organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(Propan-2-yl­­oxy)-1,2-benzo­thia­zole 1,1-dioxide

aMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan, and bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 6 January 2012; accepted 19 January 2012; online 25 January 2012)

In the title compound, C10H11NO3S, the benzisothia­zole ring system is almost planar [maximum deviation = 0.030 (1) Å for the S atom]. The isoprop­oxy group is almost in the plane of the benzisothia­zole ring system [N—C—O—C = 4.5 (2)°] with one of its methyl groups in an anti­periplanar orientation relative to the benzisothia­zole ring system [C—C—O—C = −162.0 (2)°].

Related literature

For related structures, see: Siddiqui et al. (2007[Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007). Acta Cryst. E63, o4001.], 2008[Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Hussain, R. A. & Parvez, M. (2008). Acta Cryst. E64, o1897.]); Bassin et al. (2011[Bassin, J. P., Shah, V. P., Martin, L., Clegg, W. & Harrington, R. W. (2011). Acta Cryst. E67, o12.]); Arshad et al. (2009a[Arshad, M. N., Mubashar-ur-Rehman, H., Zia-ur-Rehman, M., Khan, I. U. & Shafiq, M. (2009a). Acta Cryst. E65, o1236.],b[Arshad, M. N., Mubashar-ur-Rehman, H., Zia-ur-Rehman, M., Khan, I. U. & Shafique, M. (2009b). Acta Cryst. E65, o1011.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11NO3S

  • Mr = 225.27

  • Triclinic, [P \overline 1]

  • a = 8.1899 (3) Å

  • b = 8.8361 (4) Å

  • c = 8.9045 (4) Å

  • α = 101.624 (2)°

  • β = 106.694 (1)°

  • γ = 114.898 (1)°

  • V = 519.89 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 296 K

  • 0.13 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 9516 measured reflections

  • 2560 independent reflections

  • 2090 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.102

  • S = 1.05

  • 2560 reflections

  • 138 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), PARST (Nardelli, 1983[Nardelli, M. (1983). Comput. Chem. 7, 95-98.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound (I) was prepared while synthesizing benzisothiazoles from sodium saccharin. Slight increase in the reaction temperature from 333 K to 353 K give rise to the unexpected product instead of a benzisothiazole derivative.

In the title molecule (Fig. 1), the S atom has a distorted tetrahedral coordination geometry, with S1—O1 = 1.4278 (15), S1—O2 = 1.4264 (16), S1— N1 = 1.6493 (14), S1—C1 = 1.7642 (19) Å, O1—S1—O2 = 117.54 (9), O1—S1—N1 = 109.42 (8), O1—S1—C1 = 110.06 (9), O2—S1—N1 = 109.04 (8), O2—S1—C1 = 112.19 (9) and N1— S1—C1 = 96.54 (8)°. The values of the geometric parameters are in agreement with those observed in related compounds (Siddiqui et al., 2007; Bassin et al., 2011; Arshad et al., 2009a,b; Siddiqui et al., 2008).

Related literature top

For related structures, see: Siddiqui et al. (2007, 2008); Bassin et al. (2011); Arshad et al. (2009a,b).

Experimental top

Sodium saccharin (0.5 g m, 2.439 mmol) was placed in a 50 ml round-bottom flask, and 20 ml of the dried DMF were added to it. The mixture was stirred for 5 min. Then iso-propyl iodide (0.243 ml, 2.439 mmol) was added and the mixture was placed under reflux for 3 h at 353 K. After that, the reaction mixture was poured in ice. The precipitate was filtered, washed with ice-cold water, dried and recrystallized from methanol.

Refinement top

All H atoms were positioned geometrically and then treated as riding atoms, with C—H = 0.93 Å (C-aromatic), 0.98 Å (C-methine) and 0.96 Å (C-methyl). Uiso(H) =1.2Ueq(C-aromatic, C-methine), and 1.5Ueq(C-methyl). The positions of methyl hydrogens were optimized rotationally.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST (Nardelli, 1983) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the molecule with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
3-(Propan-2-yloxy)-1,2-benzothiazole 1,1-dioxide top
Crystal data top
C10H11NO3SZ = 2
Mr = 225.27F(000) = 236
Triclinic, P1Dx = 1.439 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1899 (3) ÅCell parameters from 4072 reflections
b = 8.8361 (4) Åθ = 2.6–28.0°
c = 8.9045 (4) ŵ = 0.30 mm1
α = 101.624 (2)°T = 296 K
β = 106.694 (1)°Prism, colourless
γ = 114.898 (1)°0.13 × 0.10 × 0.08 mm
V = 519.89 (4) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2090 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.020
Graphite monochromatorθmax = 28.4°, θmin = 2.7°
ϕ and ω scansh = 1010
9516 measured reflectionsk = 1111
2560 independent reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0509P)2 + 0.1198P]
where P = (Fo2 + 2Fc2)/3
2560 reflections(Δ/σ)max < 0.001
138 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C10H11NO3Sγ = 114.898 (1)°
Mr = 225.27V = 519.89 (4) Å3
Triclinic, P1Z = 2
a = 8.1899 (3) ÅMo Kα radiation
b = 8.8361 (4) ŵ = 0.30 mm1
c = 8.9045 (4) ÅT = 296 K
α = 101.624 (2)°0.13 × 0.10 × 0.08 mm
β = 106.694 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2090 reflections with I > 2σ(I)
9516 measured reflectionsRint = 0.020
2560 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.05Δρmax = 0.29 e Å3
2560 reflectionsΔρmin = 0.34 e Å3
138 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.51553 (5)0.65330 (5)0.19102 (5)0.0414 (1)
O10.4815 (2)0.7249 (2)0.31926 (16)0.0625 (5)
O20.35943 (17)0.48322 (17)0.21499 (18)0.0616 (4)
O30.85768 (15)0.97134 (14)0.24607 (13)0.0389 (3)
N10.58062 (18)0.80108 (18)0.00718 (16)0.0386 (4)
C10.7438 (2)0.6603 (2)0.14202 (18)0.0347 (4)
C20.8040 (2)0.5704 (2)0.2379 (2)0.0423 (5)
C30.9986 (3)0.6115 (2)0.1638 (2)0.0472 (6)
C41.1264 (2)0.7379 (2)0.0035 (2)0.0470 (6)
C51.0640 (2)0.8267 (2)0.0923 (2)0.0402 (5)
C60.8694 (2)0.78493 (19)0.02064 (18)0.0325 (4)
C70.7613 (2)0.85598 (19)0.08991 (18)0.0333 (4)
C80.7475 (2)1.0339 (2)0.3210 (2)0.0418 (5)
C90.9032 (3)1.2032 (3)0.4722 (2)0.0561 (6)
C100.6175 (3)0.8887 (3)0.3664 (3)0.0610 (7)
H20.718200.486400.346800.0510*
H31.044000.552200.224000.0570*
H41.257000.764200.041300.0560*
H51.150100.911400.200900.0480*
H80.665901.061300.239600.0500*
H9A0.981201.175300.552600.0840*
H9B0.840101.253800.523200.0840*
H9C0.987501.288100.436900.0840*
H10A0.532600.779900.268100.0910*
H10B0.538300.924700.407600.0910*
H10C0.698600.868500.452400.0910*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0302 (2)0.0471 (2)0.0359 (2)0.0212 (2)0.0067 (2)0.0023 (2)
O10.0688 (9)0.0846 (10)0.0389 (7)0.0538 (8)0.0105 (6)0.0162 (7)
O20.0311 (6)0.0500 (7)0.0705 (9)0.0097 (5)0.0136 (6)0.0036 (6)
O30.0344 (5)0.0448 (6)0.0316 (5)0.0210 (5)0.0112 (4)0.0054 (4)
N10.0319 (6)0.0444 (7)0.0358 (7)0.0225 (6)0.0112 (5)0.0055 (5)
C10.0307 (7)0.0378 (8)0.0358 (7)0.0185 (6)0.0146 (6)0.0110 (6)
C20.0446 (8)0.0425 (8)0.0403 (8)0.0232 (7)0.0208 (7)0.0095 (7)
C30.0496 (9)0.0551 (10)0.0560 (10)0.0350 (8)0.0335 (8)0.0211 (8)
C40.0359 (8)0.0632 (11)0.0544 (10)0.0311 (8)0.0231 (7)0.0256 (9)
C50.0316 (7)0.0491 (9)0.0385 (8)0.0205 (7)0.0138 (6)0.0149 (7)
C60.0303 (7)0.0364 (7)0.0336 (7)0.0179 (6)0.0154 (6)0.0133 (6)
C70.0319 (7)0.0345 (7)0.0326 (7)0.0177 (6)0.0130 (6)0.0099 (6)
C80.0444 (8)0.0458 (9)0.0352 (8)0.0281 (7)0.0147 (7)0.0062 (7)
C90.0649 (12)0.0509 (10)0.0402 (9)0.0286 (9)0.0160 (8)0.0048 (8)
C100.0610 (11)0.0629 (12)0.0602 (12)0.0292 (10)0.0367 (10)0.0139 (10)
Geometric parameters (Å, º) top
S1—O11.4278 (15)C8—C91.508 (3)
S1—O21.4264 (16)C8—C101.500 (3)
S1—N11.6493 (14)C2—H20.9300
S1—C11.7642 (19)C3—H30.9300
O3—C71.3101 (18)C4—H40.9300
O3—C81.477 (2)C5—H50.9300
N1—C71.290 (2)C8—H80.9800
C1—C21.379 (2)C9—H9A0.9600
C1—C61.384 (2)C9—H9B0.9600
C2—C31.385 (3)C9—H9C0.9600
C3—C41.377 (2)C10—H10A0.9600
C4—C51.387 (3)C10—H10B0.9600
C5—C61.382 (3)C10—H10C0.9600
C6—C71.478 (3)
O1—S1—O2117.54 (9)C1—C2—H2122.00
O1—S1—N1109.42 (8)C3—C2—H2122.00
O1—S1—C1110.06 (9)C2—C3—H3119.00
O2—S1—N1109.04 (8)C4—C3—H3119.00
O2—S1—C1112.19 (9)C3—C4—H4119.00
N1—S1—C196.54 (8)C5—C4—H4119.00
C7—O3—C8117.70 (14)C4—C5—H5121.00
S1—N1—C7109.19 (13)C6—C5—H5121.00
S1—C1—C2130.80 (12)O3—C8—H8110.00
S1—C1—C6106.85 (13)C9—C8—H8110.00
C2—C1—C6122.32 (17)C10—C8—H8110.00
C1—C2—C3116.66 (15)C8—C9—H9A109.00
C2—C3—C4121.7 (2)C8—C9—H9B109.00
C3—C4—C5121.20 (18)C8—C9—H9C109.00
C4—C5—C6117.64 (15)H9A—C9—H9B110.00
C1—C6—C5120.49 (16)H9A—C9—H9C109.00
C1—C6—C7109.38 (15)H9B—C9—H9C110.00
C5—C6—C7130.13 (14)C8—C10—H10A109.00
O3—C7—N1124.94 (16)C8—C10—H10B109.00
O3—C7—C6117.08 (15)C8—C10—H10C109.00
N1—C7—C6117.98 (14)H10A—C10—H10B110.00
O3—C8—C9105.62 (16)H10A—C10—H10C109.00
O3—C8—C10108.91 (16)H10B—C10—H10C110.00
C9—C8—C10113.00 (16)
O1—S1—N1—C7114.21 (14)C2—C1—C6—C7179.48 (15)
O2—S1—N1—C7115.99 (13)S1—C1—C6—C5176.95 (13)
C1—S1—N1—C70.22 (13)S1—C1—C2—C3177.44 (14)
O1—S1—C1—C265.92 (19)C6—C1—C2—C30.4 (3)
O2—S1—C1—C266.96 (19)S1—C1—C6—C72.25 (16)
N1—S1—C1—C2179.38 (17)C2—C1—C6—C51.3 (3)
O1—S1—C1—C6112.15 (13)C1—C2—C3—C41.0 (3)
O2—S1—C1—C6114.97 (13)C2—C3—C4—C51.5 (3)
N1—S1—C1—C61.30 (13)C3—C4—C5—C60.5 (3)
C8—O3—C7—N14.5 (2)C4—C5—C6—C7179.86 (16)
C8—O3—C7—C6175.82 (13)C4—C5—C6—C10.8 (2)
C7—O3—C8—C1076.34 (18)C5—C6—C7—N1176.34 (17)
C7—O3—C8—C9162.02 (15)C1—C6—C7—O3177.57 (14)
S1—N1—C7—C61.72 (19)C1—C6—C7—N12.8 (2)
S1—N1—C7—O3178.64 (13)C5—C6—C7—O33.3 (3)

Experimental details

Crystal data
Chemical formulaC10H11NO3S
Mr225.27
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.1899 (3), 8.8361 (4), 8.9045 (4)
α, β, γ (°)101.624 (2), 106.694 (1), 114.898 (1)
V3)519.89 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.13 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9516, 2560, 2090
Rint0.020
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.102, 1.05
No. of reflections2560
No. of parameters138
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.34

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999), PARST (Nardelli, 1983) and PLATON (Spek, 2009).

 

Acknowledgements

The authors are grateful to the Higher Education Commission (HEC), Pakistan, for providing funds for the single-crystal XRD facilities at GC University, Lahore.

References

First citationArshad, M. N., Mubashar-ur-Rehman, H., Zia-ur-Rehman, M., Khan, I. U. & Shafiq, M. (2009a). Acta Cryst. E65, o1236.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArshad, M. N., Mubashar-ur-Rehman, H., Zia-ur-Rehman, M., Khan, I. U. & Shafique, M. (2009b). Acta Cryst. E65, o1011.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBassin, J. P., Shah, V. P., Martin, L., Clegg, W. & Harrington, R. W. (2011). Acta Cryst. E67, o12.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1983). Comput. Chem. 7, 95–98.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Siddiqui, H. L., Hussain, R. A. & Parvez, M. (2008). Acta Cryst. E64, o1897.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007). Acta Cryst. E63, o4001.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds