Download citation
Download citation
link to html
By using environmentally friendly K3[Co(CN)6] as a cyanide source, the solvothermal reaction of CuCl2 and tetra­zole (Htta) led to a novel tetra­zolate- and cyanide-bridged three-dimensional heterometallic CuII–CoIII complex, namely poly[[hexa-μ2-cyanido-κ12C:N-penta­kis­(μ3-tetra­zolato-κ3N1:N2:N4)co­balt(III)tetra­copper(II)] monohydrate], {[CoIIICuII4(CHN4)5(CN)6]·H2O}n, (I). The crystal structure analysis reveals that it is the first example of a (6,8,8)-connected three-dimensional framework with a unique topology, constructed from anionic [Co(CN)6]3− and cationic [(Cu1)2(tta)2]2+ and [(Cu2Cu3)(tta)3]+ units through μ2-cyanide and μ3-tetra­zolate linkers. The compound was further characterized by thermal analysis, vibrational spectroscopy (FT–IR), scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM–EDS) and magnetic measurements. The magnetic investigation indicates that the complex exhibits anti­ferromagnetic coupling between adjacent CuII cations.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229617014760/lf3061sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617014760/lf3061Isup2.hkl
Contains datablock I

CCDC reference: 1579476

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SMART (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg,2005); software used to prepare material for publication: publCIF (Westrip, 2010) and TOPOS (Blatov, 2006).

Poly[[hexa-µ2-cyanido-κ12C:N-pentakis(µ3-tetrazolato-κ3N1:N2:N4)cobalt(III)tetracopper(II)] monohydrate] top
Crystal data top
[CoCu4(CHN4)5(CN)6]·H2ODx = 1.866 Mg m3
Mr = 832.50Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 12000 reflections
a = 12.3459 (6) Åθ = 1.8–25.0°
b = 15.9301 (8) ŵ = 3.50 mm1
c = 14.7454 (7) ÅT = 298 K
V = 2900.0 (2) Å3Column, blue
Z = 40.20 × 0.08 × 0.04 mm
F(000) = 1584
Data collection top
Bruker APEX CCD
diffractometer
2108 reflections with I > 2σ(I)
φ and ω scansRint = 0.056
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
θmax = 25.0°, θmin = 1.9°
Tmin = 0.776, Tmax = 0.901h = 1414
12474 measured reflectionsk = 1817
2647 independent reflectionsl = 1117
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.176 w = 1/[σ2(Fo2) + (0.0992P)2 + 8.0161P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
2647 reflectionsΔρmax = 1.93 e Å3
208 parametersΔρmin = 0.60 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.58102 (6)0.45945 (5)0.61207 (6)0.0201 (3)
Cu20.60085 (10)0.25001.01260 (9)0.0328 (4)
Cu30.32181 (8)0.75000.73914 (8)0.0184 (3)
Co10.33821 (9)0.25000.75976 (8)0.0143 (3)
C10.4239 (5)0.3327 (4)0.7032 (5)0.0236 (15)
C20.2499 (5)0.3329 (4)0.8141 (5)0.0206 (14)
C30.2488 (7)0.25000.6568 (7)0.024 (2)
C40.4294 (7)0.25000.8623 (7)0.026 (2)
C50.4355 (5)0.5919 (4)0.6740 (4)0.0194 (14)
H50.45680.58080.73330.023*
C60.3864 (9)0.25001.1091 (8)0.047 (3)
H60.34660.25001.05550.057*
C70.7539 (6)0.4083 (4)1.0409 (5)0.0323 (17)
H70.75480.42340.98000.039*
N10.4756 (5)0.3824 (4)0.6672 (4)0.0324 (15)
N20.1961 (5)0.3825 (4)0.8477 (4)0.0294 (14)
N30.1994 (7)0.25000.5923 (6)0.039 (2)
N40.4827 (7)0.25000.9254 (7)0.045 (3)
N50.3719 (4)0.6548 (4)0.6495 (4)0.0239 (13)
N60.3619 (6)0.6477 (4)0.5597 (5)0.0394 (17)
N70.4176 (4)0.5827 (4)0.5298 (4)0.0272 (14)
N80.4638 (5)0.5484 (3)0.6052 (4)0.0235 (13)
N90.4925 (7)0.25001.1121 (6)0.036 (2)
N100.5164 (7)0.25001.2017 (5)0.0247 (18)
N110.4266 (6)0.25001.2486 (6)0.030 (2)
N120.3427 (6)0.25001.1903 (6)0.028 (2)
N130.6966 (5)0.3458 (4)1.0756 (4)0.0297 (14)
N140.7192 (4)0.3450 (4)1.1640 (4)0.0248 (13)
N150.7872 (5)0.4052 (4)1.1825 (4)0.0312 (15)
N160.8090 (5)0.4459 (4)1.1053 (4)0.0272 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0185 (5)0.0171 (5)0.0248 (5)0.0006 (3)0.0017 (3)0.0069 (3)
Cu20.0202 (6)0.0654 (10)0.0129 (7)0.0000.0002 (5)0.000
Cu30.0185 (6)0.0199 (6)0.0169 (6)0.0000.0016 (5)0.000
Co10.0132 (6)0.0154 (6)0.0142 (7)0.0000.0010 (5)0.000
C10.018 (3)0.026 (4)0.026 (4)0.002 (3)0.001 (3)0.001 (3)
C20.020 (3)0.020 (3)0.021 (4)0.002 (3)0.004 (3)0.005 (3)
C30.015 (4)0.036 (6)0.021 (5)0.0000.004 (4)0.000
C40.018 (5)0.040 (6)0.020 (5)0.0000.000 (4)0.000
C50.028 (3)0.019 (3)0.011 (3)0.009 (3)0.003 (3)0.003 (3)
C60.021 (5)0.100 (11)0.021 (6)0.0000.000 (5)0.000
C70.040 (4)0.030 (4)0.027 (4)0.010 (3)0.006 (3)0.003 (3)
N10.025 (3)0.030 (3)0.042 (4)0.000 (3)0.002 (3)0.011 (3)
N20.027 (3)0.025 (3)0.037 (4)0.001 (3)0.005 (3)0.008 (3)
N30.017 (4)0.073 (7)0.026 (5)0.0000.002 (4)0.000
N40.021 (4)0.086 (8)0.028 (6)0.0000.003 (4)0.000
N50.026 (3)0.025 (3)0.020 (3)0.003 (2)0.004 (3)0.001 (3)
N60.048 (4)0.036 (4)0.034 (4)0.011 (3)0.006 (3)0.001 (3)
N70.028 (3)0.021 (3)0.032 (4)0.010 (2)0.002 (3)0.001 (3)
N80.023 (3)0.020 (3)0.028 (3)0.001 (2)0.003 (3)0.007 (3)
N90.030 (5)0.065 (7)0.015 (5)0.0000.002 (4)0.000
N100.032 (4)0.027 (4)0.016 (4)0.0000.006 (4)0.000
N110.023 (4)0.041 (5)0.024 (5)0.0000.003 (4)0.000
N120.024 (4)0.040 (5)0.021 (5)0.0000.000 (4)0.000
N130.032 (3)0.031 (3)0.026 (4)0.007 (3)0.007 (3)0.006 (3)
N140.025 (3)0.030 (3)0.019 (3)0.005 (2)0.000 (2)0.005 (3)
N150.035 (3)0.030 (3)0.029 (4)0.012 (3)0.000 (3)0.006 (3)
N160.026 (3)0.020 (3)0.035 (4)0.001 (2)0.001 (3)0.010 (3)
Geometric parameters (Å, º) top
Cu1—N11.965 (6)C5—N81.277 (8)
Cu1—N2i1.968 (6)C5—N51.324 (8)
Cu1—N82.028 (6)C5—H50.9300
Cu1—N16ii2.032 (6)C6—N91.311 (14)
Cu1—N7iii2.197 (6)C6—N121.314 (14)
Cu2—N41.944 (9)C6—H60.9300
Cu2—N3i1.968 (9)C7—N161.312 (9)
Cu2—N91.986 (9)C7—N131.325 (9)
Cu2—N13iv2.142 (6)C7—H70.9300
Cu2—N132.142 (6)N2—Cu1ix1.968 (6)
Cu3—N5v2.104 (6)N3—Cu2ix1.968 (9)
Cu3—N52.104 (6)N5—N61.335 (9)
Cu3—N14vi2.141 (6)N6—N71.319 (8)
Cu3—N14vii2.141 (6)N7—N81.364 (8)
Cu3—N12viii2.155 (8)N7—Cu1iii2.197 (6)
Cu3—N10vii2.180 (8)N9—N101.354 (11)
Co1—C31.877 (10)N10—N111.306 (11)
Co1—C1iv1.884 (7)N10—Cu3vii2.180 (8)
Co1—C11.884 (7)N11—N121.345 (11)
Co1—C41.885 (10)N12—Cu3x2.155 (8)
Co1—C21.891 (7)N13—N141.333 (8)
Co1—C2iv1.891 (7)N14—N151.303 (8)
C1—N11.148 (9)N14—Cu3vii2.141 (6)
C2—N21.145 (8)N15—N161.338 (8)
C3—N31.130 (13)N16—Cu1xi2.032 (6)
C4—N41.141 (13)
N1—Cu1—N2i88.0 (2)C2—Co1—C2iv88.7 (4)
N1—Cu1—N889.1 (2)N1—C1—Co1178.8 (7)
N2i—Cu1—N8164.9 (3)N2—C2—Co1179.2 (7)
N1—Cu1—N16ii157.9 (3)N3—C3—Co1176.6 (8)
N2i—Cu1—N16ii89.7 (2)N4—C4—Co1178.6 (9)
N8—Cu1—N16ii87.5 (2)N8—C5—N5110.9 (6)
N1—Cu1—N7iii102.0 (3)N8—C5—H5124.6
N2i—Cu1—N7iii95.2 (2)N5—C5—H5124.6
N8—Cu1—N7iii99.9 (2)N9—C6—N12112.3 (10)
N16ii—Cu1—N7iii100.1 (2)N9—C6—H6123.9
N4—Cu2—N3i86.8 (4)N12—C6—H6123.9
N4—Cu2—N989.0 (4)N16—C7—N13109.8 (7)
N3i—Cu2—N9175.8 (4)N16—C7—H7125.1
N4—Cu2—N13iv134.50 (17)N13—C7—H7125.1
N3i—Cu2—N13iv90.0 (2)C1—N1—Cu1172.4 (6)
N9—Cu2—N13iv92.9 (2)C2—N2—Cu1ix168.2 (6)
N4—Cu2—N13134.50 (17)C3—N3—Cu2ix174.5 (8)
N3i—Cu2—N1390.0 (2)C4—N4—Cu2166.7 (9)
N9—Cu2—N1392.9 (2)C5—N5—N6105.1 (5)
N13iv—Cu2—N1390.8 (3)C5—N5—Cu3123.3 (5)
N5v—Cu3—N592.2 (3)N6—N5—Cu3131.1 (5)
N5v—Cu3—N14vi88.8 (2)N7—N6—N5110.5 (6)
N5—Cu3—N14vi176.0 (2)N6—N7—N8105.1 (6)
N5v—Cu3—N14vii176.0 (2)N6—N7—Cu1iii124.2 (5)
N5—Cu3—N14vii88.8 (2)N8—N7—Cu1iii130.5 (4)
N14vi—Cu3—N14vii90.0 (3)C5—N8—N7108.4 (5)
N5v—Cu3—N12viii93.8 (2)C5—N8—Cu1122.3 (4)
N5—Cu3—N12viii93.8 (2)N7—N8—Cu1128.3 (4)
N14vi—Cu3—N12viii90.0 (2)C6—N9—N10104.5 (9)
N14vii—Cu3—N12viii90.0 (2)C6—N9—Cu2130.4 (8)
N5v—Cu3—N10vii89.0 (2)N10—N9—Cu2125.1 (7)
N5—Cu3—N10vii89.0 (2)N11—N10—N9109.3 (8)
N14vi—Cu3—N10vii87.1 (2)N11—N10—Cu3vii124.5 (6)
N14vii—Cu3—N10vii87.1 (2)N9—N10—Cu3vii126.2 (6)
N12viii—Cu3—N10vii175.9 (3)N10—N11—N12108.4 (8)
C3—Co1—C1iv88.4 (3)C6—N12—N11105.5 (8)
C3—Co1—C188.4 (3)C6—N12—Cu3x133.7 (7)
C1iv—Co1—C188.7 (4)N11—N12—Cu3x120.8 (6)
C3—Co1—C4179.4 (4)C7—N13—N14105.9 (6)
C1iv—Co1—C491.1 (3)C7—N13—Cu2131.5 (5)
C1—Co1—C491.1 (3)N14—N13—Cu2122.2 (4)
C3—Co1—C290.2 (3)N15—N14—N13109.4 (6)
C1iv—Co1—C2178.6 (3)N15—N14—Cu3vii122.2 (5)
C1—Co1—C291.3 (3)N13—N14—Cu3vii127.5 (4)
C4—Co1—C290.2 (3)N14—N15—N16108.0 (6)
C3—Co1—C2iv90.2 (3)C7—N16—N15106.9 (6)
C1iv—Co1—C2iv91.3 (3)C7—N16—Cu1xi136.1 (5)
C1—Co1—C2iv178.6 (3)N15—N16—Cu1xi116.9 (4)
C4—Co1—C2iv90.2 (3)
N8—C5—N5—N60.0 (8)N9—N10—N11—N120.000 (4)
N8—C5—N5—Cu3172.6 (4)Cu3vii—N10—N11—N12180.000 (3)
C5—N5—N6—N70.0 (8)N9—C6—N12—N110.000 (4)
Cu3—N5—N6—N7171.8 (5)N9—C6—N12—Cu3x180.000 (3)
N5—N6—N7—N80.0 (8)N10—N11—N12—C60.000 (4)
N5—N6—N7—Cu1iii176.2 (4)N10—N11—N12—Cu3x180.000 (2)
N5—C5—N8—N70.0 (8)N16—C7—N13—N140.7 (8)
N5—C5—N8—Cu1169.2 (4)N16—C7—N13—Cu2173.2 (5)
N6—N7—N8—C50.0 (8)C7—N13—N14—N150.3 (8)
Cu1iii—N7—N8—C5175.9 (5)Cu2—N13—N14—N15173.6 (4)
N6—N7—N8—Cu1168.4 (5)C7—N13—N14—Cu3vii169.0 (5)
Cu1iii—N7—N8—Cu115.7 (9)Cu2—N13—N14—Cu3vii4.3 (8)
N12—C6—N9—N100.000 (4)N13—N14—N15—N160.2 (7)
N12—C6—N9—Cu2180.000 (4)Cu3vii—N14—N15—N16170.2 (4)
C6—N9—N10—N110.000 (4)N13—C7—N16—N150.8 (8)
Cu2—N9—N10—N11180.000 (3)N13—C7—N16—Cu1xi176.6 (5)
C6—N9—N10—Cu3vii180.000 (2)N14—N15—N16—C70.6 (8)
Cu2—N9—N10—Cu3vii0.000 (3)N14—N15—N16—Cu1xi177.3 (4)
Symmetry codes: (i) x+1/2, y, z+3/2; (ii) x+3/2, y+1, z1/2; (iii) x+1, y+1, z+1; (iv) x, y+1/2, z; (v) x, y+3/2, z; (vi) x+1, y+1/2, z+2; (vii) x+1, y+1, z+2; (viii) x+1/2, y+1, z1/2; (ix) x1/2, y, z+3/2; (x) x+1/2, y+1, z+1/2; (xi) x+3/2, y+1, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds