.2382 (2)0.2960 (3)0.0555 (8)
H130.79850.20730.25150.067*
N10.0861 (4)0.57836 (19)0.1544 (3)0.0685 (8)
C90.4842 (4)0.4071 (2)0.3388 (3)0.0536 (8)
H90.49780.41610.42900.064*
C151.1509 (4)0.2755 (2)0.3524 (4)0.0717 (11)
H151.26100.26970.34630.086*
C180.8850 (4)0.3956 (2)0.5128 (3)0.0617 (9)
C161.1014 (4)0.3294 (2)0.4275 (4)0.0657 (10)
H161.17780.35990.47220.079*
C100.3943 (4)0.4528 (2)0.2542 (3)0.0564 (8)
H100.34820.49250.28750.068*
C141.0389 (4)0.2300 (2)0.2861 (4)0.0681 (10)
H141.07310.19390.23480.082*
C40.2058 (5)0.5504 (2)0.0658 (3)0.0611 (9)
H40.22280.56380.15410.073*
C50.1136 (5)0.5918 (2)0.0268 (4)0.0718 (11)
H50.06720.63240.00300.086*
C20.2429 (5)0.4731 (2)0.1081 (3)0.0599 (9)
H20.28490.43230.14110.072*
C10.1499 (5)0.5190 (2)0.1917 (4)0.0680 (10)
H10.13070.50730.28070.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0498 (2)0.0680 (3)0.0429 (2)0.00547 (15)0.00765 (14)0.00177 (14)
N20.0367 (12)0.0526 (15)0.0379 (13)0.0027 (10)0.0065 (10)0.0019 (10)
C170.0445 (16)0.073 (2)0.0349 (15)0.0039 (14)0.0029 (12)0.0026 (14)
C120.0424 (14)0.0563 (18)0.0354 (14)0.0001 (13)0.0056 (11)0.0041 (12)
C60.0391 (13)0.0493 (17)0.0382 (14)0.0062 (12)0.0082 (11)0.0039 (12)
C30.0422 (15)0.0556 (18)0.0398 (15)0.0049 (13)0.0114 (12)0.0002 (13)
C80.077 (2)0.062 (2)0.0412 (17)0.0163 (18)0.0065 (16)0.0106 (15)
C110.0424 (15)0.0549 (18)0.0387 (15)0.0034 (13)0.0054 (12)0.0027 (13)
C70.076 (2)0.063 (2)0.0370 (17)0.0102 (18)0.0031 (15)0.0075 (15)
N30.076 (2)0.106 (3)0.085 (3)0.017 (2)0.0183 (19)0.039 (2)
C130.0475 (16)0.062 (2)0.0560 (19)0.0022 (15)0.0049 (14)0.0036 (16)
N10.071 (2)0.072 (2)0.0610 (19)0.0026 (16)0.0025 (15)0.0139 (16)
C90.0580 (18)0.066 (2)0.0379 (16)0.0053 (16)0.0092 (13)0.0094 (14)
C150.0382 (16)0.104 (3)0.074 (3)0.0042 (19)0.0105 (16)0.003 (2)
C180.0545 (19)0.083 (3)0.0473 (19)0.0161 (18)0.0062 (15)0.0125 (18)
C160.0419 (17)0.096 (3)0.057 (2)0.0083 (17)0.0020 (15)0.0014 (19)
C100.064 (2)0.063 (2)0.0431 (17)0.0152 (16)0.0078 (14)0.0074 (15)
C140.057 (2)0.081 (3)0.069 (2)0.0176 (18)0.0170 (17)0.0013 (19)
C40.076 (2)0.059 (2)0.0476 (18)0.0078 (18)0.0058 (16)0.0043 (15)
C50.084 (3)0.067 (3)0.063 (2)0.015 (2)0.003 (2)0.0033 (19)
C20.067 (2)0.066 (2)0.0455 (18)0.0062 (17)0.0048 (15)0.0044 (15)
C10.077 (3)0.083 (3)0.0412 (19)0.000 (2)0.0001 (17)0.0038 (17)
Geometric parameters (Å, º) top
N2—C81.327 (4)C13—H130.9300
N2—C111.493 (4)C13—C141.394 (5)
N2—C91.342 (4)N1—C51.320 (5)
C17—C121.396 (4)N1—C11.321 (5)
C17—C181.436 (5)C9—H90.9300
C17—C161.393 (5)C9—C101.370 (5)
C12—C111.519 (4)C15—H150.9300
C12—C131.386 (5)C15—C161.374 (6)
C6—C31.484 (4)C15—C141.376 (6)
C6—C71.381 (5)C16—H160.9300
C6—C101.392 (4)C10—H100.9300
C3—C41.389 (5)C14—H140.9300
C3—C21.382 (4)C4—H40.9300
C8—H80.9300C4—C51.379 (5)
C8—C71.377 (5)C5—H50.9300
C11—H11A0.9700C2—H20.9300
C11—H11B0.9700C2—C11.379 (5)
C7—H70.9300C1—H10.9300
N3—C181.135 (5)
C8—N2—C11119.4 (3)C5—N1—C1115.4 (3)
C8—N2—C9120.0 (3)N2—C9—H9119.5
C9—N2—C11120.5 (3)N2—C9—C10121.0 (3)
C12—C17—C18119.9 (3)C10—C9—H9119.5
C16—C17—C12120.4 (3)C16—C15—H15119.7
C16—C17—C18119.6 (3)C16—C15—C14120.6 (3)
C17—C12—C11121.3 (3)C14—C15—H15119.7
C13—C12—C17118.7 (3)N3—C18—C17179.3 (5)
C13—C12—C11119.9 (3)C17—C16—H16120.1
C7—C6—C3121.6 (3)C15—C16—C17119.8 (4)
C7—C6—C10116.5 (3)C15—C16—H16120.1
C10—C6—C3121.9 (3)C6—C10—H10119.7
C4—C3—C6122.1 (3)C9—C10—C6120.6 (3)
C2—C3—C6121.3 (3)C9—C10—H10119.7
C2—C3—C4116.5 (3)C13—C14—H14120.1
N2—C8—H8119.5C15—C14—C13119.8 (4)
N2—C8—C7120.9 (3)C15—C14—H14120.1
C7—C8—H8119.5C3—C4—H4120.6
N2—C11—C12112.8 (2)C5—C4—C3118.9 (3)
N2—C11—H11A109.0C5—C4—H4120.6
N2—C11—H11B109.0N1—C5—C4125.1 (4)
C12—C11—H11A109.0N1—C5—H5117.4
C12—C11—H11B109.0C4—C5—H5117.4
H11A—C11—H11B107.8C3—C2—H2120.3
C6—C7—H7119.5C1—C2—C3119.4 (4)
C8—C7—C6121.0 (3)C1—C2—H2120.3
C8—C7—H7119.5N1—C1—C2124.7 (4)
C12—C13—H13119.7N1—C1—H1117.6
C12—C13—C14120.6 (3)C2—C1—H1117.6
C14—C13—H13119.7
N2—C8—C7—C60.0 (6)C7—C6—C10—C91.2 (5)
N2—C9—C10—C60.4 (6)C13—C12—C11—N297.1 (4)
C17—C12—C11—N285.6 (3)C9—N2—C8—C70.9 (6)
C17—C12—C13—C140.6 (5)C9—N2—C11—C12117.4 (3)
C12—C17—C16—C151.1 (6)C18—C17—C12—C114.1 (5)
C12—C13—C14—C150.3 (6)C18—C17—C12—C13178.5 (3)
C6—C3—C4—C5178.9 (3)C18—C17—C16—C15178.7 (4)
C6—C3—C2—C1179.5 (3)C16—C17—C12—C11176.0 (3)
C3—C6—C7—C8179.5 (3)C16—C17—C12—C131.3 (5)
C3—C6—C10—C9179.3 (3)C16—C15—C14—C130.6 (6)
C3—C4—C5—N11.8 (7)C10—C6—C3—C43.5 (5)
C3—C2—C1—N10.5 (7)C10—C6—C3—C2176.1 (3)
C8—N2—C11—C1265.6 (4)C10—C6—C7—C81.0 (6)
C8—N2—C9—C100.7 (5)C14—C15—C16—C170.2 (6)
C11—N2—C8—C7176.1 (3)C4—C3—C2—C10.1 (5)
C11—N2—C9—C10176.3 (3)C5—N1—C1—C21.5 (7)
C11—C12—C13—C14176.8 (3)C2—C3—C4—C50.7 (5)
C7—C6—C3—C4175.9 (3)C1—N1—C5—C42.2 (7)
C7—C6—C3—C24.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Br1i0.932.853.718 (4)156
C10—H10···N3ii0.932.613.471 (5)155
C11—H11A···Br1iii0.972.833.683 (3)148
C11—H11B···Br10.972.873.770 (3)155
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds