research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

One-pot synthesis of (1RS,21SR)-di­ethyl 2-[23-amino-22-eth­­oxy­carbonyl-8,11,14-trioxa-25-aza­tetra­cyclo­[19.3.1.02,7.015,20]penta­cosa-2,4,6,15(20),16,18,22-heptaen-25-yl]but-2-endioate

CROSSMARK_Color_square_no_text.svg

aFaculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hoan Kiem, Hanoi, Vietnam, bOrganic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklay St., Moscow 117198, Russian Federation, cInorganic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklay St., Moscow 117198, Russian Federation, and dNational Research Centre `Kurchatov Institute', 1 Acad. Kurchatov Sq., Moscow 123182, Russian Federation
*Correspondence e-mail: tvche@yahoo.com

Edited by S. V. Lindeman, Marquette University, USA (Received 3 August 2018; accepted 15 August 2018; online 21 August 2018)

The title compound, C30H34N2O9 (4), is a product of the Michael reaction of aza­crown ether with dimethyl acetyl­enedi­carboxyl­ate modified by an addition of NH3 (aq.) at 298 K. The aza-14-crown-4-ether ring adopts a bowl conformation. The dihedral angle between the planes of the benzene rings fused to the aza-14-crown-4-ether moiety is 8.65 (5)°. The tetra­hydro­pyridine ring has a boat conformation. The mol­ecular conformation is supported by one N—H⋯O and two C—H⋯O intra­molecular hydrogen bonds. Both heterocyclic and amino N atoms have essentially planar configurations (sums of the bond angles are 359.35 and 358.00°). Compound 4 crystallizes as a racemate consisting of enanti­omeric pairs of the 1R,21S diastereomer. In the crystal, mol­ecules of 4 are connected by N—H⋯O hydrogen bonds, forming chains along [100]. According to the PASS program (computer prediction of biological activities), compound 4 may exhibit anti­allergic (72% probability) and anti­asthmatic (67%) activity, as well as be a membrane permeability inhibitor (65%).

1. Chemical context

Over the last several decades, aza­crown ethers have been designed, synthesized and applied as macrocyclic ligands for coordination chemistry (Hiraoka, 1978[Hiraoka, M. (1978). . In Crown Compounds: Their Characteristics and Application. Tokyo: Kodansha.]; Pedersen, 1988[Pedersen, C. J. (1988). Angew. Chem. 100, 1053-1059.]; Schwan & Warkentin, 1988[Schwan, A. L. & Warkentin, J. (1988). Can. J. Chem. 66, 1686-1694.]; Gokel & Murillo, 1996[Gokel, G. W. & Murillo, O. (1996). Acc. Chem. Res. 29, 425-432.]; Bradshaw & Izatt, 1997[Bradshaw, J. S. & Izatt, R. M. (1997). Acc. Chem. Res. 30, 338-345.]). Recently, we have developed effective new methods for the synthesis of aza­crown ethers containing the heterocyclic subunits piperidine (Levov et al., 2006[Levov, A. N., Strokina, V. M., Anh, L. T., Komarova, A. I., Soldatenkov, A. T. & Khrustalev, V. N. (2006). Mendeleev Commun. 16, 35-36.], 2008a[Levov, A. N., Anh, L. T., Komarova, A. I., Strokina, V. M., Soldatenkov, A. T. & Khrustalev, V. N. (2008a). Russ. J. Org. Chem. 44, 457-462.], b[Levov, A. N., Komarov, A. I., Soldatenkov, A. T., Avramenko, G. V., Soldatova, S. A. & Khrustalev, V. N. (2008b). Russ. J. Org. Chem. 44, 1665-1670.]; Anh et al., 2008[Anh, L. T., Levov, A. N., Soldatenkov, A. T., Gruzdev, R. D. & Hieu, T. H. (2008). Russ. J. Org. Chem. 44, 463-465.], 2012a[Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Soldatova, S. A. & Khrustalev, V. N. (2012a). Acta Cryst. E68, o1386-o1387.],b[Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012b). Acta Cryst. E68, o1588-o1589.],c[Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012c). Acta Cryst. E68, o2165-o2166.]; Hieu et al. 2012a[Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012a). Acta Cryst. E68, o2431-o2432.],b[Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Kurilkin, V. V. & Khrustalev, V. N. (2012b). Acta Cryst. E68, o2848-o2849.], 2013a[Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Vasil'ev, V. G. & Khrustalev, V. N. (2013a). Acta Cryst. E69, o565-o566.]), per­hydro­pyrimidine (Hieu et al., 2011[Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Golovtsov, N. I. & Soldatova, S. A. (2011). Chem. Heterocyc. Compd, 47, 1307-1308.]), perhydro­triazine (Khieu et al., 2011[Khieu, T. H., Soldatenkov, A. T., Le Tuan, A., Levov, A. N., Smol'yakov, A. F., Khrustalev, V. N. & Antipin, M. Yu. (2011). Russ. J. Org. Chem. 47, 766-770.]), pyridine (Le et al., 2014[Le, A. T., Truong, H. H., Nguyen, P. T. T., Pham, H. T., Kotsuba, V. E., Soldatenkov, A. T., Khrustalev, V. N. & Wodajo, A. T. (2014). Macroheterocycles, 7, 386-390.]; Tuan et al., 2015[Le, T. A., Truong, H. H., Thi, T. P. N., Thi, N. D., To, H. T., Thi, H. P. & Soldatenkov, A. T. (2015). Mendeleev Commun. 25, 224-225.]; Anh et al., 2018[Anh, L. T., Phuong, N. T. T., Hieu, T. H., Soldatenkov, A. T., Van, B. T., Van, T. T. T., Nhung, D. T., Voskressensky, L. G., Tung, T. H. & Khrustalev, V. N. (2018). Macroheterocycles, 11, 197-202.]) and bis­pyridine (Komarova et al., 2008[Komarova, A. I., Levov, A. N., Soldatenkov, A. T. & Soldatova, S. A. (2008). Chem. Heterocycl. C. 44, 624-625.]; Sokol et al., 2011[Sokol, V. I., Kolyadina, N. M., Kvartalov, V. B., Sergienko, V. S., Soldatenkov, A. T. & Davydov, V. V. (2011). Russ. Chem. Bull. 60, 2086-2088.]). These new aza­crown compounds also are inter­esting as potential anti­cancer agents because of their cytotoxicity (Le et al., 2014[Le, A. T., Truong, H. H., Nguyen, P. T. T., Pham, H. T., Kotsuba, V. E., Soldatenkov, A. T., Khrustalev, V. N. & Wodajo, A. T. (2014). Macroheterocycles, 7, 386-390.]; Le et al., 2015[Le, T. A., Truong, H. H., Thi, T. P. N., Thi, N. D., To, H. T., Thi, H. P. & Soldatenkov, A. T. (2015). Mendeleev Commun. 25, 224-225.]; Ahn et al., 2018[Anh, L. T., Phuong, N. T. T., Hieu, T. H., Soldatenkov, A. T., Van, B. T., Van, T. T. T., Nhung, D. T., Voskressensky, L. G., Tung, T. H. & Khrustalev, V. N. (2018). Macroheterocycles, 11, 197-202.]).

In our previous work, we have studied the Michael addition of aza­crown ethers to dimethyl acetyl­enedi­carboxyl­ate (Anh et al., 2012a[Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Soldatova, S. A. & Khrustalev, V. N. (2012a). Acta Cryst. E68, o1386-o1387.],b[Anh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012b). Acta Cryst. E68, o1588-o1589.]; Hieu et al. 2013a[Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Vasil'ev, V. G. & Khrustalev, V. N. (2013a). Acta Cryst. E69, o565-o566.],b[Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Gorchakova, O. S. & Khrustalev, V. N. (2013b). Acta Cryst. E69, o1023-o1024.]). We have also found recently that the expected N-vynilation proceeded smoothly with the formation of an N-maleinate derivative of the aza­crown system. Modification of the reaction by the addition of NH3 (aq.) and continuous stirring for three days at 298 K produced the unexpected γ-amino-N-propyl­piperidine (4) in a yield of 40% (Fig. 1[link]). According to the PASS program (Prediction of Activity Spectra for Substances – i.e. computer prediction of biological activities; Sadym et al., 2003[Sadym, A., Lagunin, A., Filimonov, D. & Poroikov, V. (2003). SAR QSAR Environ. Res. 14, 339-347.]), the title compound has the potential to exhibit anti­allergic (72% probability), anti­asthmatic (67%) and membrane permeability inhibiting (65%) activities. The obtained compound was studied by X-ray diffraction analysis (Fig. 2[link]).

[Scheme 1]
.
[Figure 1]
Figure 1
The modified reaction yielding the γ-amino-N-propyl­piperidine 4.
[Figure 2]
Figure 2
The mol­ecular structure of 4. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. Dashed lines indicate the intra­molecular N—H⋯O and C—H⋯O hydrogen bonds.

2. Structural commentary

The mol­ecule of 4, C30H34N2O9, comprises a fused tetra­cyclic system containing the aza-14-crown-3-ether macrocycle, one piperidine and two benzene rings (Fig. 2[link]). The aza-14-crown-3-ether ring adopts a bowl conformation. The configuration of the C7—O8—C9—C10 —O11—C12—C13—O14—C15 polyether chain is tg(−)—g(−)—tg(+)—t (t = trans, 180°; g = gauche, ±60°). The dihedral angle between the planes of the benzene rings fused to the aza-14-crown-4-ether moiety is 8.65 (5)°. The tetra­hydro­pyridine ring adopts a boat conformation. The conformations of the aza-14-crown-4-ether and piperidine rings are supported by the three intra­molecular (one N—H⋯O and two C—H⋯O) hydrogen bonds (Table 1[link]). The nitro­gen N23 and N25 atoms have practically planar geometries (the sums of the bond angles are 359.35 and 358.00°, respectively).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O11 1.00 2.38 3.2572 (17) 146
N23—H23A⋯O25 0.891 (18) 2.040 (18) 2.7127 (17) 131.4 (15)
N23—H23B⋯O32i 0.936 (18) 2.063 (18) 2.9986 (17) 176.7 (16)
C29—H29⋯O8 0.95 2.44 3.3439 (17) 159
Symmetry code: (i) x+1, y, z.

The mol­ecule of 4 possesses two asymmetric centers at the C1 and C21 carbon atoms and potentially can have four diastereomers. The crystal of 4 is racemic and consists of enanti­omeric pairs with the following relative configuration of the centers: 1R,21S.

3. Supra­molecular features

In the crystal, mol­ecules of 4 form hydrogen-bonded chains propagating along [100] through strong inter­molecular N—H⋯O hydrogen bonds (Fig. 3[link], Table 1[link]). The chains are stacking along the b-axis direction.

[Figure 3]
Figure 3
The hydrogen-bonded chains of 4 along the a axis. Dashed lines indicate the intra­molecular N—H⋯O and C—H⋯O and the inter­molecular N—H⋯O hydrogen bonds.

4. Synthesis and crystallization

A solution of 1.30 g (10.00 mmol) of ethyl aceto­acetate (1), 3.14 g (10.00 mmol) of 1,5-bis-(2-formyl­phen­oxy)-3-oxaopetane (2) and 1.00 g (13.00 mmol) of ammonium acetate in a mixture of 30 ml ethanol and 1 ml acetic acid was stirred at 298 K. The reaction was monitored by TLC and found to be complete after 6 h. The reaction mixture was allowed to cool to room temperature before being neutralized with sodium carbonate solution; the product was then extracted with chloro­form (3 × 50 ml). By TCL, compound 3 was determined to be successfully synthesized. The solvent (CDCl3) was evaporated under vacuum until 30ml of CDCl3 was left, 1.42 g (10 mmol) of DMAD was added and the solution was stirred for 30 minutes at 298 K. Then NH3 (aq.) was added to the reaction mixture, which was stirred continuously. After three days, the residue was purified by column chromatography and recrystallized from ethanol to obtain 2.27 g of the pure aza­crown ether 4 as light-yellow crystals (yield 60%). Tm = 525–526 K. Rf = 0.85 [n-hexa­ne:ethyl acetate = 1:1 (v:v)].

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydrogen atoms of the amino group were localized in difference-Fourier maps and refined isotropically with constrained thermal displacement parameters [Uiso(H = 1.2Ueq(N)]. Other hydrogen atoms were placed in calculated positions with C—H bond lengths of 0.95–1.00 Å and refined using a riding model with constrained isotropic displacement parameters [Uiso(H) = 1.5Ueq(C) for the CH3 groups and 1.2Ueq(C) for all others].

Table 2
Experimental details

Crystal data
Chemical formula C30H34N2O9
Mr 566.59
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 120
a, b, c (Å) 9.1172 (9), 10.3752 (10), 14.7482 (14)
α, β, γ (°) 89.044 (2), 86.658 (2), 82.896 (2)
V3) 1382.0 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.25 × 0.25 × 0.05
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany])
Tmin, Tmax 0.969, 0.990
No. of measured, independent and observed [I > 2σ(I)] reflections 27765, 10063, 6502
Rint 0.046
(sin θ/λ)max−1) 0.761
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.127, 1.03
No. of reflections 10063
No. of parameters 379
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.39, −0.25
Computer programs: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) and SHELXTL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2015); program(s) used to refine structure: SHELXTL (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2015); software used to prepare material for publication: SHELXTL (Sheldrick, 2015).

(1RS,21SR)-Diethyl 2-[23-amino-22-ethoxycarbonyl-8,11,14-trioxa-25-azatetracyclo[19.3.1.02,7.015,20]pentacosa-2,4,6,15(20),16,18,22-heptaen-25-yl]but-2-endioate top
Crystal data top
C30H34N2O9Z = 2
Mr = 566.59F(000) = 600
Triclinic, P1Dx = 1.362 Mg m3
a = 9.1172 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.3752 (10) ÅCell parameters from 5654 reflections
c = 14.7482 (14) Åθ = 2.4–32.2°
α = 89.044 (2)°µ = 0.10 mm1
β = 86.658 (2)°T = 120 K
γ = 82.896 (2)°Plate, yellow
V = 1382.0 (2) Å30.25 × 0.25 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
6502 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.046
φ and ω scansθmax = 32.8°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1313
Tmin = 0.969, Tmax = 0.990k = 1515
27765 measured reflectionsl = 2222
10063 independent reflections
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: mixed
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0509P)2 + 0.1608P]
where P = (Fo2 + 2Fc2)/3
10063 reflections(Δ/σ)max < 0.001
379 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.81612 (14)0.57839 (12)0.20889 (9)0.0141 (2)
H10.79670.62810.15130.017*
C20.85575 (14)0.67267 (13)0.27875 (9)0.0155 (3)
C30.87367 (16)0.63719 (14)0.36921 (9)0.0197 (3)
H30.85760.55230.38910.024*
C40.91474 (16)0.72407 (15)0.43085 (10)0.0227 (3)
H40.92850.69770.49210.027*
C50.93576 (17)0.84913 (15)0.40326 (11)0.0242 (3)
H50.96300.90870.44560.029*
C60.91694 (16)0.88691 (14)0.31367 (11)0.0224 (3)
H60.93020.97280.29450.027*
C70.87861 (15)0.79878 (13)0.25201 (10)0.0179 (3)
O80.85439 (11)0.83852 (10)0.16315 (7)0.0210 (2)
C90.98394 (17)0.82770 (15)0.10229 (10)0.0247 (3)
H9A1.05590.75410.12100.030*
H9B1.03180.90820.10350.030*
C100.93712 (18)0.80584 (14)0.00820 (10)0.0250 (3)
H10A0.85320.87160.00620.030*
H10B1.02020.81510.03670.030*
O110.89354 (11)0.67802 (10)0.00304 (7)0.0223 (2)
C120.75156 (17)0.67584 (15)0.03119 (10)0.0239 (3)
H12A0.74960.71510.09280.029*
H12B0.67580.72760.00850.029*
C130.71654 (17)0.53812 (15)0.03494 (9)0.0224 (3)
H13A0.63010.53420.07200.027*
H13B0.80200.48210.06350.027*
O140.68447 (11)0.49285 (9)0.05566 (6)0.0192 (2)
C150.66801 (15)0.36325 (13)0.06612 (9)0.0169 (3)
C160.65128 (16)0.28520 (14)0.00827 (10)0.0204 (3)
H160.65230.32170.06780.024*
C170.63327 (17)0.15515 (15)0.00416 (10)0.0239 (3)
H170.62280.10300.04680.029*
C180.63047 (17)0.10129 (15)0.09031 (11)0.0243 (3)
H180.61740.01240.09920.029*
C190.64699 (16)0.17908 (14)0.16373 (10)0.0207 (3)
H190.64510.14160.22290.025*
C200.66621 (14)0.31004 (13)0.15426 (9)0.0160 (3)
C210.68462 (15)0.37961 (13)0.24427 (9)0.0147 (2)
H210.59910.36210.28630.018*
C220.82317 (14)0.32219 (13)0.28954 (9)0.0151 (3)
C230.95330 (15)0.36568 (13)0.25977 (9)0.0161 (3)
N231.08748 (14)0.32444 (13)0.29035 (9)0.0211 (3)
H23A1.0903 (19)0.2647 (17)0.3346 (12)0.025*
H23B1.1662 (19)0.3727 (17)0.2762 (12)0.025*
C240.94479 (15)0.47044 (13)0.18843 (9)0.0163 (3)
H24A0.93220.43170.12890.020*
H24B1.03910.50890.18410.020*
N250.68040 (12)0.52165 (11)0.23838 (7)0.0142 (2)
C250.81729 (16)0.23578 (13)0.36705 (9)0.0173 (3)
O250.92621 (11)0.17777 (10)0.40161 (7)0.0217 (2)
O260.67790 (11)0.22664 (10)0.40149 (7)0.0211 (2)
C260.66542 (18)0.14964 (15)0.48444 (10)0.0249 (3)
H26A0.72690.17970.53110.030*
H26B0.69910.05680.47220.030*
C270.50501 (18)0.16773 (16)0.51650 (11)0.0285 (3)
H27A0.49060.11410.57080.043*
H27B0.44510.14160.46850.043*
H27C0.47450.25930.53110.043*
C280.55098 (14)0.60130 (13)0.24700 (9)0.0149 (2)
C290.53278 (15)0.72930 (13)0.22462 (9)0.0171 (3)
H290.61120.76620.19260.020*
C300.39565 (16)0.81067 (14)0.24871 (10)0.0206 (3)
O300.28235 (12)0.77676 (11)0.28223 (9)0.0332 (3)
O310.41022 (12)0.93716 (10)0.22944 (8)0.0281 (3)
C310.2821 (2)1.02831 (17)0.25180 (14)0.0377 (4)
H31A0.30661.11690.24160.057*
H31B0.25011.01710.31570.057*
H31C0.20201.01310.21330.057*
C320.42192 (15)0.53990 (13)0.29146 (9)0.0167 (3)
O320.33589 (11)0.48529 (10)0.25174 (7)0.0235 (2)
O330.42394 (11)0.55003 (10)0.38109 (6)0.0208 (2)
C330.30089 (19)0.50518 (18)0.43345 (11)0.0324 (4)
H33A0.30980.52180.49800.049*
H33B0.30160.41180.42430.049*
H33C0.20790.55160.41350.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0126 (6)0.0147 (6)0.0152 (6)0.0042 (5)0.0011 (5)0.0000 (5)
C20.0119 (6)0.0172 (6)0.0177 (6)0.0033 (5)0.0017 (5)0.0022 (5)
C30.0198 (7)0.0204 (7)0.0192 (7)0.0050 (5)0.0008 (5)0.0006 (5)
C40.0217 (7)0.0276 (8)0.0193 (7)0.0042 (6)0.0022 (5)0.0039 (6)
C50.0211 (7)0.0251 (8)0.0274 (8)0.0048 (6)0.0023 (6)0.0085 (6)
C60.0208 (7)0.0160 (7)0.0307 (8)0.0040 (5)0.0003 (6)0.0040 (6)
C70.0153 (6)0.0180 (7)0.0200 (7)0.0007 (5)0.0007 (5)0.0008 (5)
O80.0222 (5)0.0191 (5)0.0211 (5)0.0021 (4)0.0026 (4)0.0027 (4)
C90.0249 (7)0.0239 (8)0.0257 (8)0.0082 (6)0.0058 (6)0.0018 (6)
C100.0305 (8)0.0208 (7)0.0239 (7)0.0077 (6)0.0047 (6)0.0028 (6)
O110.0234 (5)0.0195 (5)0.0241 (5)0.0038 (4)0.0012 (4)0.0010 (4)
C120.0246 (7)0.0262 (8)0.0207 (7)0.0029 (6)0.0009 (6)0.0068 (6)
C130.0256 (7)0.0277 (8)0.0143 (6)0.0064 (6)0.0000 (5)0.0044 (5)
O140.0243 (5)0.0198 (5)0.0139 (5)0.0053 (4)0.0002 (4)0.0014 (4)
C150.0141 (6)0.0191 (7)0.0178 (6)0.0031 (5)0.0005 (5)0.0012 (5)
C160.0185 (7)0.0266 (7)0.0166 (6)0.0038 (6)0.0021 (5)0.0028 (5)
C170.0233 (7)0.0268 (8)0.0228 (7)0.0055 (6)0.0031 (6)0.0091 (6)
C180.0266 (8)0.0183 (7)0.0292 (8)0.0058 (6)0.0052 (6)0.0043 (6)
C190.0222 (7)0.0199 (7)0.0209 (7)0.0054 (5)0.0049 (5)0.0010 (5)
C200.0135 (6)0.0180 (6)0.0170 (6)0.0035 (5)0.0014 (5)0.0014 (5)
C210.0155 (6)0.0144 (6)0.0149 (6)0.0043 (5)0.0007 (5)0.0005 (5)
C220.0161 (6)0.0143 (6)0.0152 (6)0.0033 (5)0.0015 (5)0.0008 (5)
C230.0168 (6)0.0146 (6)0.0169 (6)0.0011 (5)0.0009 (5)0.0047 (5)
N230.0152 (6)0.0203 (6)0.0279 (7)0.0029 (5)0.0021 (5)0.0022 (5)
C240.0142 (6)0.0170 (6)0.0176 (6)0.0036 (5)0.0026 (5)0.0016 (5)
N250.0131 (5)0.0148 (5)0.0150 (5)0.0036 (4)0.0008 (4)0.0010 (4)
C250.0200 (7)0.0154 (6)0.0174 (6)0.0057 (5)0.0015 (5)0.0028 (5)
O250.0223 (5)0.0202 (5)0.0235 (5)0.0040 (4)0.0070 (4)0.0036 (4)
O260.0213 (5)0.0238 (5)0.0187 (5)0.0064 (4)0.0001 (4)0.0070 (4)
C260.0296 (8)0.0247 (8)0.0206 (7)0.0071 (6)0.0005 (6)0.0087 (6)
C270.0338 (9)0.0273 (8)0.0249 (8)0.0096 (7)0.0058 (7)0.0022 (6)
C280.0139 (6)0.0197 (6)0.0114 (6)0.0033 (5)0.0007 (5)0.0012 (5)
C290.0154 (6)0.0189 (7)0.0166 (6)0.0019 (5)0.0011 (5)0.0006 (5)
C300.0203 (7)0.0214 (7)0.0193 (7)0.0002 (5)0.0014 (5)0.0013 (5)
O300.0195 (6)0.0309 (6)0.0468 (7)0.0014 (5)0.0085 (5)0.0048 (5)
O310.0251 (6)0.0197 (5)0.0367 (6)0.0048 (4)0.0035 (5)0.0024 (5)
C310.0335 (9)0.0267 (9)0.0482 (11)0.0124 (7)0.0030 (8)0.0003 (8)
C320.0143 (6)0.0180 (6)0.0175 (6)0.0011 (5)0.0005 (5)0.0001 (5)
O320.0184 (5)0.0302 (6)0.0236 (5)0.0091 (4)0.0031 (4)0.0008 (4)
O330.0200 (5)0.0275 (5)0.0157 (5)0.0086 (4)0.0040 (4)0.0010 (4)
C330.0280 (8)0.0453 (10)0.0247 (8)0.0138 (7)0.0115 (7)0.0005 (7)
Geometric parameters (Å, º) top
C1—N251.4751 (16)C19—H190.9500
C1—C21.5210 (18)C20—C211.5489 (18)
C1—C241.5383 (18)C21—N251.4706 (17)
C1—H11.0000C21—C221.5150 (18)
C2—C31.3916 (19)C21—H211.0000
C2—C71.3970 (19)C22—C231.3671 (18)
C3—C41.389 (2)C22—C251.4437 (19)
C3—H30.9500C23—N231.3458 (18)
C4—C51.386 (2)C23—C241.4983 (19)
C4—H40.9500N23—H23A0.891 (18)
C5—C61.386 (2)N23—H23B0.936 (18)
C5—H50.9500C24—H24A0.9900
C6—C71.389 (2)C24—H24B0.9900
C6—H60.9500N25—C281.3551 (17)
C7—O81.3891 (17)C25—O251.2284 (17)
O8—C91.4354 (17)C25—O261.3546 (17)
C9—C101.504 (2)O26—C261.4566 (17)
C9—H9A0.9900C26—C271.501 (2)
C9—H9B0.9900C26—H26A0.9900
C10—O111.4352 (17)C26—H26B0.9900
C10—H10A0.9900C27—H27A0.9800
C10—H10B0.9900C27—H27B0.9800
O11—C121.4195 (18)C27—H27C0.9800
C12—C131.505 (2)C28—C291.3555 (19)
C12—H12A0.9900C28—C321.5172 (19)
C12—H12B0.9900C29—C301.4488 (19)
C13—O141.4348 (16)C29—H290.9500
C13—H13A0.9900C30—O301.2083 (18)
C13—H13B0.9900C30—O311.3590 (18)
O14—C151.3765 (16)O31—C311.4353 (18)
C15—C161.4008 (19)C31—H31A0.9800
C15—C201.4039 (19)C31—H31B0.9800
C16—C171.387 (2)C31—H31C0.9800
C16—H160.9500C32—O321.2058 (16)
C17—C181.380 (2)C32—O331.3292 (16)
C17—H170.9500O33—C331.4448 (17)
C18—C191.387 (2)C33—H33A0.9800
C18—H180.9500C33—H33B0.9800
C19—C201.3950 (19)C33—H33C0.9800
N25—C1—C2111.41 (10)C15—C20—C21127.59 (12)
N25—C1—C24110.41 (10)N25—C21—C22109.45 (10)
C2—C1—C24111.32 (11)N25—C21—C20115.95 (11)
N25—C1—H1107.8C22—C21—C20111.71 (11)
C2—C1—H1107.8N25—C21—H21106.4
C24—C1—H1107.8C22—C21—H21106.4
C3—C2—C7118.01 (12)C20—C21—H21106.4
C3—C2—C1122.28 (12)C23—C22—C25120.74 (12)
C7—C2—C1119.70 (12)C23—C22—C21117.09 (12)
C4—C3—C2121.00 (14)C25—C22—C21121.85 (12)
C4—C3—H3119.5N23—C23—C22125.65 (13)
C2—C3—H3119.5N23—C23—C24117.38 (12)
C5—C4—C3120.18 (14)C22—C23—C24116.96 (12)
C5—C4—H4119.9C23—N23—H23A116.4 (11)
C3—C4—H4119.9C23—N23—H23B119.3 (11)
C4—C5—C6119.75 (14)H23A—N23—H23B122.3 (16)
C4—C5—H5120.1C23—C24—C1112.42 (11)
C6—C5—H5120.1C23—C24—H24A109.1
C5—C6—C7119.77 (14)C1—C24—H24A109.1
C5—C6—H6120.1C23—C24—H24B109.1
C7—C6—H6120.1C1—C24—H24B109.1
C6—C7—O8119.54 (13)H24A—C24—H24B107.9
C6—C7—C2121.28 (13)C28—N25—C21121.49 (11)
O8—C7—C2119.08 (12)C28—N25—C1118.50 (11)
C7—O8—C9115.23 (11)C21—N25—C1119.36 (10)
O8—C9—C10108.14 (12)O25—C25—O26121.82 (13)
O8—C9—H9A110.1O25—C25—C22124.65 (13)
C10—C9—H9A110.1O26—C25—C22113.49 (12)
O8—C9—H9B110.1C25—O26—C26116.03 (11)
C10—C9—H9B110.1O26—C26—C27106.66 (12)
H9A—C9—H9B108.4O26—C26—H26A110.4
O11—C10—C9109.54 (12)C27—C26—H26A110.4
O11—C10—H10A109.8O26—C26—H26B110.4
C9—C10—H10A109.8C27—C26—H26B110.4
O11—C10—H10B109.8H26A—C26—H26B108.6
C9—C10—H10B109.8C26—C27—H27A109.5
H10A—C10—H10B108.2C26—C27—H27B109.5
C12—O11—C10113.88 (11)H27A—C27—H27B109.5
O11—C12—C13109.95 (12)C26—C27—H27C109.5
O11—C12—H12A109.7H27A—C27—H27C109.5
C13—C12—H12A109.7H27B—C27—H27C109.5
O11—C12—H12B109.7N25—C28—C29125.26 (12)
C13—C12—H12B109.7N25—C28—C32115.09 (11)
H12A—C12—H12B108.2C29—C28—C32119.51 (12)
O14—C13—C12109.07 (12)C28—C29—C30121.04 (13)
O14—C13—H13A109.9C28—C29—H29119.5
C12—C13—H13A109.9C30—C29—H29119.5
O14—C13—H13B109.9O30—C30—O31122.38 (13)
C12—C13—H13B109.9O30—C30—C29127.43 (14)
H13A—C13—H13B108.3O31—C30—C29110.18 (12)
C15—O14—C13116.89 (11)C30—O31—C31115.59 (13)
O14—C15—C16121.72 (12)O31—C31—H31A109.5
O14—C15—C20118.30 (12)O31—C31—H31B109.5
C16—C15—C20119.97 (13)H31A—C31—H31B109.5
C17—C16—C15120.61 (13)O31—C31—H31C109.5
C17—C16—H16119.7H31A—C31—H31C109.5
C15—C16—H16119.7H31B—C31—H31C109.5
C18—C17—C16120.25 (13)O32—C32—O33125.66 (13)
C18—C17—H17119.9O32—C32—C28125.19 (12)
C16—C17—H17119.9O33—C32—C28109.06 (11)
C17—C18—C19118.88 (14)C32—O33—C33115.97 (11)
C17—C18—H18120.6O33—C33—H33A109.5
C19—C18—H18120.6O33—C33—H33B109.5
C18—C19—C20122.76 (14)H33A—C33—H33B109.5
C18—C19—H19118.6O33—C33—H33C109.5
C20—C19—H19118.6H33A—C33—H33C109.5
C19—C20—C15117.52 (12)H33B—C33—H33C109.5
C19—C20—C21114.89 (12)
N25—C1—C2—C354.79 (17)N25—C21—C22—C25127.01 (13)
C24—C1—C2—C368.92 (16)C20—C21—C22—C25103.19 (14)
N25—C1—C2—C7126.67 (13)C25—C22—C23—N237.7 (2)
C24—C1—C2—C7109.61 (14)C21—C22—C23—N23178.62 (12)
C7—C2—C3—C40.7 (2)C25—C22—C23—C24170.83 (12)
C1—C2—C3—C4177.82 (13)C21—C22—C23—C242.85 (17)
C2—C3—C4—C51.3 (2)N23—C23—C24—C1134.29 (12)
C3—C4—C5—C60.6 (2)C22—C23—C24—C144.37 (16)
C4—C5—C6—C70.6 (2)N25—C1—C24—C2344.58 (14)
C5—C6—C7—O8177.57 (13)C2—C1—C24—C2379.70 (14)
C5—C6—C7—C21.2 (2)C22—C21—N25—C28145.08 (12)
C3—C2—C7—C60.5 (2)C20—C21—N25—C2887.47 (14)
C1—C2—C7—C6179.10 (12)C22—C21—N25—C144.29 (15)
C3—C2—C7—O8176.89 (12)C20—C21—N25—C183.17 (14)
C1—C2—C7—O84.51 (19)C2—C1—N25—C2864.94 (15)
C6—C7—O8—C987.42 (16)C24—C1—N25—C28170.83 (11)
C2—C7—O8—C996.13 (15)C2—C1—N25—C21124.15 (12)
C7—O8—C9—C10151.09 (12)C24—C1—N25—C210.08 (15)
O8—C9—C10—O1170.39 (15)C23—C22—C25—O2513.2 (2)
C9—C10—O11—C12127.74 (13)C21—C22—C25—O25173.47 (12)
C10—O11—C12—C13179.42 (11)C23—C22—C25—O26164.83 (12)
O11—C12—C13—O1473.13 (15)C21—C22—C25—O268.55 (18)
C12—C13—O14—C15172.13 (12)O25—C25—O26—C263.11 (19)
C13—O14—C15—C1613.40 (18)C22—C25—O26—C26174.93 (12)
C13—O14—C15—C20167.47 (12)C25—O26—C26—C27172.59 (12)
O14—C15—C16—C17179.30 (13)C21—N25—C28—C29165.86 (12)
C20—C15—C16—C170.2 (2)C1—N25—C28—C294.85 (19)
C15—C16—C17—C180.5 (2)C21—N25—C28—C3218.46 (17)
C16—C17—C18—C190.5 (2)C1—N25—C28—C32170.83 (11)
C17—C18—C19—C200.1 (2)N25—C28—C29—C30170.74 (13)
C18—C19—C20—C150.2 (2)C32—C28—C29—C304.76 (19)
C18—C19—C20—C21179.26 (13)C28—C29—C30—O306.7 (2)
O14—C15—C20—C19178.97 (12)C28—C29—C30—O31172.40 (13)
C16—C15—C20—C190.2 (2)O30—C30—O31—C310.2 (2)
O14—C15—C20—C211.6 (2)C29—C30—O31—C31178.94 (13)
C16—C15—C20—C21179.24 (13)N25—C28—C32—O3290.53 (17)
C19—C20—C21—N25170.28 (11)C29—C28—C32—O3293.52 (18)
C15—C20—C21—N2510.30 (19)N25—C28—C32—O3386.20 (14)
C19—C20—C21—C2263.39 (15)C29—C28—C32—O3389.74 (15)
C15—C20—C21—C22116.04 (15)O32—C32—O33—C338.0 (2)
N25—C21—C22—C2346.59 (15)C28—C32—O33—C33175.27 (12)
C20—C21—C22—C2383.21 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O111.002.383.2572 (17)146
N23—H23A···O250.891 (18)2.040 (18)2.7127 (17)131.4 (15)
N23—H23B···O32i0.936 (18)2.063 (18)2.9986 (17)176.7 (16)
C29—H29···O80.952.443.3439 (17)159
Symmetry code: (i) x+1, y, z.
 

Funding information

This research was funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant No. 104.01–2015.27 and the RUDN University Program "5–100".

References

First citationAnh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012b). Acta Cryst. E68, o1588–o1589.  CSD CrossRef IUCr Journals Google Scholar
First citationAnh, L. T., Hieu, T. H., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012c). Acta Cryst. E68, o2165–o2166.  CSD CrossRef IUCr Journals Google Scholar
First citationAnh, L. T., Hieu, T. H., Soldatenkov, A. T., Soldatova, S. A. & Khrustalev, V. N. (2012a). Acta Cryst. E68, o1386–o1387.  CSD CrossRef IUCr Journals Google Scholar
First citationAnh, L. T., Levov, A. N., Soldatenkov, A. T., Gruzdev, R. D. & Hieu, T. H. (2008). Russ. J. Org. Chem. 44, 463–465.  Google Scholar
First citationAnh, L. T., Phuong, N. T. T., Hieu, T. H., Soldatenkov, A. T., Van, B. T., Van, T. T. T., Nhung, D. T., Voskressensky, L. G., Tung, T. H. & Khrustalev, V. N. (2018). Macroheterocycles, 11, 197–202.  CrossRef Google Scholar
First citationBradshaw, J. S. & Izatt, R. M. (1997). Acc. Chem. Res. 30, 338–345.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGokel, G. W. & Murillo, O. (1996). Acc. Chem. Res. 29, 425–432.  CrossRef CAS Web of Science Google Scholar
First citationHieu, T. H., Anh, L. T., Soldatenkov, A. T., Golovtsov, N. I. & Soldatova, S. A. (2011). Chem. Heterocyc. Compd, 47, 1307–1308.  Google Scholar
First citationHieu, T. H., Anh, L. T., Soldatenkov, A. T., Gorchakova, O. S. & Khrustalev, V. N. (2013b). Acta Cryst. E69, o1023–o1024.  CrossRef IUCr Journals Google Scholar
First citationHieu, T. H., Anh, L. T., Soldatenkov, A. T., Kolyadina, N. M. & Khrustalev, V. N. (2012a). Acta Cryst. E68, o2431–o2432.  CSD CrossRef IUCr Journals Google Scholar
First citationHieu, T. H., Anh, L. T., Soldatenkov, A. T., Kurilkin, V. V. & Khrustalev, V. N. (2012b). Acta Cryst. E68, o2848–o2849.  CSD CrossRef IUCr Journals Google Scholar
First citationHieu, T. H., Anh, L. T., Soldatenkov, A. T., Vasil'ev, V. G. & Khrustalev, V. N. (2013a). Acta Cryst. E69, o565–o566.  CrossRef IUCr Journals Google Scholar
First citationHiraoka, M. (1978). . In Crown Compounds: Their Characteristics and Application. Tokyo: Kodansha.  Google Scholar
First citationKhieu, T. H., Soldatenkov, A. T., Le Tuan, A., Levov, A. N., Smol'yakov, A. F., Khrustalev, V. N. & Antipin, M. Yu. (2011). Russ. J. Org. Chem. 47, 766–770.  CrossRef Google Scholar
First citationKomarova, A. I., Levov, A. N., Soldatenkov, A. T. & Soldatova, S. A. (2008). Chem. Heterocycl. C. 44, 624–625.  CrossRef Google Scholar
First citationLe, A. T., Truong, H. H., Nguyen, P. T. T., Pham, H. T., Kotsuba, V. E., Soldatenkov, A. T., Khrustalev, V. N. & Wodajo, A. T. (2014). Macroheterocycles, 7, 386–390.  CrossRef Google Scholar
First citationLe, T. A., Truong, H. H., Thi, T. P. N., Thi, N. D., To, H. T., Thi, H. P. & Soldatenkov, A. T. (2015). Mendeleev Commun. 25, 224–225.  Web of Science CrossRef CAS Google Scholar
First citationLevov, A. N., Anh, L. T., Komarova, A. I., Strokina, V. M., Soldatenkov, A. T. & Khrustalev, V. N. (2008a). Russ. J. Org. Chem. 44, 457–462.  Google Scholar
First citationLevov, A. N., Komarov, A. I., Soldatenkov, A. T., Avramenko, G. V., Soldatova, S. A. & Khrustalev, V. N. (2008b). Russ. J. Org. Chem. 44, 1665–1670.  CrossRef Google Scholar
First citationLevov, A. N., Strokina, V. M., Anh, L. T., Komarova, A. I., Soldatenkov, A. T. & Khrustalev, V. N. (2006). Mendeleev Commun. 16, 35–36.  Web of Science CSD CrossRef Google Scholar
First citationPedersen, C. J. (1988). Angew. Chem. 100, 1053–1059.  CrossRef CAS Google Scholar
First citationSadym, A., Lagunin, A., Filimonov, D. & Poroikov, V. (2003). SAR QSAR Environ. Res. 14, 339–347.  CrossRef Google Scholar
First citationSchwan, A. L. & Warkentin, J. (1988). Can. J. Chem. 66, 1686–1694.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSokol, V. I., Kolyadina, N. M., Kvartalov, V. B., Sergienko, V. S., Soldatenkov, A. T. & Davydov, V. V. (2011). Russ. Chem. Bull. 60, 2086–2088.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds