Download citation
Download citation
link to html
A new set of differently hydrated barium and strontium squarates, namely poly[[tri­aqua­(μ-1,2-dioxo­cyclo­but-3-ene-1,2-diolato)barium] monohydrate], {[Ba(C4O4)(H2O)3]·H2O}n (1), poly[[di­aqua­(μ-1,2-dioxo­cyclo­but-3-ene-1,2-diolato)strontium] monohydrate], {[Sr(C4O4)(H2O)2]·H2O}n (2), and poly[[tri­aqua­(μ-1,2-dioxo­cyclo­but-3-ene-1,2-diolato)barium/strontium(0.85/0.15)] monohydrate], {[Ba0.85Sr0.15(C4O4)(H2O)3]·H2O}n (3), is reported. The study of their crystal structures indicates that all the com­plexes crystallize in the triclinic space group P\overline{1}. Com­plexes 1 and 3 have a rare combination of squarate units coordinated through monodentate O atoms to two different metal atoms and through two bidentate O atoms to three different metal atoms. Furthermore, they have three coordinated water mol­ecules to give a coordination number of nine. The squarate ligands in com­plex 2 exhibit two different coordination modes: (i) monodentate O atoms coordinated to four different Sr atoms and (ii) two monodentate O atoms coordinated to two different metal atoms with the other two O atoms bidentate to four different Sr atoms. All the com­pounds decompose to give the respective carbonates when heated to 800 °C, as evidenced by thermogravimetry/differential thermal analysis (TG-DTA), which are clusters of nanoparticles. Com­plexes 1 and 3 show additional endothermic peaks at 811 and 820 °C, respectively, indicating the phase transition of BaCO3 from an ortho­rhom­bic (α-Pmcn) to a trigonal phase (β-R3m). All three com­plexes have significant DNA-binding constants, ranging from 2.45 × 104 to 9.41 × 104M−1 against EB-CT (ethidium bromide–calf thymus) DNA and protein binding constants ranging from 1.1 × 105 to 8.6 × 105 with bovine serum albumin. The in vitro cytotoxicity of the com­plexes is indicated by the IC50 values, which range from 128.8 to 261.3 µg ml−1. Com­plex 3 shows better BSA binding, anti­oxidant activity against the DPPH radical and cytotoxicity than com­plexes 1 and 2.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229619009082/lf3099sup1.cif
Contains datablocks BSANEW30-4, SRSANEW30-4, BSMS, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619009082/lf3099BSANEW30-4sup2.hkl
Contains datablock BSANEW30-4

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619009082/lf3099SRSANEW30-4sup3.hkl
Contains datablock SRSANEW30-4

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619009082/lf3099BSMSsup4.hkl
Contains datablock BSMS

CCDC references: 1872180; 1559237; 1526999

Computing details top

Data collection: APEX2 (Bruker, 2004) for BSANEW30-4, SRSANEW30-4; APEX3 (Bruker, 2016) for BSMS. Cell refinement: APEX2 and SAINT (Bruker, 2004) for BSANEW30-4, SRSANEW30-4; APEX3 and SAINT (Bruker, 2016) for BSMS. Data reduction: SAINT and XPREP (Bruker, 2004) for BSANEW30-4, SRSANEW30-4; SAINT and XPREP (Bruker, 2016) for BSMS. For all structures, program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

Poly[[triaqua(µ-1,2-dioxocyclobut-3-ene-1,2-diolato)barium] monohydrate] (BSANEW30-4) top
Crystal data top
[Ba(C4O4)(H2O)3]·H2OZ = 2
Mr = 321.44F(000) = 304
Triclinic, P1Dx = 2.436 Mg m3
a = 6.8216 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.1815 (1) ÅCell parameters from 9964 reflections
c = 8.8083 (1) Åθ = 2.6–34.8°
α = 95.146 (8)°µ = 4.55 mm1
β = 106.652 (8)°T = 296 K
γ = 108.317 (7)°BLOCK, colourless
V = 438.30 (3) Å30.10 × 0.10 × 0.05 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3008 independent reflections
Radiation source: fine-focus sealed tube2693 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω and φ scanθmax = 32.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 910
Tmin = 0.547, Tmax = 0.745k = 1212
17140 measured reflectionsl = 1313
Refinement top
Refinement on F212 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025All H-atom parameters refined
wR(F2) = 0.049 w = 1/[σ2(Fo2) + (0.0145P)2 + 0.3502P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max = 0.001
3008 reflectionsΔρmax = 1.10 e Å3
150 parametersΔρmin = 0.86 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Single crystal X-ray analysis was carried out using an Enraf (bruker) Nonius CAD4-MV31 single crystal X-ray diffractometer at 296 K using graphite monochromated Mo Kα radiation at the wave length of 0.71073 ?. Data collections were controlled by APEX 3 (Bruker, 2016) software with cell refinement and data reduction performed using SAINT (Bruker, 2016). Multi-scan absorption corrections were applied using SADABS (Bruker, 2016). The structures were all solved with SHELXT (Sheldrick, 2014) and refined by full-matrix least-squares on F2 using SHELXL (Sheldrick, 2014).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3837 (4)0.0634 (3)0.6404 (3)0.0139 (4)
C20.3793 (4)0.2423 (3)0.6071 (3)0.0150 (5)
C30.6168 (4)0.1778 (3)0.6543 (3)0.0150 (5)
C40.6245 (4)0.0030 (3)0.6912 (3)0.0137 (4)
Ba10.13547 (2)0.29336 (2)0.63490 (2)0.01391 (5)
O10.2349 (3)0.0009 (2)0.6159 (2)0.0210 (4)
O20.2253 (3)0.3865 (2)0.5476 (3)0.0223 (4)
O30.7560 (3)0.2488 (3)0.6517 (2)0.0215 (4)
O40.7730 (3)0.1521 (2)0.7355 (2)0.0202 (4)
O50.6009 (3)0.4236 (3)0.7515 (3)0.0260 (4)
O60.2632 (5)0.5636 (3)0.9029 (3)0.0402 (6)
O70.2694 (4)0.2102 (3)0.9467 (3)0.0346 (5)
O81.1200 (4)0.1578 (3)0.9193 (3)0.0325 (5)
H7B0.239 (5)0.102 (2)0.938 (4)0.036 (11)*
H7A0.402 (3)0.261 (4)0.996 (4)0.033 (10)*
H8A1.076 (7)0.169 (7)0.998 (3)0.076 (17)*
H8B1.010 (5)0.178 (5)0.836 (3)0.049 (12)*
H5A0.648 (7)0.506 (4)0.707 (5)0.072 (16)*
H5B0.649 (7)0.344 (4)0.735 (5)0.056 (13)*
H6A0.214 (8)0.648 (5)0.903 (5)0.074 (16)*
H6B0.281 (7)0.538 (5)0.995 (3)0.057 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0128 (10)0.0149 (11)0.0144 (11)0.0041 (9)0.0056 (9)0.0050 (9)
C20.0141 (11)0.0149 (11)0.0171 (12)0.0055 (9)0.0053 (9)0.0066 (9)
C30.0151 (11)0.0156 (12)0.0151 (12)0.0058 (9)0.0050 (9)0.0058 (9)
C40.0133 (10)0.0146 (11)0.0128 (11)0.0042 (9)0.0044 (9)0.0027 (9)
Ba10.01250 (7)0.01207 (7)0.01781 (8)0.00464 (5)0.00548 (5)0.00364 (5)
O10.0175 (9)0.0192 (9)0.0300 (11)0.0103 (7)0.0089 (8)0.0054 (8)
O20.0158 (9)0.0123 (9)0.0330 (11)0.0012 (7)0.0034 (8)0.0051 (8)
O30.0172 (9)0.0232 (10)0.0282 (11)0.0114 (8)0.0086 (8)0.0063 (8)
O40.0173 (9)0.0142 (9)0.0236 (10)0.0002 (7)0.0057 (8)0.0018 (7)
O50.0254 (10)0.0236 (11)0.0339 (12)0.0105 (9)0.0142 (9)0.0087 (9)
O60.0645 (18)0.0351 (14)0.0261 (13)0.0290 (13)0.0109 (12)0.0048 (11)
O70.0380 (14)0.0303 (13)0.0299 (13)0.0104 (11)0.0045 (11)0.0078 (10)
O80.0336 (12)0.0383 (13)0.0241 (12)0.0132 (10)0.0067 (10)0.0081 (10)
Geometric parameters (Å, º) top
C1—O11.248 (3)Ba1—O1i3.007 (2)
C1—C21.457 (3)Ba1—C2i3.417 (2)
C1—C41.472 (3)Ba1—Ba1i4.6868 (5)
C2—O21.251 (3)Ba1—Ba1v4.8320 (4)
C2—C31.454 (3)O1—Ba1i3.007 (2)
C2—Ba1i3.417 (2)O2—Ba1vi2.7295 (18)
C3—O31.263 (3)O2—Ba1i2.8901 (19)
C3—C41.467 (3)O3—Ba1iv2.851 (2)
C4—O41.256 (3)O4—Ba1vii2.8068 (18)
Ba1—O12.7024 (18)O5—H5A0.835 (18)
Ba1—O2ii2.7295 (18)O5—H5B0.831 (18)
Ba1—O4iii2.8067 (19)O6—H6A0.853 (18)
Ba1—O62.809 (2)O6—H6B0.842 (18)
Ba1—O52.843 (2)O7—H7B0.833 (17)
Ba1—O72.851 (2)O7—H7A0.827 (17)
Ba1—O3iv2.851 (2)O8—H8A0.836 (18)
Ba1—O2i2.8901 (19)O8—H8B0.846 (18)
O1—C1—C2132.1 (2)O2i—Ba1—O1i64.18 (5)
O1—C1—C4137.5 (2)O1—Ba1—C2i114.36 (6)
C2—C1—C489.98 (19)O2ii—Ba1—C2i81.14 (6)
O2—C2—C3137.0 (2)O4iii—Ba1—C2i59.48 (6)
O2—C2—C1132.3 (2)O6—Ba1—C2i108.47 (7)
C3—C2—C190.41 (19)O5—Ba1—C2i157.52 (6)
O2—C2—Ba1i55.11 (13)O7—Ba1—C2i128.87 (7)
C3—C2—Ba1i154.29 (16)O3iv—Ba1—C2i87.80 (6)
C1—C2—Ba1i79.79 (13)O2i—Ba1—C2i20.79 (5)
O3—C3—C2134.2 (2)O1i—Ba1—C2i44.72 (5)
O3—C3—C4135.3 (2)O1—Ba1—Ba1i37.02 (4)
C2—C3—C490.30 (19)O2ii—Ba1—Ba1i135.96 (5)
O4—C4—C3135.1 (2)O4iii—Ba1—Ba1i78.90 (4)
O4—C4—C1135.4 (2)O6—Ba1—Ba1i154.69 (5)
C3—C4—C189.29 (19)O5—Ba1—Ba1i110.38 (5)
O1—Ba1—O2ii141.89 (6)O7—Ba1—Ba1i93.65 (5)
O1—Ba1—O4iii95.94 (6)O3iv—Ba1—Ba1i66.69 (4)
O2ii—Ba1—O4iii121.08 (6)O2i—Ba1—Ba1i96.85 (4)
O1—Ba1—O6129.34 (7)O1i—Ba1—Ba1i32.75 (3)
O2ii—Ba1—O669.05 (7)C2i—Ba1—Ba1i77.40 (4)
O4iii—Ba1—O683.19 (7)O1—Ba1—Ba1v149.10 (4)
O1—Ba1—O576.59 (6)O2ii—Ba1—Ba1v31.69 (4)
O2ii—Ba1—O579.00 (6)O4iii—Ba1—Ba1v95.15 (4)
O4iii—Ba1—O5141.56 (6)O6—Ba1—Ba1v80.62 (5)
O6—Ba1—O573.90 (8)O5—Ba1—Ba1v110.62 (4)
O1—Ba1—O769.27 (7)O7—Ba1—Ba1v141.52 (5)
O2ii—Ba1—O7129.30 (7)O3iv—Ba1—Ba1v80.58 (4)
O4iii—Ba1—O769.39 (7)O2i—Ba1—Ba1v29.74 (4)
O6—Ba1—O763.13 (7)O1i—Ba1—Ba1v88.45 (3)
O5—Ba1—O772.77 (7)C2i—Ba1—Ba1v49.75 (4)
O1—Ba1—O3iv71.72 (6)Ba1i—Ba1—Ba1v118.514 (8)
O2ii—Ba1—O3iv74.54 (6)C1—O1—Ba1146.27 (17)
O4iii—Ba1—O3iv137.18 (6)C1—O1—Ba1i101.01 (16)
O6—Ba1—O3iv136.67 (7)Ba1—O1—Ba1i110.23 (6)
O5—Ba1—O3iv76.87 (6)C2—O2—Ba1vi133.18 (16)
O7—Ba1—O3iv134.83 (6)C2—O2—Ba1i104.10 (15)
O1—Ba1—O2i133.75 (6)Ba1vi—O2—Ba1i118.57 (6)
O2ii—Ba1—O2i61.43 (6)C3—O3—Ba1iv119.53 (16)
O4iii—Ba1—O2i70.28 (5)C4—O4—Ba1vii130.53 (17)
O6—Ba1—O2i93.74 (7)Ba1—O5—H5A110 (3)
O5—Ba1—O2i140.28 (6)Ba1—O5—H5B111 (3)
O7—Ba1—O2i135.28 (7)H5A—O5—H5B111 (3)
O3iv—Ba1—O2i88.76 (6)Ba1—O6—H6A124 (3)
O1—Ba1—O1i69.77 (6)Ba1—O6—H6B118 (3)
O2ii—Ba1—O1i114.41 (6)H6A—O6—H6B107 (3)
O4iii—Ba1—O1i66.86 (5)Ba1—O7—H7B110 (3)
O6—Ba1—O1i147.06 (7)Ba1—O7—H7A113 (3)
O5—Ba1—O1i138.71 (6)H7B—O7—H7A109 (2)
O7—Ba1—O1i114.66 (6)H8A—O8—H8B108 (3)
O3iv—Ba1—O1i70.43 (5)
O1—C1—C2—O21.9 (5)C2—C1—C4—O4176.1 (3)
C4—C1—C2—O2175.4 (3)O1—C1—C4—C3171.9 (3)
O1—C1—C2—C3172.5 (3)C2—C1—C4—C30.93 (19)
C4—C1—C2—C30.94 (19)C2—C1—O1—Ba1176.6 (2)
O1—C1—C2—Ba1i16.4 (3)C4—C1—O1—Ba16.3 (6)
C4—C1—C2—Ba1i157.04 (15)C2—C1—O1—Ba1i18.8 (3)
O2—C2—C3—O30.3 (5)C4—C1—O1—Ba1i151.5 (3)
C1—C2—C3—O3174.3 (3)C3—C2—O2—Ba1vi54.5 (4)
Ba1i—C2—C3—O3107.4 (4)C1—C2—O2—Ba1vi133.6 (2)
O2—C2—C3—C4175.0 (3)Ba1i—C2—O2—Ba1vi155.8 (3)
C1—C2—C3—C40.95 (19)C3—C2—O2—Ba1i149.7 (3)
Ba1i—C2—C3—C467.8 (4)C1—C2—O2—Ba1i22.2 (3)
O3—C3—C4—O41.1 (5)C2—C3—O3—Ba1iv85.9 (3)
C2—C3—C4—O4176.2 (3)C4—C3—O3—Ba1iv87.3 (3)
O3—C3—C4—C1174.2 (3)C3—C4—O4—Ba1vii41.8 (4)
C2—C3—C4—C10.94 (19)C1—C4—O4—Ba1vii131.4 (3)
O1—C1—C4—O43.3 (5)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z; (iii) x1, y, z; (iv) x+1, y, z+1; (v) x, y+1, z+1; (vi) x, y1, z; (vii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7B···O8iii0.83 (2)2.00 (2)2.821 (3)171 (3)
O7—H7A···O6viii0.83 (2)2.15 (2)2.963 (4)168 (3)
O8—H8A···O4ix0.84 (2)2.25 (3)2.909 (3)136 (4)
O8—H8A···O7x0.84 (2)2.46 (3)3.131 (4)138 (4)
O8—H8B···O30.85 (2)1.89 (2)2.729 (3)174 (4)
O5—H5A···O3ii0.84 (2)2.06 (2)2.872 (3)163 (4)
O5—H5B···O40.83 (2)2.01 (2)2.831 (3)171 (4)
O6—H6A···O8xi0.85 (2)1.90 (2)2.756 (3)175 (5)
O6—H6B···O5viii0.84 (2)2.10 (3)2.899 (3)158 (4)
Symmetry codes: (ii) x, y+1, z; (iii) x1, y, z; (viii) x+1, y+1, z+2; (ix) x+2, y, z+2; (x) x+1, y, z+2; (xi) x1, y+1, z.
Poly[[diaqua(µ-1,2-dioxocyclobut-3-ene-1,2-diolato)strontium] monohydrate] (SRSANEW30-4) top
Crystal data top
[Sr(C4O4)(H2O)2]·H2OZ = 2
Mr = 253.71F(000) = 248
Triclinic, P1Dx = 2.318 Mg m3
a = 6.0313 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.7677 (3) ÅCell parameters from 9995 reflections
c = 8.6375 (3) Åθ = 2.9–36.1°
α = 101.270 (2)°µ = 7.42 mm1
β = 94.952 (2)°T = 296 K
γ = 111.578 (2)°Block, colourless
V = 363.45 (2) Å30.15 × 0.10 × 0.05 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2604 independent reflections
Radiation source: fine-focus sealed tube2440 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω and φ scanθmax = 32.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 99
Tmin = 0.499, Tmax = 0.748k = 1111
14971 measured reflectionsl = 1313
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.018 w = 1/[σ2(Fo2) + (0.0179P)2 + 0.0871P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.043(Δ/σ)max = 0.004
S = 1.07Δρmax = 0.49 e Å3
2604 reflectionsΔρmin = 0.40 e Å3
134 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
9 restraintsExtinction coefficient: 0.068 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Single crystal X-ray analysis was carried out using an Enraf (bruker) Nonius CAD4-MV31 single crystal X-ray diffractometer at 296 K using graphite monochromated Mo Kα radiation at the wave length of 0.71073 ?. Data collections were controlled by APEX 3 (Bruker, 2016) software with cell refinement and data reduction performed using SAINT (Bruker, 2016). Multi-scan absorption corrections were applied using SADABS (Bruker, 2016). The structures were all solved with SHELXT (Sheldrick, 2014) and refined by full-matrix least-squares on F2 using SHELXL (Sheldrick, 2014).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1578 (2)0.54759 (18)0.95276 (16)0.0134 (2)
C20.0077 (2)0.36680 (18)0.98712 (16)0.0123 (2)
C30.9671 (2)0.5975 (2)0.58485 (16)0.0144 (2)
C40.8169 (2)0.41558 (19)0.47211 (16)0.0141 (2)
O10.34677 (19)0.60251 (15)0.89426 (14)0.0205 (2)
O20.01996 (18)0.20651 (13)0.97124 (12)0.01593 (19)
O30.9315 (2)0.71817 (16)0.68708 (13)0.0225 (2)
O40.59549 (19)0.31063 (16)0.43699 (13)0.0216 (2)
O50.36036 (19)1.01521 (15)0.85078 (13)0.01772 (19)
O70.3353 (2)1.27545 (17)0.68587 (16)0.0274 (3)
Sr10.68523 (2)0.87328 (2)0.83645 (2)0.01111 (5)
O60.8202 (3)1.0739 (2)0.62887 (18)0.0379 (3)
H6A0.966 (3)1.135 (4)0.632 (4)0.063 (9)*
H5B0.232 (3)0.920 (2)0.804 (3)0.035 (6)*
H5A0.364 (4)1.098 (3)0.800 (3)0.038 (6)*
H7B0.360 (5)1.377 (3)0.754 (3)0.055 (8)*
H7A0.406 (4)1.303 (3)0.611 (2)0.046 (7)*
H6B0.733 (6)1.074 (7)0.556 (4)0.15 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0140 (6)0.0110 (5)0.0156 (6)0.0045 (4)0.0043 (5)0.0040 (4)
C20.0129 (5)0.0102 (5)0.0140 (6)0.0040 (4)0.0033 (4)0.0036 (4)
C30.0132 (6)0.0181 (6)0.0123 (6)0.0081 (5)0.0015 (4)0.0009 (5)
C40.0133 (6)0.0169 (6)0.0122 (6)0.0067 (5)0.0021 (4)0.0022 (5)
O10.0174 (5)0.0161 (5)0.0291 (6)0.0050 (4)0.0125 (4)0.0074 (4)
O20.0187 (5)0.0100 (4)0.0198 (5)0.0065 (4)0.0034 (4)0.0033 (4)
O30.0194 (5)0.0252 (5)0.0205 (5)0.0125 (4)0.0017 (4)0.0066 (4)
O40.0120 (5)0.0255 (5)0.0194 (5)0.0021 (4)0.0024 (4)0.0016 (4)
O50.0169 (5)0.0165 (5)0.0209 (5)0.0084 (4)0.0021 (4)0.0041 (4)
O70.0377 (7)0.0219 (5)0.0278 (6)0.0135 (5)0.0169 (5)0.0090 (5)
Sr10.00949 (6)0.01009 (6)0.01363 (7)0.00395 (4)0.00293 (4)0.00206 (4)
O60.0391 (8)0.0349 (7)0.0314 (7)0.0011 (6)0.0044 (6)0.0175 (6)
Geometric parameters (Å, º) top
C1—O11.2499 (16)O5—Sr1vi2.7410 (11)
C1—C2i1.4664 (18)O5—H5B0.848 (15)
C1—C21.4678 (17)O5—H5A0.841 (15)
C2—O21.2560 (15)O7—H7B0.842 (16)
C2—C1i1.4664 (18)O7—H7A0.826 (16)
C3—O31.2494 (16)Sr1—O4v2.5879 (11)
C3—C41.4610 (19)Sr1—O2vii2.5892 (10)
C3—C4ii1.4621 (18)Sr1—O62.5916 (13)
C4—O41.2541 (17)Sr1—O2iv2.6473 (10)
C4—C3ii1.4621 (18)Sr1—O5vi2.7410 (11)
O1—Sr12.5037 (10)Sr1—Sr1viii4.0928 (3)
O2—Sr1iii2.5892 (10)Sr1—Sr1vi4.3592 (3)
O2—Sr1iv2.6473 (10)Sr1—H5B2.88 (2)
O3—Sr12.5223 (10)O6—H6A0.825 (17)
O4—Sr1v2.5879 (11)O6—H6B0.786 (18)
O5—Sr12.5783 (10)
O1—C1—C2i135.64 (12)O5—Sr1—O2iv139.76 (3)
O1—C1—C2134.36 (12)O4v—Sr1—O2iv133.52 (3)
C2i—C1—C289.99 (10)O2vii—Sr1—O2iv77.19 (3)
O2—C2—C1i135.75 (12)O6—Sr1—O2iv124.58 (4)
O2—C2—C1134.24 (12)O1—Sr1—O5vi72.71 (4)
C1i—C2—C190.01 (10)O3—Sr1—O5vi136.99 (3)
O3—C3—C4136.13 (13)O5—Sr1—O5vi69.97 (4)
O3—C3—C4ii133.92 (13)O4v—Sr1—O5vi137.92 (3)
C4—C3—C4ii89.94 (10)O2vii—Sr1—O5vi69.86 (3)
O4—C4—C3135.94 (13)O6—Sr1—O5vi130.06 (5)
O4—C4—C3ii134.00 (13)O2iv—Sr1—O5vi69.82 (3)
C3—C4—C3ii90.06 (10)O1—Sr1—Sr1viii117.69 (3)
C1—O1—Sr1148.28 (9)O3—Sr1—Sr1viii81.92 (3)
C2—O2—Sr1iii128.17 (9)O5—Sr1—Sr1viii119.89 (3)
C2—O2—Sr1iv124.95 (9)O4v—Sr1—Sr1viii157.83 (2)
Sr1iii—O2—Sr1iv102.81 (3)O2vii—Sr1—Sr1viii39.10 (2)
C3—O3—Sr1156.36 (10)O6—Sr1—Sr1viii97.87 (4)
C4—O4—Sr1v131.61 (9)O2iv—Sr1—Sr1viii38.09 (2)
Sr1—O5—Sr1vi110.03 (4)O5vi—Sr1—Sr1viii63.83 (2)
Sr1—O5—H5B102.5 (15)O1—Sr1—Sr1vi73.25 (2)
Sr1vi—O5—H5B108.2 (16)O3—Sr1—Sr1vi170.71 (3)
Sr1—O5—H5A119.7 (16)O5—Sr1—Sr1vi36.21 (2)
Sr1vi—O5—H5A111.6 (16)O4v—Sr1—Sr1vi110.74 (2)
H5B—O5—H5A103.7 (18)O2vii—Sr1—Sr1vi77.75 (2)
H7B—O7—H7A109 (2)O6—Sr1—Sr1vi109.88 (4)
O1—Sr1—O3104.70 (4)O2iv—Sr1—Sr1vi103.56 (2)
O1—Sr1—O580.15 (4)O5vi—Sr1—Sr1vi33.76 (2)
O3—Sr1—O5153.03 (4)Sr1viii—Sr1—Sr1vi91.001 (5)
O1—Sr1—O4v74.56 (4)O1—Sr1—H5B67.6 (4)
O3—Sr1—O4v76.88 (3)O3—Sr1—H5B142.7 (4)
O5—Sr1—O4v79.03 (4)O5—Sr1—H5B16.7 (3)
O1—Sr1—O2vii142.38 (4)O4v—Sr1—H5B65.8 (4)
O3—Sr1—O2vii100.05 (3)O2vii—Sr1—H5B107.1 (3)
O5—Sr1—O2vii90.42 (3)O6—Sr1—H5B89.1 (4)
O4v—Sr1—O2vii139.45 (4)O2iv—Sr1—H5B143.4 (5)
O1—Sr1—O6144.39 (5)O5vi—Sr1—H5B77.6 (5)
O3—Sr1—O677.22 (5)Sr1viii—Sr1—H5B134.8 (4)
O5—Sr1—O683.73 (5)Sr1vi—Sr1—H5B45.5 (4)
O4v—Sr1—O671.30 (4)Sr1—O6—H6A119 (2)
O2vii—Sr1—O668.67 (4)Sr1—O6—H6B124 (3)
O1—Sr1—O2iv86.78 (3)H6A—O6—H6B116 (3)
O3—Sr1—O2iv67.17 (3)
O1—C1—C2—O21.1 (3)C2—C1—O1—Sr1170.03 (12)
C2i—C1—C2—O2179.7 (2)C1i—C2—O2—Sr1iii50.8 (2)
O1—C1—C2—C1i179.2 (2)C1—C2—O2—Sr1iii129.65 (14)
C2i—C1—C2—C1i0.000 (1)C1i—C2—O2—Sr1iv102.56 (17)
O3—C3—C4—O41.1 (3)C1—C2—O2—Sr1iv77.04 (18)
C4ii—C3—C4—O4179.6 (2)C4—C3—O3—Sr19.2 (4)
O3—C3—C4—C3ii179.3 (2)C4ii—C3—O3—Sr1169.77 (16)
C4ii—C3—C4—C3ii0.000 (1)C3—C4—O4—Sr1v137.14 (14)
C2i—C1—O1—Sr111.1 (3)C3ii—C4—O4—Sr1v43.4 (2)
Symmetry codes: (i) x, y+1, z+2; (ii) x+2, y+1, z+1; (iii) x1, y1, z; (iv) x+1, y+1, z+2; (v) x+1, y+1, z+1; (vi) x+1, y+2, z+2; (vii) x+1, y+1, z; (viii) x+2, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O7ix0.83 (2)2.05 (2)2.864 (2)168 (3)
O5—H5B···O3x0.85 (2)1.93 (2)2.7779 (16)175 (2)
O5—H5A···O70.84 (2)1.89 (2)2.7296 (16)174 (2)
O7—H7B···O1xi0.84 (2)1.96 (2)2.7860 (16)168 (3)
O7—H7A···O4xi0.83 (2)1.96 (2)2.7666 (16)165 (2)
Symmetry codes: (ix) x+1, y, z; (x) x1, y, z; (xi) x, y+1, z.
Poly[[triaqua(µ-1,2-dioxocyclobut-3-ene-1,2-diolato)barium/strontium(0.85/0.15)] monohydrate] (BSMS) top
Crystal data top
[Ba0.85Sr0.15(C4O4)(H2O)3]·H2OZ = 2
Mr = 313.99F(000) = 299
Triclinic, P1Dx = 2.372 Mg m3
a = 6.8271 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.1878 (9) ÅCell parameters from 9936 reflections
c = 8.8227 (9) Åθ = 3.3–33.3°
α = 95.18 (4)°µ = 4.77 mm1
β = 106.64 (5)°T = 296 K
γ = 108.33 (4)°Block, colourless
V = 439.66 (16) Å30.20 × 0.15 × 0.10 mm
Data collection top
Bruker Kappa APEX3 CMOS
diffractometer
2451 independent reflections
Radiation source: fine-focus sealed tube2345 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω and φ scanθmax = 29.5°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 99
Tmin = 0.558, Tmax = 0.746k = 1111
15596 measured reflectionsl = 1212
Refinement top
Refinement on F213 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Only H-atom coordinates refined
wR(F2) = 0.060 w = 1/[σ2(Fo2) + (0.0291P)2 + 0.6593P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.001
2451 reflectionsΔρmax = 1.51 e Å3
153 parametersΔρmin = 1.58 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Single crystal X-ray analysis was carried out using an Enraf (bruker) Nonius CAD4-MV31 single crystal X-ray diffractometer at 296 K using graphite monochromated Mo Kα radiation at the wave length of 0.71073 ?. Data collections were controlled by APEX 3 (Bruker, 2016) software with cell refinement and data reduction performed using SAINT (Bruker, 2016). Multi-scan absorption corrections were applied using SADABS (Bruker, 2016). The structures were all solved with SHELXT (Sheldrick, 2014) and refined by full-matrix least-squares on F2 using SHELXL (Sheldrick, 2014).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.3834 (4)0.4374 (3)0.6401 (3)0.0162 (5)
C20.6250 (4)0.5030 (4)0.6913 (3)0.0164 (5)
C30.6178 (4)0.3223 (4)0.6546 (3)0.0167 (5)
C40.3797 (4)0.2583 (3)0.6074 (3)0.0161 (5)
O10.2346 (4)0.4994 (3)0.6157 (3)0.0230 (4)
O20.2245 (3)0.1134 (3)0.5482 (3)0.0246 (4)
O30.7560 (4)0.2510 (3)0.6514 (3)0.0237 (4)
O40.7727 (3)0.6518 (3)0.7349 (3)0.0227 (4)
O50.6009 (4)0.9233 (3)0.7512 (3)0.0285 (5)
O70.2702 (5)0.7107 (4)0.9459 (3)0.0379 (6)
O81.1212 (5)0.3430 (4)0.9194 (3)0.0350 (6)
Ba10.1365 (2)0.79377 (17)0.63652 (10)0.01297 (10)0.85
Sr10.126 (2)0.7912 (17)0.6177 (11)0.01297 (10)0.15
O60.2630 (6)1.0633 (4)0.9025 (3)0.0441 (7)
H6B0.306 (8)1.036 (7)0.996 (4)0.053*
H6A0.190 (8)1.128 (6)0.918 (6)0.053*
H5B0.655 (10)0.845 (6)0.740 (8)0.08 (2)*
H5A0.661 (8)1.011 (4)0.713 (6)0.048 (14)*
H8A1.005 (5)0.314 (7)0.837 (4)0.052 (15)*
H7A0.404 (5)0.771 (6)1.005 (7)0.08 (2)*
H7B0.268 (9)0.603 (3)0.933 (7)0.07 (2)*
H8B1.082 (9)0.337 (11)1.003 (4)0.10 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0145 (11)0.0158 (11)0.0179 (12)0.0031 (9)0.0068 (9)0.0052 (9)
C20.0149 (11)0.0183 (12)0.0161 (11)0.0050 (9)0.0061 (9)0.0045 (9)
C30.0138 (11)0.0174 (12)0.0184 (12)0.0044 (9)0.0055 (9)0.0058 (9)
C40.0144 (11)0.0144 (11)0.0210 (12)0.0050 (9)0.0069 (9)0.0071 (9)
O10.0193 (10)0.0216 (10)0.0323 (11)0.0102 (8)0.0111 (8)0.0073 (9)
O20.0162 (10)0.0153 (9)0.0365 (12)0.0009 (8)0.0050 (9)0.0068 (8)
O30.0174 (9)0.0247 (10)0.0330 (12)0.0112 (8)0.0096 (8)0.0078 (9)
O40.0177 (9)0.0187 (10)0.0261 (11)0.0004 (8)0.0073 (8)0.0025 (8)
O50.0258 (11)0.0267 (12)0.0372 (13)0.0095 (9)0.0158 (10)0.0089 (10)
O70.0395 (15)0.0347 (14)0.0350 (14)0.0111 (12)0.0075 (12)0.0099 (11)
O80.0352 (14)0.0403 (14)0.0273 (12)0.0128 (11)0.0074 (11)0.0081 (11)
Ba10.01035 (17)0.01177 (10)0.0166 (3)0.00299 (11)0.0050 (2)0.0037 (2)
Sr10.01035 (17)0.01177 (10)0.0166 (3)0.00299 (11)0.0050 (2)0.0037 (2)
O60.066 (2)0.0383 (15)0.0315 (14)0.0276 (15)0.0119 (13)0.0072 (12)
Geometric parameters (Å, º) top
C1—O11.247 (3)O5—H5A0.854 (19)
C1—C41.459 (4)O7—Ba12.837 (3)
C1—C21.478 (4)O7—Sr12.985 (10)
C1—Sr1i3.372 (12)O7—H7A0.86 (2)
C2—O41.253 (3)O7—H7B0.870 (19)
C2—C31.468 (4)O8—H8A0.857 (19)
C3—O31.261 (3)O8—H8B0.85 (2)
C3—C41.459 (4)Ba1—O2v2.732 (3)
C4—O21.259 (3)Ba1—O62.798 (3)
C4—Sr1i3.325 (12)Ba1—O4vi2.806 (3)
C4—Ba1i3.432 (3)Ba1—O3iii2.863 (3)
O1—Ba12.701 (3)Ba1—O2i2.900 (3)
O1—Sr12.717 (14)Ba1—O1i3.019 (3)
O1—Sr1i2.913 (12)Ba1—C4i3.432 (4)
O1—Ba1i3.019 (3)Ba1—Ba1i4.703 (3)
O2—Sr1ii2.683 (13)Sr1—O2v2.683 (13)
O2—Ba1ii2.732 (3)Sr1—O3iii2.746 (12)
O2—Sr1i2.800 (12)Sr1—O2i2.800 (12)
O2—Ba1i2.900 (3)Sr1—O4vi2.843 (13)
O3—Sr1iii2.746 (12)Sr1—O62.912 (12)
O3—Ba1iii2.863 (3)Sr1—O1i2.913 (12)
O4—Ba1iv2.806 (3)Sr1—C4i3.325 (12)
O4—Sr1iv2.843 (13)Sr1—C1i3.372 (12)
O5—Ba12.838 (3)Sr1—Sr1i4.59 (3)
O5—Sr12.909 (12)O6—H6B0.869 (19)
O5—H5B0.846 (19)O6—H6A0.859 (19)
O1—C1—C4132.2 (3)O4vi—Ba1—C4i59.33 (7)
O1—C1—C2137.9 (3)O7—Ba1—C4i129.12 (10)
C4—C1—C289.6 (2)O5—Ba1—C4i157.24 (8)
O1—C1—Sr1i58.1 (3)O3iii—Ba1—C4i87.37 (8)
C4—C1—Sr1i75.7 (3)O2i—Ba1—C4i20.83 (6)
C2—C1—Sr1i154.5 (3)O1i—Ba1—C4i44.55 (7)
O4—C2—C3135.1 (3)O1—Ba1—Ba1i36.97 (6)
O4—C2—C1135.0 (3)O2v—Ba1—Ba1i135.48 (6)
C3—C2—C189.7 (2)O6—Ba1—Ba1i155.07 (8)
O3—C3—C4134.2 (3)O4vi—Ba1—Ba1i78.78 (7)
O3—C3—C2135.6 (3)O7—Ba1—Ba1i93.87 (9)
C4—C3—C289.9 (2)O5—Ba1—Ba1i110.32 (9)
O2—C4—C1132.0 (3)O3iii—Ba1—Ba1i66.46 (6)
O2—C4—C3136.9 (3)O2i—Ba1—Ba1i96.45 (7)
C1—C4—C390.8 (2)O1i—Ba1—Ba1i32.56 (5)
O2—C4—Sr1i55.0 (3)C4i—Ba1—Ba1i77.05 (7)
C1—C4—Sr1i79.2 (3)O2v—Sr1—O1143.9 (5)
C3—C4—Sr1i155.8 (3)O2v—Sr1—O3iii77.1 (3)
O2—C4—Ba1i55.03 (15)O1—Sr1—O3iii73.2 (3)
C1—C4—Ba1i79.71 (16)O2v—Sr1—O2i63.0 (3)
C3—C4—Ba1i154.25 (18)O1—Sr1—O2i137.5 (4)
C1—O1—Ba1145.98 (19)O3iii—Sr1—O2i92.6 (3)
C1—O1—Sr1147.3 (3)O2v—Sr1—O4vi121.3 (5)
C1—O1—Sr1i100.5 (3)O1—Sr1—O4vi94.7 (4)
Sr1—O1—Sr1i109.0 (3)O3iii—Sr1—O4vi141.0 (4)
C1—O1—Ba1i101.09 (18)O2i—Sr1—O4vi71.3 (3)
Ba1—O1—Ba1i110.47 (8)O2v—Sr1—O578.7 (3)
C4—O2—Sr1ii135.8 (3)O1—Sr1—O575.2 (3)
C4—O2—Ba1ii133.02 (19)O3iii—Sr1—O577.5 (3)
C4—O2—Sr1i103.4 (3)O2i—Sr1—O5141.7 (5)
Sr1ii—O2—Sr1i117.0 (3)O4vi—Sr1—O5136.3 (4)
C4—O2—Ba1i104.13 (18)O2v—Sr1—O668.0 (3)
Ba1ii—O2—Ba1i118.93 (8)O1—Sr1—O6124.4 (4)
C3—O3—Sr1iii121.4 (3)O3iii—Sr1—O6136.8 (5)
C3—O3—Ba1iii119.47 (19)O2i—Sr1—O693.6 (4)
C2—O4—Ba1iv130.86 (19)O4vi—Sr1—O680.8 (3)
C2—O4—Sr1iv129.1 (3)O5—Sr1—O671.5 (3)
Ba1—O5—H5B113 (5)O2v—Sr1—O1i119.1 (4)
Sr1—O5—H5B113 (5)O1—Sr1—O1i71.0 (3)
Ba1—O5—H5A115 (4)O3iii—Sr1—O1i73.3 (3)
Sr1—O5—H5A113 (4)O2i—Sr1—O1i66.6 (2)
H5B—O5—H5A110 (3)O4vi—Sr1—O1i67.7 (3)
Ba1—O7—H7A115 (4)O5—Sr1—O1i140.3 (5)
Sr1—O7—H7A116 (4)O6—Sr1—O1i146.6 (5)
Ba1—O7—H7B108 (4)O2v—Sr1—O7125.4 (4)
Sr1—O7—H7B107 (4)O1—Sr1—O767.0 (3)
H7A—O7—H7B104 (3)O3iii—Sr1—O7133.3 (5)
H8A—O8—H8B107 (3)O2i—Sr1—O7133.4 (5)
O1—Ba1—O2v141.84 (9)O4vi—Sr1—O767.2 (3)
O1—Ba1—O6129.81 (9)O5—Sr1—O769.8 (2)
O2v—Ba1—O669.09 (9)O6—Sr1—O760.2 (2)
O1—Ba1—O4vi95.95 (8)O1i—Sr1—O7113.5 (4)
O2v—Ba1—O4vi120.90 (9)O2v—Sr1—C4i83.6 (3)
O6—Ba1—O4vi83.48 (10)O1—Sr1—C4i116.9 (4)
O1—Ba1—O769.45 (9)O3iii—Sr1—C4i91.5 (3)
O2v—Ba1—O7129.60 (10)O2i—Sr1—C4i21.61 (11)
O6—Ba1—O763.37 (9)O4vi—Sr1—C4i60.5 (2)
O4vi—Ba1—O769.79 (9)O5—Sr1—C4i160.9 (4)
O1—Ba1—O576.65 (9)O6—Sr1—C4i108.6 (4)
O2v—Ba1—O579.21 (9)O1i—Sr1—C4i46.17 (17)
O6—Ba1—O574.23 (11)O7—Sr1—C4i127.7 (4)
O4vi—Ba1—O5142.15 (8)O2v—Sr1—C1i105.0 (3)
O7—Ba1—O572.92 (10)O1—Sr1—C1i91.7 (3)
O1—Ba1—O3iii71.60 (8)O3iii—Sr1—C1i83.6 (3)
O2v—Ba1—O3iii74.41 (8)O2i—Sr1—C1i46.33 (18)
O6—Ba1—O3iii136.67 (10)O4vi—Sr1—C1i59.3 (2)
O4vi—Ba1—O3iii136.70 (9)O5—Sr1—C1i159.4 (4)
O7—Ba1—O3iii134.88 (9)O6—Sr1—C1i128.9 (5)
O5—Ba1—O3iii76.77 (9)O1i—Sr1—C1i21.33 (10)
O1—Ba1—O2i133.28 (9)O7—Sr1—C1i120.1 (4)
O2v—Ba1—O2i61.07 (8)C4i—Sr1—C1i25.15 (10)
O6—Ba1—O2i93.88 (10)O2v—Sr1—Sr1i142.0 (4)
O4vi—Ba1—O2i70.33 (7)O1—Sr1—Sr1i36.9 (2)
O7—Ba1—O2i135.78 (10)O3iii—Sr1—Sr1i69.3 (3)
O5—Ba1—O2i140.07 (8)O2i—Sr1—Sr1i100.7 (4)
O3iii—Ba1—O2i88.17 (8)O4vi—Sr1—Sr1i78.9 (4)
O1—Ba1—O1i69.53 (8)O5—Sr1—Sr1i109.7 (5)
O2v—Ba1—O1i114.02 (8)O6—Sr1—Sr1i149.9 (5)
O6—Ba1—O1i147.10 (10)O1i—Sr1—Sr1i34.07 (16)
O4vi—Ba1—O1i66.68 (7)O7—Sr1—Sr1i91.3 (4)
O7—Ba1—O1i114.79 (9)C4i—Sr1—Sr1i80.1 (3)
O5—Ba1—O1i138.38 (9)C1i—Sr1—Sr1i55.0 (2)
O3iii—Ba1—O1i70.15 (7)Ba1—O6—H6B115 (3)
O2i—Ba1—O1i64.00 (7)Sr1—O6—H6B118 (3)
O1—Ba1—C4i113.96 (9)Ba1—O6—H6A126 (4)
O2v—Ba1—C4i80.87 (8)Sr1—O6—H6A125 (4)
O6—Ba1—C4i108.56 (11)H6B—O6—H6A103 (3)
O1—C1—C2—O42.7 (6)C4—C1—O1—Ba1177.3 (2)
C4—C1—C2—O4175.9 (3)C2—C1—O1—Ba16.5 (6)
Sr1i—C1—C2—O4122.1 (6)C4—C1—O1—Sr1171.8 (5)
O1—C1—C2—C3172.1 (4)C2—C1—O1—Sr11.0 (7)
C4—C1—C2—C31.1 (2)Sr1i—C1—O1—Sr1154.7 (4)
Sr1i—C1—C2—C352.7 (7)C4—C1—O1—Sr1i17.1 (4)
O4—C2—C3—O31.0 (6)C2—C1—O1—Sr1i153.8 (4)
C1—C2—C3—O3173.8 (3)C4—C1—O1—Ba1i19.3 (4)
O4—C2—C3—C4175.9 (3)C2—C1—O1—Ba1i151.6 (3)
C1—C2—C3—C41.1 (2)C1—C4—O2—Sr1ii136.0 (5)
O1—C1—C4—O21.8 (6)C3—C4—O2—Sr1ii51.9 (6)
C2—C1—C4—O2175.8 (3)Sr1i—C4—O2—Sr1ii156.2 (4)
Sr1i—C1—C4—O216.8 (4)C1—C4—O2—Ba1ii133.9 (3)
O1—C1—C4—C3172.8 (3)C3—C4—O2—Ba1ii54.0 (5)
C2—C1—C4—C31.1 (2)Ba1i—C4—O2—Ba1ii156.5 (3)
Sr1i—C1—C4—C3157.9 (3)C1—C4—O2—Sr1i20.3 (4)
O1—C1—C4—Sr1i14.9 (4)C3—C4—O2—Sr1i151.9 (4)
C2—C1—C4—Sr1i159.0 (3)C1—C4—O2—Ba1i22.7 (4)
O1—C1—C4—Ba1i16.9 (3)C3—C4—O2—Ba1i149.5 (3)
C2—C1—C4—Ba1i157.03 (16)C4—C3—O3—Sr1iii87.0 (5)
O3—C3—C4—O20.3 (6)C2—C3—O3—Sr1iii85.9 (5)
C2—C3—C4—O2175.3 (4)C4—C3—O3—Ba1iii85.8 (4)
O3—C3—C4—C1173.9 (3)C2—C3—O3—Ba1iii87.1 (4)
C2—C3—C4—C11.1 (2)C3—C2—O4—Ba1iv41.1 (5)
O3—C3—C4—Sr1i109.1 (7)C1—C2—O4—Ba1iv131.5 (3)
C2—C3—C4—Sr1i65.9 (7)C3—C2—O4—Sr1iv44.4 (5)
O3—C3—C4—Ba1i106.3 (5)C1—C2—O4—Sr1iv128.2 (4)
C2—C3—C4—Ba1i68.7 (5)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y1, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z; (v) x, y+1, z; (vi) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O40.85 (2)1.99 (2)2.832 (3)174 (6)
O5—H5A···O3v0.85 (2)2.05 (2)2.875 (3)164 (5)
O8—H8A···O30.86 (2)1.88 (2)2.738 (4)177 (5)
O7—H7A···O6vii0.86 (2)2.11 (2)2.962 (5)166 (6)
O7—H7B···O8vi0.87 (2)2.03 (3)2.822 (4)152 (5)
O8—H8B···O4viii0.85 (2)2.22 (4)2.919 (4)139 (5)
O8—H8B···O7ix0.85 (2)2.49 (5)3.149 (4)135 (5)
O6—H6B···O5vii0.87 (2)2.10 (3)2.909 (4)155 (4)
O6—H6A···O8x0.86 (2)1.96 (3)2.761 (4)155 (5)
Symmetry codes: (v) x, y+1, z; (vi) x1, y, z; (vii) x+1, y+2, z+2; (viii) x+2, y+1, z+2; (ix) x+1, y+1, z+2; (x) x1, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds