Download citation
Download citation
link to html
The aim of the present study was to report the crystal structure and spectroscopic, electronic, supra­molecular and electrostatic properties of a new polymorph of 4-(pyridin-2-yl)pyrimidin-2-amine (C9H8N4). The com­pound was synthesized under microwave irradiation. The single-crystal X-ray structure analysis revealed an angle of 13.36 (8)° between the planes of the rings, as well as mol­ecules linked by Nsp2—H...N hydrogen bonds forming dimers along the crystal. The material was analyzed by FT–IR vibrational spectroscopy, while a com­putational approach was used to elucidate the vibrational frequency couplings. The existence of Nsp2—H...N hydrogen bonds in the crystal was confirmed spectroscopically by the IR peaks from the N—H stretching vibration shifting to lower wavenumbers in the solid state relative to those in the gas phase. The supra­molecular studies confirmed the formation of centrosymmetric R22(8) rings, which correspond to the formation of dimers that stack parallel to the b direction. Other weak C—H...π inter­actions, essential for crystal growth, were found. The UV–Vis spectroscopic analysis showed a donor–acceptor process, where the amino group acts as a donor and the pyridine and pyrimidine rings act as acceptors. The reactive sites of the mol­ecule were identified and their qu­anti­tative values were defined using the electrostatic potential model proposed in the multifunctional wave function analyzer multiwfn. The calculated inter­action energies between pairs of mol­ecules were used to visualize the electrostatic terms as the leading factors against the dispersion factors in the crystal-growth process. The docking results showed that the amino group of the pyrimidine moiety was simultaneously anchored by hydrogen-bonding inter­actions with the Asp427 and His407 protein residues. This com­pound could be key for the realization of a series of syntheses of mol­ecules that could be used as possible inhibitors of chronic myelogenous leukemia.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229619015523/ky3191sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619015523/ky3191Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229619015523/ky3191sup3.pdf
Spectroscopic and MO data

CCDC reference: 1966319

Computing details top

Data collection: DATCOL (Bruker, 2006); cell refinement: EVALCCD (Duisenberg et al., 2003); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 (Farrugia, 2012), Mercury (Macrae et al., 2008) and CrystalExplorer (McKinnon et al., 2004); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

4-(Pyridin-2-yl)pyrimidin-2-amine top
Crystal data top
C9H8N4Dx = 1.388 Mg m3
Mr = 172.19Melting point: 413 K
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
a = 11.4608 (15) ÅCell parameters from 4441 reflections
b = 5.3791 (9) Åθ = 3.1–30.0°
c = 26.740 (4) ŵ = 0.09 mm1
β = 91.457 (12)°T = 293 K
V = 1647.9 (4) Å3Block, colourless
Z = 80.40 × 0.23 × 0.20 mm
F(000) = 720
Data collection top
Bruker Enraf–Nonius KappaCCD
diffractometer
2379 independent reflections
Radiation source: 0.2 x 2mm2 focus rotating anode1688 reflections with I > 2σ(I)
Detector resolution: 18.02 pixels mm-1Rint = 0.020
CCD φ– and ω–scansθmax = 30.0°, θmin = 3.1°
Absorption correction: gaussian
(SADABS; Bruker, 2012)
h = 1611
Tmin = 0.624, Tmax = 0.995k = 77
4441 measured reflectionsl = 3137
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0583P)2 + 0.5919P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2379 reflectionsΔρmax = 0.22 e Å3
126 parametersΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The crystal structure was solved with SHELXT (Sheldrick, 2014) and refined with SHELXL (Sheldrick, 2014). Anisotropic atomic displacement parameters were introduced for all non-hydrogen atoms.

Structure pictures were drawn with ORTEP (Farrugia, 2012), Mercury (Macrae et al., 2008) and CrystalExplorer (McKinnon et al., 2004).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.59793 (10)0.8075 (2)0.54174 (4)0.0397 (3)
N20.49244 (9)0.4940 (2)0.58498 (4)0.0334 (3)
N30.67213 (11)0.1998 (3)0.67891 (5)0.0475 (3)
N40.40143 (12)0.7523 (3)0.52808 (5)0.0458 (3)
C10.50044 (11)0.6820 (3)0.55227 (5)0.0336 (3)
C20.69358 (12)0.7359 (3)0.56694 (5)0.0444 (4)
H20.7633160.8167770.5604700.053*
C30.69520 (12)0.5499 (3)0.60189 (5)0.0411 (3)
H30.7633130.5053180.6192890.049*
C40.58989 (11)0.4316 (2)0.60997 (5)0.0320 (3)
C50.58070 (11)0.2278 (2)0.64725 (5)0.0325 (3)
C60.48303 (12)0.0784 (3)0.64859 (5)0.0369 (3)
H60.4203750.1052980.6264710.044*
C70.47957 (13)0.1109 (3)0.68304 (5)0.0420 (3)
H70.4152610.2159040.6843060.050*
C80.57305 (14)0.1415 (3)0.71553 (6)0.0476 (4)
H80.5735550.2680330.7392340.057*
C90.66543 (14)0.0180 (3)0.71233 (6)0.0540 (4)
H90.7275810.0021330.7350110.065*
H4A0.3371 (19)0.677 (4)0.5350 (7)0.066 (6)*
H4B0.4016 (15)0.880 (4)0.5056 (7)0.057 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0365 (6)0.0410 (7)0.0416 (6)0.0022 (5)0.0005 (5)0.0065 (5)
N20.0286 (5)0.0365 (6)0.0349 (5)0.0018 (5)0.0007 (4)0.0024 (4)
N30.0353 (6)0.0509 (8)0.0555 (7)0.0016 (6)0.0114 (5)0.0148 (6)
N40.0347 (7)0.0508 (8)0.0516 (7)0.0001 (6)0.0058 (5)0.0169 (6)
C10.0319 (6)0.0356 (7)0.0332 (6)0.0022 (5)0.0003 (5)0.0010 (5)
C20.0322 (7)0.0519 (9)0.0492 (8)0.0066 (7)0.0000 (6)0.0087 (7)
C30.0281 (6)0.0491 (9)0.0457 (7)0.0006 (6)0.0036 (5)0.0081 (6)
C40.0285 (6)0.0347 (7)0.0329 (6)0.0025 (5)0.0010 (4)0.0003 (5)
C50.0289 (6)0.0344 (7)0.0343 (6)0.0035 (5)0.0004 (4)0.0005 (5)
C60.0329 (6)0.0405 (8)0.0372 (6)0.0005 (6)0.0021 (5)0.0017 (6)
C70.0411 (7)0.0396 (8)0.0457 (7)0.0040 (6)0.0058 (6)0.0007 (6)
C80.0503 (9)0.0425 (8)0.0500 (8)0.0030 (7)0.0020 (6)0.0132 (7)
C90.0449 (8)0.0565 (10)0.0599 (9)0.0017 (8)0.0150 (7)0.0196 (8)
Geometric parameters (Å, º) top
N1—C21.3291 (17)C3—C41.3862 (19)
N1—C11.3413 (18)C3—H30.9300
N2—C41.3297 (16)C4—C51.4875 (18)
N2—C11.3420 (17)C5—C61.3792 (19)
N3—C91.3286 (19)C6—C71.374 (2)
N3—C51.3386 (16)C6—H60.9300
N4—C11.3459 (17)C7—C81.372 (2)
N4—H4A0.87 (2)C7—H70.9300
N4—H4B0.91 (2)C8—C91.367 (2)
C2—C31.369 (2)C8—H80.9300
C2—H20.9300C9—H90.9300
C2—N1—C1115.38 (12)C3—C4—C5121.30 (11)
C4—N2—C1116.56 (11)N3—C5—C6122.74 (12)
C9—N3—C5116.77 (13)N3—C5—C4116.04 (12)
C1—N4—H4A118.6 (13)C6—C5—C4121.22 (11)
C1—N4—H4B120.8 (11)C7—C6—C5119.10 (12)
H4A—N4—H4B120.6 (18)C7—C6—H6120.4
N1—C1—N2125.95 (12)C5—C6—H6120.4
N1—C1—N4117.02 (13)C8—C7—C6118.56 (14)
N2—C1—N4117.03 (12)C8—C7—H7120.7
N1—C2—C3123.68 (13)C6—C7—H7120.7
N1—C2—H2118.2C9—C8—C7118.59 (14)
C3—C2—H2118.2C9—C8—H8120.7
C2—C3—C4116.43 (12)C7—C8—H8120.7
C2—C3—H3121.8N3—C9—C8124.21 (14)
C4—C3—H3121.8N3—C9—H9117.9
N2—C4—C3121.97 (12)C8—C9—H9117.9
N2—C4—C5116.73 (11)
C2—N1—C1—N20.6 (2)C9—N3—C5—C4179.77 (13)
C2—N1—C1—N4178.87 (13)N2—C4—C5—N3167.20 (12)
C4—N2—C1—N11.8 (2)C3—C4—C5—N312.78 (19)
C4—N2—C1—N4177.71 (12)N2—C4—C5—C612.77 (19)
C1—N1—C2—C30.8 (2)C3—C4—C5—C6167.24 (13)
N1—C2—C3—C40.9 (2)N3—C5—C6—C71.4 (2)
C1—N2—C4—C31.58 (19)C4—C5—C6—C7178.66 (12)
C1—N2—C4—C5178.40 (11)C5—C6—C7—C81.1 (2)
C2—C3—C4—N20.4 (2)C6—C7—C8—C90.2 (2)
C2—C3—C4—C5179.61 (13)C5—N3—C9—C81.2 (3)
C9—N3—C5—C60.2 (2)C7—C8—C9—N31.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···N1i0.91 (2)2.10 (2)3.0154 (19)175.8 (16)
Symmetry code: (i) x+1, y+2, z+1.
Molecular pairs and the interaction energies (kJ mol-1) obtained from the energy framework calculation for PPA top
ColourNSymmetry codeRElectron densityEeleEpolEdisErepEtot
i2x, y, z5.36HF/3-21G-3.2-1.8-35.317.8-21.8
ii2-x+1/2, y+1/2, -z+1/27.54HF/3-21G-3.4-1.4-16.212.6-8.7
iii2x, -y, z+1/26.88HF/3-21G-7.4-1.5-12.15.8-14.7
iv1-x+1/2, -y+1/2, -z8.07HF/3-21G-7.5-1.6-10.54.8-14.3
v1-x+1/2, -y+1/2, -z10.36HF/3-21G-0.5-0.8-8.95.0-5.0
vi1-x, -y, -z6.66HF/3-21G-2.8-1.2-24.68.7-18.8
vii1-x, y, -z+1/27.56HF/3-21G-4.3-1.1-7.92.4-10.3
viii2x, -y, z+1/25.82HF/3-21G-10.7-2.4-22.517.3-18.7
ix1-x, y, -z+1/29.55HF/3-21G2.7-0.8-4.51.0-1.0
x1-x, -y, -z9.39HF/3-21G-73.5-22.4-15.662.1-53.2
xi2x, -y, z+1/28.82HF/3-21G-4.0-0.5-5.52.5-7.3
Scale factors used to determine EtotEtot: Eele = 1.019, Epol = 0.651, Edis = 0.901 and Erep = 0.811. R is the distance between molecular centroids (Å). [Can a note be added about the colours?]
Vibrational assignments of PPA top
Assignations (PED %)6311G++(d,p) (cm-1) CalculatedExp FT–IR (cm-1)
τ NCCC (88)46-
τ CNCN (74)91-
β CCN (70)142-
τ CNCN (84)190-
τ CNCN (78)232-
ν CC (36) + β CCN (26)317-
τ HNCN (90)334-
β NCN (63)360-
τ CCCC (70)415-
τ CNCN (56)444-
β CCN (42) + τ HNCN (37)485-
τ CCNC (63)504-
τ HNCN (58) + β CCN (30)524-
β CNC (66)603-
β CCC (74)639650
β CNC (72)665-
τ CCNC (62)694-
τ HCCC (53) + β CNC (46) τ CNCC (25) + β CCN (18)764783
τ HCCC (53) + β CNC (46) + τ CNCC (25) + β CCN (18)764-
τ CNCN (52) + τ CNCC (16) + τ HCCC (15)811804
τ HCCN (43) + τ CNCN (27) + τ HCCC (10)825-
τ HCCN (38) + τ CCNC (12) + τ HCNC (11) + τ CNCN (11)877847
τ HCCC (79)929-
ν NC (67)945926
τ HCCC (70) + τ CCCC (10)989-
β CCN (18) + β HCNC (41)1008-
β CCN (13) + β HCNC (29)1008995
β CCC (55) + ν CC (21)1014-
τ HCCC (79) + τ CNCC (11)1023-
β HNC (34) + β CNC (13)1043-
ν CC (34) + β CCC (19) + β HCC (12)10681094
ν NC (24) + β HCN (17) + β HCC (13)11121103
β CNC (22) + β HCC (22) + ν CC (10)1122-
β HCC (31) + β HNC (21) + β CNC (16)1155-
ν CC (15) + β HCC (57)1172-
ν NC (70)12571211
ν NC (49) + ν NC (10)12881242
β HCN (44) + ν NC (17)13191302
β HCN (20) + ν CC (15) + β CCN (11)1325-
β HCN (33) + ν CC (12)13691342
β HCC (42)14611431
ν CC (21) + β HCC (15)1469-
ν CN (26) + β HCN (18) + δ HNH (13) + β CCN (13)14821464
β HCC (43) + ν CC (16)1508-
ν CC (37)15911545
ν CC (53)16121566
ν CC (44) + δ HNH (11)1621-
ν CC (36) + δ HNH (13)16291614
δ HNH (34) + ν NC (16)16431651
ν CH (95)3145-
ν CH (91)31463057
νas CH (79) + νs CH (18)31733079
νs CH (78) + νas CH (17)31933137
ν CH (99)3220-
ν CH (95)3239-
νs NH (100)36083296
νas NH (100)37363470
Notes: ν = stretching, β = in-plane bending, δ = scissoring, γ = out-of-plane bending, τ = torsion vibration, s = symmetric and as = asymmetric.
Theoretical spectrum of electronic absorption of PPA in the gas phase using TD-SCF B3LYP/6-311G++(d,p) top
Transitionλcalc (nm)λexp (nm)Oscillator strengthEHOMO (a.u.)ELUMO (a.u.)EHOMO-LUMO gap (a.u.)Energy gap (eV)
I3163230.0964-0.22922-0.065860.163364.4452
II2502420.3648-0.26322*-0.065860.197365.3704
III2322070.0295-0.26322*-0.0344**0.228816.2262
Notes: (*) HOMO-2; (**) LUMO-1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds