Download citation
Download citation
link to html
Rubidium tetra­manganese tris­(phosphate), RbMn4(PO4)3, has been synthesized as single crystals under hydro­thermal conditions. The crystal structure was refined in the space group Pnnm (D2h12). It is argued that the size factor RM/RA, i.e. the ratio of the A+ ionic radius to the M2+ ionic radius, within the morphotropic series AM4(TO4)3 corresponds to a specific type of crystal structure. At low temperatures, the anti­ferromagnet superimposed on a buckled kagomé network in RbMn4(PO4)3 experiences a transition into a long-range ordered state with finite spontaneous magnetization. First principles calculations provide the dominant magnetic exchange inter­actions both within and between the kagomé layers. The analysis of these inter­actions allows us to suggest a model of alternating ferromagnetic and anti­ferromagnetic arrangements within chains of Mn3 atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229618006034/lf3074sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618006034/lf3074Isup2.hkl
Contains datablock I

CCDC reference: 1838351

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015b).

Rubidium tetramanganese orthophosphate top
Crystal data top
RbMn4(PO3)4Dx = 3.675 Mg m3
Mr = 590.13Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnnmCell parameters from 9905 reflections
a = 16.746 (8) Åθ = 3.2–32.5°
b = 9.877 (3) ŵ = 9.68 mm1
c = 6.4492 (10) ÅT = 293 K
V = 1066.6 (6) Å3Prism, colorless
Z = 40.34 × 0.15 × 0.09 mm
F(000) = 1112
Data collection top
Agilent Xcalibur Sapphire3
diffractometer
1679 independent reflections
Radiation source: Enhance (Mo) X-ray Source1653 reflections with I > 2σ(I)
Detector resolution: 16.0630 pixels mm-1Rint = 0.039
ω scansθmax = 30.0°, θmin = 3.2°
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2012)
h = 2323
Tmin = 0.096, Tmax = 0.522k = 1313
19493 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.019P)2 + 2.4P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.054(Δ/σ)max < 0.001
S = 1.16Δρmax = 1.31 e Å3
1679 reflectionsΔρmin = 1.45 e Å3
110 parametersExtinction correction: SHELXL2016 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0150 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rb0.46839 (2)0.29491 (4)0.0000000.02093 (11)
Mn10.09562 (3)0.54336 (5)0.0000000.00788 (11)
Mn20.14050 (3)0.97640 (5)0.0000000.00848 (11)
Mn30.20370 (2)0.24846 (3)0.25238 (6)0.00975 (10)
P10.28193 (5)0.45764 (8)0.0000000.00602 (15)
P20.03713 (5)0.21432 (8)0.0000000.00721 (16)
P30.33131 (5)0.04178 (8)0.0000000.00614 (15)
O10.24652 (13)0.1128 (2)0.0000000.0088 (4)
O20.31545 (15)0.1136 (2)0.0000000.0112 (5)
O30.19573 (13)0.3950 (2)0.0000000.0086 (4)
O40.27374 (15)0.6132 (2)0.0000000.0105 (4)
O50.04417 (14)0.1482 (3)0.0000000.0163 (5)
O60.32168 (10)0.40572 (17)0.1972 (3)0.0123 (3)
O70.37533 (10)0.08437 (17)0.1943 (3)0.0121 (3)
O80.08752 (10)0.16968 (19)0.1886 (3)0.0151 (4)
O90.02312 (14)0.3680 (2)0.0000000.0150 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb0.01467 (17)0.0315 (2)0.01658 (18)0.00685 (14)0.0000.000
Mn10.0069 (2)0.0092 (2)0.0075 (2)0.00049 (16)0.0000.000
Mn20.0073 (2)0.0086 (2)0.0096 (2)0.00197 (16)0.0000.000
Mn30.01430 (18)0.00802 (16)0.00694 (16)0.00027 (12)0.00095 (12)0.00030 (12)
P10.0067 (3)0.0053 (3)0.0061 (3)0.0007 (3)0.0000.000
P20.0047 (3)0.0064 (3)0.0105 (4)0.0003 (3)0.0000.000
P30.0065 (3)0.0061 (3)0.0058 (3)0.0000 (3)0.0000.000
O10.0077 (10)0.0077 (10)0.0110 (10)0.0033 (8)0.0000.000
O20.0196 (12)0.0047 (10)0.0093 (11)0.0003 (9)0.0000.000
O30.0068 (10)0.0063 (10)0.0127 (11)0.0006 (8)0.0000.000
O40.0166 (11)0.0063 (10)0.0085 (10)0.0022 (8)0.0000.000
O50.0079 (11)0.0150 (12)0.0261 (14)0.0064 (9)0.0000.000
O60.0144 (8)0.0139 (8)0.0087 (7)0.0026 (6)0.0034 (6)0.0002 (6)
O70.0139 (8)0.0139 (8)0.0083 (7)0.0038 (6)0.0033 (6)0.0004 (6)
O80.0102 (8)0.0206 (9)0.0145 (8)0.0001 (6)0.0024 (6)0.0068 (7)
O90.0087 (11)0.0075 (10)0.0288 (14)0.0009 (8)0.0000.000
Geometric parameters (Å, º) top
Rb—O8i2.852 (2)Mn2—O8ix2.431 (2)
Rb—O8ii2.852 (2)Mn2—P2viii2.9186 (12)
Rb—O7iii2.8850 (18)Mn3—O4x2.1163 (16)
Rb—O72.8850 (18)Mn3—O2xi2.1236 (16)
Rb—O6iii2.975 (2)Mn3—O82.1353 (19)
Rb—O62.975 (2)Mn3—O32.1824 (15)
Rb—O5i3.2800 (7)Mn3—O12.2269 (16)
Rb—O5iv3.2800 (7)Mn3—P12.9383 (9)
Rb—P33.3940 (13)Mn3—Mn3xii3.1938 (9)
Rb—P2i3.4251 (6)P1—O6iii1.5241 (17)
Rb—P2iv3.4251 (6)P1—O61.5241 (17)
Rb—P13.5117 (16)P1—O41.542 (2)
Mn1—O7v2.0704 (17)P1—O31.570 (2)
Mn1—O7vi2.0704 (17)P2—O51.510 (3)
Mn1—O92.115 (3)P2—O91.536 (3)
Mn1—O9vii2.172 (3)P2—O8iii1.5445 (18)
Mn1—O32.226 (2)P2—O81.5445 (18)
Mn2—O5vii2.029 (3)P3—O71.5137 (17)
Mn2—O6vi2.1687 (17)P3—O7iii1.5137 (17)
Mn2—O6v2.1687 (17)P3—O21.557 (2)
Mn2—O1viii2.229 (2)P3—O11.584 (2)
Mn2—O8viii2.431 (2)
O8i—Rb—O8ii89.52 (8)P2viii—Mn2—Rbxi95.04 (2)
O8i—Rb—O7iii140.54 (5)Rbvi—Mn2—Rbxi103.18 (2)
O8ii—Rb—O7iii99.22 (5)O4x—Mn3—O2xi82.22 (7)
O8i—Rb—O799.22 (5)O4x—Mn3—O894.47 (8)
O8ii—Rb—O7140.54 (5)O2xi—Mn3—O8103.96 (9)
O7iii—Rb—O751.50 (7)O4x—Mn3—O3173.01 (9)
O8i—Rb—O6iii146.46 (5)O2xi—Mn3—O397.24 (7)
O8ii—Rb—O6iii103.39 (5)O8—Mn3—O392.42 (8)
O7iii—Rb—O6iii68.50 (5)O4x—Mn3—O196.55 (7)
O7—Rb—O6iii90.27 (6)O2xi—Mn3—O1169.86 (9)
O8i—Rb—O6103.39 (5)O8—Mn3—O186.17 (8)
O8ii—Rb—O6146.46 (5)O3—Mn3—O182.74 (7)
O7iii—Rb—O690.28 (6)O4x—Mn3—P1141.49 (7)
O7—Rb—O668.49 (5)O2xi—Mn3—P191.87 (6)
O6iii—Rb—O650.61 (7)O8—Mn3—P1123.75 (5)
O8i—Rb—O5i48.06 (6)O3—Mn3—P131.54 (6)
O8ii—Rb—O5i135.73 (6)O1—Mn3—P182.80 (6)
O7iii—Rb—O5i121.07 (6)O4x—Mn3—Mn3xii41.01 (5)
O7—Rb—O5i70.23 (6)O2xi—Mn3—Mn3xii41.24 (5)
O6iii—Rb—O5i107.71 (5)O8—Mn3—Mn3xii101.11 (5)
O6—Rb—O5i57.57 (5)O3—Mn3—Mn3xii138.23 (5)
O8i—Rb—O5iv135.73 (6)O1—Mn3—Mn3xii136.96 (4)
O8ii—Rb—O5iv48.06 (6)P1—Mn3—Mn3xii123.639 (13)
O7iii—Rb—O5iv70.23 (6)O4x—Mn3—Rbxiii79.59 (7)
O7—Rb—O5iv121.07 (6)O2xi—Mn3—Rbxiii69.15 (7)
O6iii—Rb—O5iv57.57 (5)O8—Mn3—Rbxiii36.42 (5)
O6—Rb—O5iv107.71 (5)O3—Mn3—Rbxiii106.78 (6)
O5i—Rb—O5iv158.91 (9)O1—Mn3—Rbxiii120.64 (6)
O8i—Rb—P3124.29 (4)P1—Mn3—Rbxiii133.52 (2)
O8ii—Rb—P3124.29 (4)Mn3xii—Mn3—Rbxiii68.057 (11)
O7iii—Rb—P326.33 (3)O6iii—P1—O6113.08 (14)
O7—Rb—P326.33 (3)O6iii—P1—O4111.96 (8)
O6iii—Rb—P373.29 (4)O6—P1—O4111.96 (8)
O6—Rb—P373.29 (5)O6iii—P1—O3105.60 (9)
O5i—Rb—P394.75 (5)O6—P1—O3105.60 (9)
O5iv—Rb—P394.75 (5)O4—P1—O3108.09 (13)
O8i—Rb—P2i26.53 (4)O6iii—P1—Mn3iii59.73 (7)
O8ii—Rb—P2i115.54 (5)O6—P1—Mn3iii114.85 (8)
O7iii—Rb—P2i124.84 (4)O4—P1—Mn3iii131.36 (7)
O7—Rb—P2i75.72 (4)O3—P1—Mn3iii46.64 (6)
O6iii—Rb—P2i133.61 (4)O6iii—P1—Mn3114.85 (8)
O6—Rb—P2i83.39 (4)O6—P1—Mn359.73 (7)
O5i—Rb—P2i25.92 (4)O4—P1—Mn3131.36 (7)
O5iv—Rb—P2i162.11 (5)O3—P1—Mn346.63 (6)
P3—Rb—P2i101.987 (18)Mn3iii—P1—Mn367.28 (3)
O8i—Rb—P2iv115.54 (5)O6iii—P1—Rb57.16 (7)
O8ii—Rb—P2iv26.53 (4)O6—P1—Rb57.16 (7)
O7iii—Rb—P2iv75.72 (4)O4—P1—Rb122.33 (10)
O7—Rb—P2iv124.84 (4)O3—P1—Rb129.58 (9)
O6iii—Rb—P2iv83.39 (4)Mn3iii—P1—Rb94.28 (3)
O6—Rb—P2iv133.61 (4)Mn3—P1—Rb94.28 (3)
O5i—Rb—P2iv162.11 (5)O5—P2—O9106.85 (14)
O5iv—Rb—P2iv25.92 (4)O5—P2—O8iii111.66 (9)
P3—Rb—P2iv101.987 (18)O9—P2—O8iii111.44 (9)
P2i—Rb—P2iv140.59 (3)O5—P2—O8111.66 (9)
O8i—Rb—P1124.46 (4)O9—P2—O8111.44 (9)
O8ii—Rb—P1124.46 (4)O8iii—P2—O8103.89 (15)
O7iii—Rb—P181.35 (5)O5—P2—Mn2xiv100.73 (11)
O7—Rb—P181.35 (5)O9—P2—Mn2xiv152.41 (10)
O6iii—Rb—P125.49 (3)O8iii—P2—Mn2xiv56.37 (8)
O6—Rb—P125.50 (3)O8—P2—Mn2xiv56.37 (8)
O5i—Rb—P182.21 (4)O5—P2—Rbxv71.67 (2)
O5iv—Rb—P182.21 (4)O9—P2—Rbxv88.57 (3)
P3—Rb—P174.68 (4)O8iii—P2—Rbxv55.58 (7)
P2i—Rb—P1108.121 (17)O8—P2—Rbxv156.54 (8)
P2iv—Rb—P1108.121 (17)Mn2xiv—P2—Rbxv100.246 (18)
O7v—Mn1—O7vi144.40 (10)O5—P2—Rbxiii71.67 (2)
O7v—Mn1—O9107.16 (5)O9—P2—Rbxiii88.57 (3)
O7vi—Mn1—O9107.16 (5)O8iii—P2—Rbxiii156.54 (8)
O7v—Mn1—O9vii97.83 (5)O8—P2—Rbxiii55.58 (7)
O7vi—Mn1—O9vii97.83 (5)Mn2xiv—P2—Rbxiii100.246 (18)
O9—Mn1—O9vii78.73 (10)Rbxv—P2—Rbxiii140.59 (3)
O7v—Mn1—O387.24 (5)O7—P3—O7iii111.79 (14)
O7vi—Mn1—O387.24 (5)O7—P3—O2110.91 (8)
O9—Mn1—O383.88 (9)O7iii—P3—O2110.91 (8)
O9vii—Mn1—O3162.61 (9)O7—P3—O1108.28 (9)
O7v—Mn1—Rbxi38.28 (5)O7iii—P3—O1108.28 (9)
O7vi—Mn1—Rbxi132.35 (5)O2—P3—O1106.46 (13)
O9—Mn1—Rbxi109.70 (4)O7—P3—Rb57.72 (7)
O9vii—Mn1—Rbxi61.91 (3)O7iii—P3—Rb57.72 (7)
O3—Mn1—Rbxi125.46 (2)O2—P3—Rb147.26 (10)
O7v—Mn1—Rbvi132.35 (5)O1—P3—Rb106.27 (10)
O7vi—Mn1—Rbvi38.28 (5)P3—O1—Mn3iii123.72 (7)
O9—Mn1—Rbvi109.70 (4)P3—O1—Mn3123.72 (7)
O9vii—Mn1—Rbvi61.91 (3)Mn3iii—O1—Mn393.93 (9)
O3—Mn1—Rbvi125.46 (2)P3—O1—Mn2xiv116.53 (13)
Rbxi—Mn1—Rbvi100.00 (2)Mn3iii—O1—Mn2xiv96.16 (7)
O5vii—Mn2—O6vi92.12 (6)Mn3—O1—Mn2xiv96.16 (7)
O5vii—Mn2—O6v92.12 (6)P3—O2—Mn3xvi131.15 (5)
O6vi—Mn2—O6v128.47 (10)P3—O2—Mn3xvii131.15 (5)
O5vii—Mn2—O1viii179.86 (10)Mn3xvi—O2—Mn3xvii97.52 (10)
O6vi—Mn2—O1viii87.82 (5)P1—O3—Mn3101.83 (9)
O6v—Mn2—O1viii87.82 (5)P1—O3—Mn3iii101.82 (8)
O5vii—Mn2—O8viii100.73 (8)Mn3—O3—Mn3iii96.46 (9)
O6vi—Mn2—O8viii144.08 (7)P1—O3—Mn1115.66 (12)
O6v—Mn2—O8viii84.77 (6)Mn3—O3—Mn1118.85 (7)
O1viii—Mn2—O8viii79.40 (7)Mn3iii—O3—Mn1118.85 (7)
O5vii—Mn2—O8ix100.73 (8)P1—O4—Mn3v127.82 (7)
O6vi—Mn2—O8ix84.77 (6)P1—O4—Mn3vi127.82 (7)
O6v—Mn2—O8ix144.08 (7)Mn3v—O4—Mn3vi97.98 (10)
O1viii—Mn2—O8ix79.40 (7)P2—O5—Mn2vii168.31 (18)
O8viii—Mn2—O8ix60.03 (9)P2—O5—Rbxiii82.42 (4)
O5vii—Mn2—P2viii90.96 (8)Mn2vii—O5—Rbxiii98.91 (4)
O6vi—Mn2—P2viii115.62 (5)P2—O5—Rbxv82.42 (4)
O6v—Mn2—P2viii115.62 (5)Mn2vii—O5—Rbxv98.91 (4)
O1viii—Mn2—P2viii89.19 (7)Rbxiii—O5—Rbxv158.91 (9)
O8viii—Mn2—P2viii31.94 (4)P1—O6—Mn2x140.41 (11)
O8ix—Mn2—P2viii31.94 (4)P1—O6—Rb97.35 (8)
O5vii—Mn2—Rbvi51.945 (14)Mn2x—O6—Rb105.20 (6)
O6vi—Mn2—Rbvi44.23 (5)P3—O7—Mn1x148.04 (11)
O6v—Mn2—Rbvi134.02 (5)P3—O7—Rb95.95 (8)
O1viii—Mn2—Rbvi128.041 (13)Mn1x—O7—Rb115.33 (7)
O8viii—Mn2—Rbvi124.91 (5)P2—O8—Mn3123.06 (11)
O8ix—Mn2—Rbvi77.78 (5)P2—O8—Mn2xiv91.70 (9)
P2viii—Mn2—Rbvi95.04 (2)Mn3—O8—Mn2xiv92.87 (7)
O5vii—Mn2—Rbxi51.945 (14)P2—O8—Rbxiii97.89 (8)
O6vi—Mn2—Rbxi134.02 (5)Mn3—O8—Rbxiii117.19 (8)
O6v—Mn2—Rbxi44.23 (5)Mn2xiv—O8—Rbxiii134.72 (7)
O1viii—Mn2—Rbxi128.041 (13)P2—O9—Mn1136.18 (15)
O8viii—Mn2—Rbxi77.78 (5)P2—O9—Mn1vii122.54 (14)
O8ix—Mn2—Rbxi124.91 (5)Mn1—O9—Mn1vii101.27 (10)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z1/2; (iii) x, y, z; (iv) x+1/2, y+1/2, z1/2; (v) x+1/2, y+1/2, z+1/2; (vi) x+1/2, y+1/2, z1/2; (vii) x, y+1, z; (viii) x, y+1, z; (ix) x, y+1, z; (x) x+1/2, y1/2, z+1/2; (xi) x+1/2, y+1/2, z+1/2; (xii) x, y, z+1; (xiii) x1/2, y+1/2, z+1/2; (xiv) x, y1, z; (xv) x1/2, y+1/2, z1/2; (xvi) x+1/2, y1/2, z1/2; (xvii) x+1/2, y1/2, z+1/2.
Bond-valence data for RbMn4(PO4)3 top
Symbols ↓×2 and ×2 indicate a multiplication of the corresponding contribution in the columns or rows due to symmetry
AtomRbMn1Mn2Mn3P1P2P3Σ
O10.3050.307×21.0872.01
O20.404×21.1701.98
O30.3080.347×21.1292.13
O40.414×21.2182.05
O50.056×2↓0.5241.3281.96
O60.115×2↓0.359×2↓0.1321.279×2↓1.89
O70.143×2↓0.469×2↓1.314×2↓1.93
O80.154×2↓0.177×2↓0.3941.208×2↓1.93
O90.415, 0.3561.2382.01
Σ0.942.021.902.004.914.984.89
Crystal data for the morphotropic AM4(TO4)3 series of compounds (A = Rb, K, NH4 or Na; M = Mn, Fe, Co, Ni or Mg; T = P or As) top
Unit-cell parameters correspond to nonstandard settings of space groups D2h12 and D2h16. The space groups were converted in order to make the comparison of the structures easier.
CompoundUnit-cell parametersRM (Å)RA (Å)Radius ratioReference
a, b, c (Å); V3)RM/RA
Space group Pmnn (D2h12)
1RbMn4(AsO4)3*6.552, 17.408, 10.109, 1153.00.801.470.54MacKay et al. (1996)
2RbMn4(PO4)3**6.449, 16.746, 9.877, 1066.70.54This work
3NH4Mn4(PO4)36.464, 16.745, 9.886, 1070.11.400.57Neeraj et al. (2002)
4NH4Fe4(PO4)36.301, 16.622, 9.800, 1026.40.740.53Sugiyama et al. (2009)
5KFe4(PO4)36.273, 16.513, 9.808, 1016.01.330.56Matvienko et al. (1981)
6KCo4(PO4)3***6.166,16.482, 9.629, 978.60.720.54López et al. (2008)
7RbNi4(PO4)36.185, 16.346, 9.484, 958.80.691.470.47Im et al. (2014)
8KNi4(PO4)3**6.155, 16.238, 9.491, 948.61.330.52Im et al. (2014)
9KMg4(PO4)36.171, 16.361, 9.562, 965.40.660.50Tomaszewski et al. (2005)
Space group Pmcn (D2h16)
10KMn4(PO4)36.550, 16.028, 9.977, 1047.40.801.330.60Yakubovich et al. (1986)
11NaMg4(PO4)36.345, 15.240, 9.883, 955.70.660.970.68Ben Amara et al. (1983)
Space group Cmcm (D2h17)
12NaNi4(PO4)36.357, 14.842, 9.892, 933.30.690.970.71Anderson et al. (1985)
Space group P1121/n (C2h5)
13NaCo4(PO4)36.339, 15.301, 9.867, 956.8 ? =91.05°0.720.970.74Baies et al. (2006)
Notes: (*) T = 150 K; (**) also studied using powder diffraction; (***) powder data.
Distribution of cations among the positions in four types of crystal structures AM4(TO4)3 top
Space groupCompoundCharacteristicsPositions of cations
CmcmNaNi4(PO4)3CationNi1Ni2P1P1Na
Wyckoff site8f8g8f4c4c
Site symmetrymmmmmmm
PmnnRbMn4(PO4)3CationMn1Mn2Mn3P1P2P3Rb
Wyckoff site4g4g8h4g4g4g4g
Site symmetrymm1mmmm
PmcnKMn4(PO4)3CationMn1Mn2Mn3P1P2P3K
Wyckoff site4c4c8d4c4c4c4c
Site symmetrymm1mmmm
P1121/nNaCo4(PO4)3CationCo1Co2Co3Co4P1P2P3Na1Na1
Wyckoff site4e4e4e4e4e4e4e4e4e
Site symmetry111111111
Paths and values of magnetic exchange interactions in RbMn4(PO4)3 top
InteractionpathAngle (°)Distance (Å)Value (K)
J1Mn3—O—Mn397.99 & 97.533.1936.0
J2Mn3—O—Mn393.93 & 96.473.2545.5
J3Mn1—O—Mn1101.263.3152.8
J4Mn2—O—Mn396.153.3155.3
J5Mn1—O—Mn3118.853.7967.0
J6Mn2—O—Mn3107.343.7981.5
J7Mn3—O—P—O—Mn3, Mn3—O—Mn2—O—Mn35.1763.4
J8Mn1—O—P—O—Mn1, Mn2—O—P—O—Mn2, Mn3-O-Mn3-O-Mn36.440.2
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds