research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Polymorphism of the dinuclear CoIII–Schiff base complex [Co2(o-van-en)3]·4CH3CN (o-van-en is a salen-type ligand)

CROSSMARK_Color_square_no_text.svg

aDepartment of Inorganic Chemistry, Institute of Chemistry, P. J. Šafárik University in Košice, Moyzesova 11, Košice, SK-04154, Slovakia, bDepartment of Inorganic Chemistry, University of Zaragoza, Pedro Cerbuna 12, Zaragoza, E-50009, Spain, cAragón Materials Science Institute (ICMA), University of Zaragoza, Pedro Cerbuna 12, Zaragoza, E-50009, Spain, and dInstitute of Chemical Synthesis and Homogeneous Catalysis (ISQCH), University of Zaragoza, Pedro Cerbuna 12, Zaragoza, E-50009, Spain
*Correspondence e-mail: anna.vrablova@student.upjs.sk

Edited by A. R. Kennedy, University of Strathclyde, Scotland (Received 17 January 2019; accepted 1 March 2019; online 20 March 2019)

Reactions of Co(OH)2 with the Schiff base bis­(2-hy­droxy-3-meth­oxy­benzyl­idene)ethyl­enedi­amine, denoted H2(o-van-en), under different conditions yielded the previously reported complex aqua­[bis­(3-meth­oxy-2-oxido­benzyl­idene)ethyl­enedi­amine]­cobalt(II), [Co(C18H18N2O4)(H2O)], 1, under anaerobic conditions and two polymorphs of [μ-bis­(3-meth­oxy-2-oxido­benzyl­idene)ethyl­enedi­amine]­bis­{[bis­(3-meth­oxy-2-oxido­benzyl­idene)ethyl­enedi­amine]­cobalt(III)} aceto­nitrile tetra­solvate, [Co2(C18H18N2O4)3]·4CH3CN, i.e. monoclinic 2 and triclinic 3, in the presence of air. Both novel polymorphs were chemically and spectroscopically characterized. Their crystal structures are built up of centrosymmetric dinuclear [Co2(o-van-en)3] complex mol­ecules, in which each CoIII atom is coordinated by one tetra­dentate dianionic o-van-en ligand in an uncommon bent fashion. The pseudo-­octa­hedral coordination of the CoIII atom is completed by one phenolate O and one amidic N atom of the same arm of the bridging o-van-en ligand. In addition, the asymmetric units of both polymorphs contain two aceto­nitrile solvent mol­ecules. The polymorphs differ in the packing orders of the dinuclear [Co2(o-van-en)3] complex mol­ecules, i.e. alternating ABABAB in 2 and AAA in 3. In addition, differences in the conformations, the positions of the aceto­nitrile solvent mol­ecules and the pattern of inter­molecular inter­actions were observed. Hirshfeld surface analysis permits a qualitative inspection of the differences in the inter­molecular space in the two polymorphs. A knowledge-based study employing Full Inter­action Maps was used to elucidate possible reasons for the polymorphism.

1. Introduction

Polymorphism in the crystalline state – `the ability of a compound to crystallize in more than one crystal structure' (Cruz-Cabeza et al., 2015[Cruz-Cabeza, A. J., Reutzel-Edens, S. M. & Bernstein, J. (2015). Chem. Soc. Rev. 44, 8619-8635.]) – is important from a scientific, as well as from an industrial, point of view as sometimes subtle differences in the crystal structures of the polymorphs may lead to substanti­ally different properties. Such behaviour has been observed in the case of nonlinear optical materials (Munshi et al., 2008[Munshi, P., Skelton, B. W., McKinnon, J. J. & Spackman, M. A. (2008). CrystEngComm, 10, 197-206.]), single mol­ecule magnets (Pavlov et al., 2016[Pavlov, A. A., Nelyubina, Y. V., Kats, S. V., Penkova, L. V., Efimov, N. N., Dmitrienko, O. A., Vologzhanina, A. V., Belov, A. S., Voloshin, Y. Z. & Novikov, V. V. (2016). J. Phys. Chem. Lett. 7, 4111-4116.]), materials with spin-crossover (Tao et al., 2012[Tao, J., Wei, R. J., Huang, R. B. & Zheng, L. S. (2012). Chem. Soc. Rev. 41, 703-737.]) or gas-absorption properties (Pal et al., 2016[Pal, A., Chand, S., Senthilkumar, S., Neogi, S. & Das, M. C. (2016). CrystEngComm, 18, 4323-4335.]), or the properties of pharmaceutically active materials (Covaci et al., 2017[Covaci, O. I., Mitran, R. A., Buhalteanu, L., Dumitrescu, D. G., Shova, S. & Manta, C. (2017). CrystEngComm, 19, 3584-3591.]; Rodríguez-Spong et al., 2004[Rodríguez-Spong, B., Price, C. P., Jayasankar, A., Matzger, A. J. & Rodríguez-Hornedo, N. (2004). Adv. Drug Deliv. Rev. 56, 241-274.]; Potticary et al., 2016[Potticary, J., Terry, L. R., Bell, C., Papanikolopoulos, A. N., Christianen, P. C. M., Engelkamp, H., Collins, A. M., Fontanesi, C., Kociok-Koehn, G., Crampin, S., Da Como, E. & Hall, S. R. (2016). Nat. Commun. 7, article No. 11555.]), to mention a few examples. Recently, progress in the prediction of the crystal structures of polymorphs using solid-state density functional theory (DFT) simulations has been reported (Hasnip et al., 2014[Hasnip, P. J., Refson, K., Probert, M. I. J., Yates, J. R., Clark, S. J. & Pickard, C. J. (2014). Philos. Trans. Roy. Soc. A, 372, 20130270.]).

Schiff bases in their deprotonated forms are widely used ligands as they may exhibit several potential coordination sites, which allows them to bond to one or more central metal atoms (Rezaeivala & Keypour, 2014[Rezaeivala, M. & Keypour, H. (2014). Coord. Chem. Rev. 280, 203-253.]; Vigato & Tamburini, 2004[Vigato, P. A. & Tamburini, S. (2004). Coord. Chem. Rev. 248, 1717-2128.]; Andruh, 2015[Andruh, M. (2015). Dalton Trans. 44, 16633-16653.]). Reaction of ethane-1,2-di­amine with o-vanillin in a 1:2 molar ratio results in a Schiff base of the salen type, namely bis­(2-hy­droxy-3-meth­oxy­benzyl­idene)ethyl­ene­di­amine, denoted H2(o-van-en) (see Scheme 1[link]). At present, more than 300 crystal structures, among them numerous complexes with transition metals and lanthanides (or their combinations), with this Schiff base are held in the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). Surprisingly, we find only one case for which polymorphism was reported, namely the copper complex [Cu(o-van-en)(H2O)]. One polymorph of this compound [CSD refcodes WICBIU (Saha et al., 2007[Saha, P. K., Dutta, B., Jana, S., Bera, R., Saha, S., Okamoto, K. & Koner, S. (2007). Polyhedron, 26, 563-571.]) and WICBIU01 (Odabaşoğlu et al., 2007[Odabaşoğlu, M., Arslan, F., Ölmez, H. & Büyükgüngör, O. (2007). Dyes Pigments, 75, 507-515.])] crystallizes in the ortho­rhom­bic space group Pnma with Z′ = 1, while the second crystallizes in the noncentrosymmetric ortho­rhom­bic space group Pna21 with Z′ = 3 (refcode WICBIU02; Zhou et al., 2015[Zhou, H., Chen, C., Liu, Y. & Shen, X. (2015). Inorg. Chim. Acta, 437, 188-194.]). It should be noted that the H2(o-van-en) Schiff base itself forms two known polymorphs whose formation can be considered as a consequence of two possible conformations of the ethane-1,2-di­amine part of the mol­ecule. Mol­ecules of H2(o-van-en) with an anti conformation of the ethane-1,2-di­amine fragment (VOJSUH; Cunningham et al., 2004[Cunningham, D., Gilligan, K., Hannon, M., Kelly, C., McArdle, P. & O'Malley, A. (2004). Organometallics, 23, 984-994.]) crystallize in the monoclinic space group P21/n (Cunningham et al., 2004[Cunningham, D., Gilligan, K., Hannon, M., Kelly, C., McArdle, P. & O'Malley, A. (2004). Organometallics, 23, 984-994.]). In contrast, the polymorph crystallizing in the monoclinic space group Pc contains H2(o-van-en) mol­ecules with a syn arrangement of the ethane-1,2-di­amine fragment [refcodes VOJSUI (Mo et al., 1990[Mo, Y., Yang, G., Zhao, G. & Li, B. (1990). Jilin Daxue Ziran Kex. Xue. (Chin.) (Acta Sci. Nat. Univ. Jil.), 93-1.]) and VOJSUI02 (Correia et al., 2005[Correia, I., Pessoa, J. C., Duarte, M. T., da Piedade, M. F. M., Jackush, T. C. A., Kiss, T., Castro, M. M. C. A., Geraldes, C. F. G. C. & Avecilla, F. (2005). Eur. J. Inorg. Chem. pp. 732-744.])].

[Scheme 1]

Within our broader study of CoII complexes as magnetically active materials (Burzurí et al., 2011[Burzurí, E., Campo, J., Falvello, L. R., Forcén-Vázquez, E., Luis, F., Mayoral, I., Palacio, F., Sáenz de Pipaón, C. & Tomás, M. (2011). Chem. Eur. J. 17, 2818-2822.]; Smolko et al., 2016[Smolko, L., Černák, J., Kuchár, J., Miklovič, J. & Boča, R. (2016). J. Mol. Struct. 1119, 437-441.]), we have undertaken the study of the system formed by cobalt(II) hydroxide with the salen-type ligand o-van-en. From this system, depending on the experimental conditions, we have isolated three complexes, namely the previously reported [Co(o-van-en)(H2O)] (1) and two novel polymorphs of [Co2(o-van-en)3]·4CH3CN (2 and 3; see Scheme 2[link]). The synthesis and crystal structure of 1 have already been reported (Jiang et al., 2007[Jiang, G.-B., Zhang, S.-H. & Zeng, M.-H. (2007). Acta Cryst. E63, m2383.]). We report here a modified synthetic procedure leading to 1, as well as the syntheses, crystal structures and comparisons of polymorphs 2 and 3. We note that the analogous complex [Co2(o-van-en)3]·2Me2SO·2H2O with dimethyl sulfoxide and water solvent mol­ecules (whose content was not fully stoichiometric), was previously prepared and structurally characterized from photographic data (Calligaris et al., 1970[Calligaris, M., Nardin, G. & Randaccio, L. (1970). J. Chem. Soc. D, 17, 1079-1080.]).

In seeking the factors responsible for polymorphism in [Co2(o-van-en)3]·4CH3CN, we undertook a study of the Full Inter­action Maps (FIMs) for the two structures (Wood et al., 2013[Wood, P. A., Olsson, T. S. G., Cole, J. C., Cottrell, S. J., Feeder, N., Galek, P. T. A., Groom, C. R. & Pidcock, E. (2013). CrystEngComm, 15, 65-72.]). These permitted what we believe is a plausible explanation for the origin of the polymorphism in this compound.

[Scheme 2]

2. Experimental

2.1. Materials

H2(o-van-en) was synthesized using a slight modification of the procedure described by Ghose (1983[Ghose, B. N. (1983). Rev. Port. Quim. 28, 147-150.], 1984[Ghose, B. N. (1984). J. Chem. Eng. Data, 29, 237.]), by the reaction of ethane-1,2-di­amine and o-vanillin in a 1:2 molar ratio under reflux conditions in ethanol. The remaining chemicals were used as received from commercial sources.

2.2. Methods

Elemental analyses (C, H and N) were performed on a PerkinElmer 2400 Series II CHNS/O analyser. IR spectra were recorded on a PerkinElmer Spectrum 100 CsI DTGS FT–IR spectrometer with a UATR 1 bounce-KRS-5 in the range 4000–300 cm−1 (UATR is a universal attenuated total reflectance accessory and KRS-5 is thallium bromo­iodide). The X-ray powder diffraction pattern of 1 was measured on a Rigaku D-Max/2500 diffractometer with a rotating anode and an RINT2000 vertical goniometer in the 2θ range 2.5–40° using Cu Kα radiation (λ = 1.54178 Å) and a step size of 0.03°; the model powder diffraction pattern was calculated using the program Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

For calculations of the Hirshfeld surfaces, the program CrystalExplorer was used (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]; Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]). Full Inter­action Maps (FIMs) (Wood et al., 2013[Wood, P. A., Olsson, T. S. G., Cole, J. C., Cottrell, S. J., Feeder, N., Galek, P. T. A., Groom, C. R. & Pidcock, E. (2013). CrystEngComm, 15, 65-72.]) were calculated using the program Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

2.3. Synthesis and crystallization

2.3.1. [Co(o-van-en)(H2O)], 1

Solid Co(OH)2 (0.07 g, 0.76 mmol) was added to a de­oxy­genated water suspension of H2(o-van-en) (0.25 g, 0.76 mmol, 35 ml) under an inert argon atmosphere at room temperature. An orange solid appeared after a few minutes of stirring. The mixture was stirred overnight and the final dark-orange microcrystalline product 1 was filtered off, washed with water and dried in air (yield 80%, based on Co). Elemental analysis (%) calculated for C18H20CoN2O5: C 53.61, H 5.00, N 6.95; found: C 53.80, H 4.88, N 6.87. IR (ν/cm−1): 3315 (b), 3055 (w), 2899 (w), 2827 (w), 1651 (m), 1625 (m), 1600 (m), 1545 (m), 1468 (m), 1438 (s), 1391 (m), 1310 (m), 1239 (s), 1213 (s), 1169 (m), 1078 (m), 980 (m), 967 (m), 853 (m), 743 (m), 723 (s), 640 (m), 421 (m).

2.3.2. Monoclinic [Co2(o-van-en)3]·4CH3CN (Form I), 2

The microcrystalline product 1 was dissolved in aceto­nitrile in air with stirring at room temperature and after dissolution was left aside for crystallization. Within a few hours, the resulting solution had changed colour from dark red to brown–black. Black block-shaped crystals of 2 were obtained after a few days. As the crystals were unstable when separated from the mother liquor, presumably due to loss of solvent mol­ecules, they were mounted for diffraction data collection immediately after removal from the mother liquor.

2.3.3. Triclinic [Co2(o-van-en)3]·4CH3CN (Form II), 3

Solid Co(OH)2 (0.07 g, 0.76 mmol) was added to a water suspension of H2(o-van-en) (0.25 g, 0.76 mmol, 20 ml) at room temperature in air and stirred overnight until the microcrystalline solid had changed colour from yellow–brown to black. The product thus formed was filtered off, dried in air and recrystallized from hot aceto­nitrile solution (∼60–70 °C). Black block-shaped crystals of 3 appeared after a few days. The crystals of 3 were not stable in air, so they were mounted for diffraction data collection immediately after removal from the aceto­nitrile solution.

2.4. Refinement

Crystal data and global indicators from the structure refinements are collected in Table 1[link]. For polymorph 2, nonmethyl H atoms were located in a difference map and refined freely with individual variable isotropic displacement parameters. Methyl H atoms were initially placed at positions derived from difference electron-density maps, with C—H = 0.98 Å, and were refined as riders, with Uiso(H) = 1.5Ueq of their respective bonding partners; the methyl groups were allowed to rotate but not tilt. The disordered methyl group at C1 was split into two parts, both with half occupancy.

Table 1
Experimental details

  2 (Form I) 3 (Form II)
Crystal data
Chemical formula [Co2(C18H18N2O4)3]·4C2H3N [Co2(C18H18N2O4)3]·4C2H3N
Mr 1261.10 1261.10
Crystal system, space group Monoclinic, P21/c Triclinic, P[\overline{1}]
Temperature (K) 100 100
a, b, c (Å) 12.4355 (3), 21.6501 (4), 11.9462 (3) 10.4971 (5), 11.6195 (5), 13.7158 (6)
α, β, γ (°) 90, 115.364 (4), 90 70.471 (4), 71.667 (4), 72.466 (4)
V3) 2906.25 (15) 1460.26 (13)
Z 2 1
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.64 0.64
Crystal size (mm) 0.19 × 0.17 × 0.04 0.21 × 0.14 × 0.05
 
Data collection
Diffractometer Rigaku Xcalibur Sapphire3 Rigaku Xcalibur Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.925, 1.000 0.835, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 24772, 6530, 4887 20710, 6041, 5192
Rint 0.061 0.039
(sin θ/λ)max−1) 0.650 0.628
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.106, 1.02 0.037, 0.094, 1.04
No. of reflections 6530 6041
No. of parameters 475 421
No. of restraints 0 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.54, −0.39 0.89, −0.35
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PARST (Nardelli, 1983[Nardelli, M. (1983). Comput. Chem. 7, 95-98.]) and CrystalExplorer (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]).

In polymorph 3, the H atoms bonded to imine atoms C8, C11 and C26 were found in a difference map and refined freely. The remaining nonmethyl H atoms, as well as the methyl H atoms of the complex (at C1, C18 and C19), were placed at calculated positions (C—H = 0.99, 0.98 and 0.95 Å for methyl­ene, methyl and aromatic H atoms, respectively). The methyl H atoms of the CH3CN mol­ecules were placed at positions derived from a difference map and refined as riders which were permitted to rotate but not tilt. The disordered MeCN mol­ecule was split into two parts with occupancies constrained to sum to unity and with C—C and C—N bonds restrained to be the same lengths in both congeners. For the H atoms, Uiso values were set at xUeq of their respective bonding partners, with x = 1.2 for nonmethyl H atoms and the methyl group at C28, and x = 1.5 for the remaining methyl groups.

3. Results and discussion

3.1. Syntheses and identification

Jiang et al. (2007[Jiang, G.-B., Zhang, S.-H. & Zeng, M.-H. (2007). Acta Cryst. E63, m2383.]) reported the crystal structure and the in situ solvothermal synthesis of the complex [Co(o-van-en)(H2O)], 1, starting from 2-hy­droxy-3-meth­oxy­benzaldehyde, ethane-1,2-di­amine and cobalt(II) nitrate. We have prepared the same product in microcrystalline form by direct reaction of cobalt(II) hydroxide with the Schiff base H2(o-van-en) under mild conditions and an inert argon atmosphere. Le Bail refinement (Fig. S1 in the supporting information) of the measured X-ray diffraction pattern of 1 using the program JANA2006 (Le Bail et al., 1988[Le Bail, A., Duroy, H. & Fourquet, J. L. (1988). Mater. Res. Bull. 23, 447-452.]; Petříček et al., 2014[Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]) corroborated the phase purity and the identity of our product 1 with that reported by Jiang et al. (2007[Jiang, G.-B., Zhang, S.-H. & Zeng, M.-H. (2007). Acta Cryst. E63, m2383.]). In addition, the identity and the phase purity of 1 were further confirmed by the results of the elemental analysis.

An attempt to recrystallize microcrystalline product 1 from aceto­nitrile at room temperature in the presence of air led to oxidation of CoII to CoIII and the formation of the monoclinic form (Form I, 2) of [Co2(o-van-en)3]·4CH3CN. Direct reaction of the Schiff base with Co(OH)2 in the presence of air led to a black microcrystalline crude product, clearly indicating oxidation of the starting CoII to CoIII. When the resulting crude product was recrystallized from hot aceto­nitrile, crystals of the triclinic form (Form II, 3) of [Co2(o-van-en)3]·4CH3CN separated out. We note that Calligaris et al. (1970[Calligaris, M., Nardin, G. & Randaccio, L. (1970). J. Chem. Soc. D, 17, 1079-1080.]) prepared single crystals of the analogous complex [Co2(o-van-en)3]·2Me2SO·2H2O with dimethyl sulfoxide and water solvent mol­ecules starting from the CoII complex 1.

3.2. Crystal structures

The mol­ecular and crystal structure of 1 was reported by Jiang et al. (2007[Jiang, G.-B., Zhang, S.-H. & Zeng, M.-H. (2007). Acta Cryst. E63, m2383.]). The central CoII atom in 1 is penta­coordinate, with the donor atoms from the Schiff base occupying the basal plane of the square pyramid, while the apical position is occupied by an aqua ligand (Fig. S2 in the supporting information).

Form I of [Co2(o-van-en)3]·4CH3CN (polymorph 2) crystallizes in the monoclinic space group P21/c, while Form II (polymorph 3) crystallizes in the triclinic space group P[\overline{1}]. The crystal structures of both 2 and 3 are built up of centrosymmetric dinuclear [Co2(o-van-en)3] complex mol­ecules; the triclinic form contains one dinuclear centrosymmetric mol­ecule in the unit cell (Z = 1), while for the monoclinic form, Z = 2 (Figs. 1[link] and 2[link], respectively). In both polymorphs, the CoIII atoms are coordinated by one tetra­dentate o-van-en ligand in an uncommon bent fashion. A similar bent coordination was reported for [Fe2(o-van-en)3]·CH2Cl2·0.5H2O (Costes et al., 2010[Costes, J.-P., Dahan, F., Dumestre, F. & Tuchagues, J. (2010). Polyhedron, 29, 787-790.]). The pseudo-­octa­hedral coordination environments of the CoIII atoms are completed by one phenolate O and one imine N atom placed in cis positons and originating from the same arm of the bridging o-van-en ligand. In addition, the asymmetric units of both polymorphs contain two aceto­nitrile (MeCN) solvent mol­ecules. The crystal structure of [Co2(o-van-en)3]·2Me2SO·2H2O (CSD refcode COMSAL; Calligaris et al., 1970[Calligaris, M., Nardin, G. & Randaccio, L. (1970). J. Chem. Soc. D, 17, 1079-1080.]) contains the same complex mol­ecule; the atomic coordinates are not available for COMSAL, obviating a closer comparison with our two polymorphs.

[Figure 1]
Figure 1
The asymmetric unit of 2, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Half of the dinuclear mol­ecule (without H atoms) is depicted for the sake of clarity.
[Figure 2]
Figure 2
The asymmetric unit of 3, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Only the half of the dinuclear mol­ecule present in the asymmetric unit is drawn (without H atoms) for the sake of clarity.

The Co—O and Co—N bond lengths in 2 and 3 (see Table 2[link]) are in line with those found for similar CoIII complexes, e.g. in [Co(salen)(acac)]·1.5H2O (acac is acetyl acetate; Bailey et al., 1972[Bailey, N. A., Higson, B. M. & McKenzie, E. D. (1972). J. Chem. Soc. Dalton Trans. pp. 503-508.]) and [Co(salen)(acac)]·0.7H2O (Calligaris et al., 1972[Calligaris, M., Manzini, G., Nardin, G. & Randaccio, L. (1972). J. Chem. Soc. Dalton Trans. pp. 543-547.]). The values found are, as expected, somewhat shorter than those reported for CoII complex 1, in line with the smaller ionic radius of the CoIII atom (Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]).

Table 2
Selected bond lengths (Å) for 2 and 3

  2 3
Co1—O3 1.8915 (16) 1.8966 (13)
Co1—O2 1.9073 (17) 1.9002 (13)
Co1—O6 1.9093 (16) 1.9118 (13)
Co1—N1 1.8894 (19) 1.8993 (16)
Co1—N2 1.9041 (19) 1.9133 (16)
Co1—N3 1.9445 (19) 1.9271 (16)

The dinuclear complex mol­ecules in the two polymorphs display small but significant differences with respect to their geometrical parameters, and these can be clearly seen in Fig. 3[link]. For example, the torsion angle O3—Co1—N2—C11 in Form I exhibits a value of 2.1 (2)°, in contrast to the corresponding value of 12.06 (19)° in Form II; as a consequence, the C12–C17 aromatic rings form different angles with the Co1/O3/N3/N1/N2 equatorial plane in the respective polymorphs, i.e. 6.89° in 2 versus 15.70° in 3 (Fig. S3 in the supporting information). As for the meth­oxy groups within the ligand, the most striking difference between Forms I and II is that in Form I, the O1 meth­oxy group is positionally disordered two ways, with occupancies set to half (Fig. 1[link]). As for the remaining two meth­oxy groups, i.e. involving atoms O4 and O5, those with O5 display a small conformational difference in the two polymorphs, as can be seen by a comparison of the respective C19—O5—C20—C21 torsion angles, exhibiting values of 7.2 (4) (Form I) and 13.44 (1)° (Form II).

[Figure 3]
Figure 3
Wire models of the mol­ecular structures of polymorphs 2 (red) and 3 (green). The structures are superimposed in such a way that the positions of the central Co atoms, as well as the donor atoms, are overlapped as nearly as possible. Only the asymmetric part of the dinuclear complex mol­ecule is shown for clarity.

Packing diagrams for polymorphs 2 and 3 are shown in Fig. 4[link], in which the dinuclear [Co2(o-van-en)3] complex mol­ecules are represented by CoO3N3 octa­hedra connected by four-atom centrosymmetric N3—C27—C27i—N3i bridges. The higher symmetry of Form I (monoclinic) coincides with a doubling of its unit-cell volume with respect to that of triclinic Form II. Moreover, the 21 screw axis parallel to b in Form I generates an alternating ABABAB stacking pattern, in contrast to Form II, in which the dinuclear units are arranged in a simple AAA manner. We note also that the MeCN solvent mol­ecules occupy slightly different positions relative to the main mol­ecules in the two polymorphs.

[Figure 4]
Figure 4
Packing in the crystal structures of (a) 2 and (b) 3, each viewed along its c axis. For clarity, only coordination polyhedra, bridges linking the polyhedra and aceto­nitrile solvent mol­ecules are shown.

In what follows, we find it convenient to distinguish among hydrogen bonds of differing strengths and to treat these as distinct from contacts that may be adventitious and of questionable structure-directing capacity. For the purposes of this discussion, hydrogen bonds in which O and/or N atoms are both donors and acceptors will be called classical hydrogen bonds, those with imino or aromatic C—H groups as donors will be called nonclassical hydrogen bonds or weak hydrogen bonds and contacts involving methyl or methyl­ene in donor roles will be called simply contacts, with no attempt at a more nuanced discrimination between what can and cannot be called a hydrogen bond. We will use a nonrigorous criterion, namely the default limits used by the program PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), to draw a convenient line between what we do and do not denote as hydrogen bonds – again, for the purposes of this discussion.

In both polymorphs, there are no classical hydrogen bonds due to the lack of suitable donors after deprotonation of the hydroxide groups. Surprisingly, among the weak hydrogen-bonding inter­actions of the =C—H⋯A or Car—H⋯A types (A = O or N), there is only one such hydrogen bond in each of the polymorphs, in both cases inter­molecular.

In polymorph 2 (Form I), the only weak hydrogen-bonding inter­action is C8—H8⋯O5iii with participation of the imine H atom (see Table 3[link] for symmetry code). This inter­action links the complex mol­ecules into supra­molecular layers in the bc plane (Fig. 5[link]). The C11—H11 bond of the other imine group is directed toward the π-system of the C2iii–C7iii aromatic ring; this additional weak C—H⋯π inter­action has an H⋯Cg distance of 2.91 (3) Å and a γ angle between the Cg—H vector and ring normal of 12.41°. As can be seen from Fig. 5[link], this inter­action serves to reinforce the hydrogen-bonding inter­action mentioned above. We note that additional inter­molecular contacts of the C—H⋯X (X = N and O) type, with H atoms from the methoxy methyl group (C1B) or the MeCN solvent mol­ecules (C28 and C30) can also be considered to contribute to the inter­molecular cohesion (Table 3[link]) and likewise for close contacts of the C—H⋯π type with participation of (C10—)H10 methyl­ene and (C28—)H28A methyl H atoms (Table S1 in the supporting information). In Form I, there is no classical intra­molecular hydrogen bonding, unless one considers close contacts of the C—H⋯O type with H atoms from a meth­oxy group (disordered C1 atom in position B) or methyl­ene groups (C9 and C27; Table 3[link] and Fig. S4 in the supporting information) to be significant; these may help to stabilize the conformation of the complex mol­ecule.

Table 3
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C1B—H1BA⋯N4ii 0.98 2.59 3.333 (10) 133
C1B—H1BB⋯O2 0.98 2.44 2.985 (8) 115
C8—H8⋯O5iii 0.96 (3) 2.34 (3) 3.119 (3) 138 (2)
C9—H9B⋯O6 1.00 (3) 2.51 (2) 2.924 (3) 104.6 (17)
C27—H27A⋯O2 0.94 (2) 2.45 (2) 3.042 (3) 121.1 (18)
C27—H27B⋯O3i 0.93 (3) 2.53 (2) 3.180 (3) 127.5 (18)
C28ii—H28Cii⋯O1 0.98 2.52 3.266 (5) 133
C30—H30C⋯O3 0.98 2.52 3.188 (3) 126
C30—H30C⋯O6 0.98 2.34 3.245 (3) 153
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 5]
Figure 5
The supra­molecular layer formed by weak inter­molecular C—H⋯O hydrogen bonds (C8—H8⋯O5iii; orange dashed lines) and C—H⋯π inter­actions (C11iii—H11iiiCg1; blue dashed line) in 2. The view is in the bc plane. Cg1 represents the centre of gravity of the C2–C7 aromatic ring. [Symmetry code: (iii) x, −y + [{1\over 2}], z + [{1\over 2}].]

Similarly, in Form II, only one nonclassical hydrogen bond of the Car—H⋯N type, namely C5—H5⋯N5Biv is present (Table 4[link] and Fig. 6[link]) and this links the complex mol­ecules with the disordered MeCN solvent mol­ecule in the more populated position (N5B). As in Form I, there is one weak C—H⋯π inter­action in which are involved the H21 atom from the aromatic ring as donor and the π-system of the C12v–C17v aromatic ring as acceptor; the H⋯Cg distance is 2.64 Å and the γ angle between the Cg—H vector and the ring normal is 8.82°. This inter­action links the complex mol­ecules into supra­molecular chains running along the a axis (Fig. 6[link]). The crystal packing is also stabilized by additional contacts of the C—H⋯X (X = O and N) and C—H⋯π types coming from both MeCN solvent mol­ecules and involving their methyl groups (Table 4[link]) and the C9—H9A methyl­ene group near the C20iv–C25iv aromatic ring (Table S2 in the supporting information). As for the intra­molecular inter­actions, these include only contacts of the C—H⋯O type involving H atoms from methyl­ene groups of the ligand (Table 4[link] and Fig. S5 in the supporting information).

Table 4
Hydrogen-bond geometry (Å, °) for 3[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯N5Biv 0.95 2.57 3.454 (19) 156
C9—H9B⋯O6 0.99 2.50 2.955 (2) 107
C27—H27A⋯O3i 0.99 2.50 3.148 (2) 123
C27—H27A⋯O4i 0.99 2.56 3.463 (2) 151
C27—H27B⋯O2 0.99 2.40 2.980 (2) 117
C28—H28A⋯O6 0.98 2.29 3.256 (3) 169
C30—H30D⋯N4 0.98 2.56 3.451 (5) 151
Symmetry codes: (i) -x+1, -y+1, -z+1; (iv) -x+2, -y, -z+1.
[Figure 6]
Figure 6
Packing mediated by the C5—H5⋯N5Biv hydrogen bond (orange dashed line) and the C21ar—H21⋯Cg2v inter­action (blue dashed line) in 3. Cg2 represents the centre of gravity of the C12–C17 aromatic ring. [Symmetry codes: (iv) −x + 2, −y, −z + 1; (v) x + 1, y, z.]

With the aim of elucidating the factors responsible for the polymorphism of this system, we examined the packing patterns of structures 2 and 3 further using Hirshfeld surfaces (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and Full Inter­action Maps (FIMs; Wood et al., 2013[Wood, P. A., Olsson, T. S. G., Cole, J. C., Cottrell, S. J., Feeder, N., Galek, P. T. A., Groom, C. R. & Pidcock, E. (2013). CrystEngComm, 15, 65-72.]).

The Hirshfeld surfaces for polymorphs 2 and 3 (Figs. 7[link] and 8[link], respectively) provide a concise visual indication that the inter­molecular inter­actions are different in the two structures. In both cases, the structures suffer minor disorder, which complicates the preparation and inter­pretation of the Hirshfeld surfaces and fingerprint plots. This arises because the simultaneous presence of two disorder groups of the same disorder assembly will generate the appearance of artificial and impossibly short contacts in the Hirshfeld surfaces and fingerprint plots. At the same time, these tools do permit further discussion of the hydrogen bonds and other contacts. A full description and inter­pretation of the plots is given in the supporting information. We provide here only the aspects relevant to the present discussion.

[Figure 7]
Figure 7
Hirshfeld surface of the dinuclear complex mol­ecule of 2 plotted over dnorm (normalized contact distance) from −0.4000 to 1.5000 a.u., indicating the complex mol­ecule with the disordered C1B methyl group in position B. The MeCN solvent mol­ecules are displayed in green. Close contacts (O⋯H ≤ 2.60 Å and N⋯H ≤ 2.63 Å) are shown as red dashed lines. Neighbouring mol­ecules are drawn using wire models in different colours in order to give a better view of the contacts.
[Figure 8]
Figure 8
Hirshfeld surface diagram of the dinuclear complex mol­ecule of 3 plotted over dnorm (normalized contact distance) from −0.4000 to 1.5000 a.u., indicating the disordered MeCN mol­ecule in position B. The MeCN solvent mol­ecules are displayed in green. Neighbouring complex mol­ecules are shown in different colours using a wire model. Close contacts are displayed as red dashed lines, i.e. O⋯H ≤ 2.60 Å and N⋯H ≤ 2.63 Å.

Fig. 7[link] shows the Hirshfeld surface for one of the disordered congeners from structure 2 (for the second disordered congener, see Fig. S6 in the supporting information), for which no impossibly short contacts are generated. Fig. 8[link] shows an analogous plot for structure 3 (Fig. S7 gives the analogous plot for the second disordered congener of 3). The distributions of favourable structure-stabilizing contacts (red areas) in the two plots give a clear qualitative indication that the inter­molecular spaces in the two structures are organized in different fashions. This does not give us a clear indication of the origins of the polymorphism. To explore that question, we undertook an examination of FIMs.

The FIM (Wood et al., 2013[Wood, P. A., Olsson, T. S. G., Cole, J. C., Cottrell, S. J., Feeder, N., Galek, P. T. A., Groom, C. R. & Pidcock, E. (2013). CrystEngComm, 15, 65-72.]) is a knowledge-based tool that provides a visual map of the frequencies with which the chemical fragments or functional groups in a given structure have been observed to inter­act with different types of neighbours – for example, with hydrogen-bond donors or acceptors. The map is assembled using the crystal structure information held in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), which as of this writing is approaching one million structures. We constructed the FIMs for structures 2 and 3 (Forms I and II, respectively) to see if indeed more than one possible favourable donor–acceptor set could be identified. This would indicate that more than one arrangement of mol­ecules in a crystal would produce stabilizing inter­actions.

The deprotonated H2(o-van-en) mol­ecule contains two potential donor sites at imine C atoms (Scheme 3[link], red arrows) and six acceptor sites (Scheme 3, blue arrows). Only two of the acceptor sites, namely the meth­oxy O atoms, are good candidates for inter­molecular inter­actions, since the N atoms of the imine groups and the O atoms of the deprotonated hy­droxy groups are occupied in coordination to the central CoIII atom.

For the FIM of polymorph 2, we used only one disordered position of the meth­oxy group (atoms C1B, H1BA, H1BB and H1BC, with site-occupancy factors of 50%). The FIM displays four strong red (hydrogen-bond acceptor) regions, two of them symmetry independent (Fig. 9[link]). They represent hydro­gen-bond acceptors in the vicinity of the imine C—H group of the distal ligand. Furthermore, we observe a weak blue region near the potential acceptor site at meth­oxy atom O1 (circled in Fig. 9[link]). The O atom of this orientation of the meth­oxy group is more exposed on the surface of the complex mol­ecule, which is also reflected on the corresponding FIM (Fig. 9[link]).

[Scheme 3]
[Figure 9]
Figure 9
The FIM for complex mol­ecules of 2. Hydrogen-bond-donor regions are represented in blue and acceptor regions are represented in red. Dots, wireframe and solid regions represent frequencies of ×2, ×4 and ×6 those expected for a random distribution of contacts.

In polymorph 2 (Form I), the acceptor region near the donor C11—H11 imine group, pictured in the FIM as a red region, is occupied by the electron density of the π-system of the C2iii–C7iii aromatic ring, and this contact, as described above, can be considered to be a weak C—H⋯π inter­action [H⋯Cg = 2.91 (3) Å and γ angle between Cg—H vector and ring normal of 12.41°; left circle in Fig. 10[link]]. The acceptor region for the C8—H8 imine group is not occupied by any acceptor group (right circle in Fig. 10[link]).

[Figure 10]
Figure 10
The environments of the two symmetrically independent donor regions in the FIM of polymorph 2. Only the ×4 and ×6 levels are shown.

As seen for polymorph 2 (Form I), the FIM of the main mol­ecule in polymorph 3 (Form II) shows four regions where the presence of hydrogen-bond acceptors is favoured, as observed in previously determined crystal structures (red regions in Fig. 11[link], two per asymmetric unit), reflecting the donor capabilities of the imine C8—H8 and C11—H11 groups and their symmetry relatives. The only possible acceptor sites (meth­oxy and oxy groups) are oriented toward the inter­ior of the complex mol­ecule, mostly forming intra­molecular inter­actions, so that the FIM does not show any potential donor region.

[Figure 11]
Figure 11
The FIM for complex mol­ecules of polymorph 3. Hydrogen-bond-donor regions are represented in blue and acceptor regions are represented in red. Dots, wireframe and solid regions represent frequencies of ×2, ×4 and ×6 those expected for a random distribution of contacts.

In polymorph 3, the donor C8—H8 imine group is involved in a rather weak inter­molecular close contact (C8—H8⋯O5iv; left circled inter­action in Fig. 12[link]), beyond the default limits of PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), and similarly, the donor site at the C11—H11 imine group is involved in a weak C—H⋯π inter­action (right circled inter­action in Fig. 12[link]), also beyond the conventional limits of most programs. It is suggested that these inter­actions, weak though they be, act as directors for the packing of complex mol­ecules in the structure of 3.

[Figure 12]
Figure 12
The occupation of two symmetrically independent donor regions in the FIM of polymorph 3. Only ×4 and ×6 levels are shown.

In general, in 2 and 3, the strongest regions of inter­molecular inter­actions in the FIMs are occupied by symmetry-related mol­ecules mediated by C—H⋯O-type hydrogen bonds and C—H⋯π inter­actions – or not occupied at all. None of the inter­actions mentioned lies exactly in the inter­action region (the acceptor is too far away). MeCN mol­ecules do not enter the donor or acceptor regions of the complex mol­ecules in either of these two polymorphs.

The FIMs suggest that this mol­ecule does not possess a strong capacity for self-recognition with significant inter­actions. In the configurations found in Forms I and II, four regions with a significant capacity for hydrogen-bond donation are not matched by any segments with the corresponding capacity to accept hydrogen bonds. So the polymorphism is not a result of a surfeit of mol­ecular arrangements leading to highly stabilizing inter­actions. Rather, we conclude that the cohesion in the crystals of 2 and 3 is a result of energetically poorer inter­actions. And it is not surprising that there would be more than one way to achieve a lesser level of stability. We note again here that crystals of both polymorphs are unstable outside of their mother liquids at the temperature at which they are formed.

4. Conclusion

From the system Co(OH)2 + H2(o-van-en) under different experimental conditions, two cobalt complexes were isolated in a total of three solid forms – under anaerobic conditions, the already structurally characterized CoII complex 1, and in the presence of air, two novel CoIII-containing solids 2 and 3. The new complexes were chemically and spectroscopically characterized. Products 2 and 3 are monoclinic and triclinic polymorphs, respectively, and both are formed by centrosymmetric dinuclear [Co2(o-van-en)3] complex mol­ecules in which two tetra­dentate o-van-en ligands chelate the two hexa­coordinated CoIII atoms, while the remaining o-van-en ligand bridges the two CoIII atoms in a bis-chelate fashion. The com­position of both polymorphs is completed by two MeCN solvent mol­ecules. The two polymorphs differ in the packing of the dinuclear [Co2(o-van-en)3] complex mol­ecules and con­formational differences in the complex mol­ecules were also observed. The Hirshfeld surfaces reflect the observed disorder for both polymorphs and suggest possible reasons for it; they also confirm the presence of contacts represented by weak hydrogen-bonding inter­actions, and they further indicate that the MeCN mol­ecules play a role in the packing as they fill the hollows formed between the packed complex mol­ecules. The FIMs of both polymorphs show that the regions of inter­molecular inter­actions are occupied by congeners of the complex, leaving unrequited hydrogen-bonding capability and suggesting an explanation for the polymorphism. Furthermore, aceto­nitrile solvent mol­ecules as rich electron donors do not enter the acceptor regions of the complex in either of the two polymorphs. These observations corroborate the observed low stability of both polymorphs with respect to the loss of their solvent mol­ecules.

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015). Program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a) for (2); SHELXT (Sheldrick, 2015a) for (3). For both structures, program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 1999) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b), WinGX (Farrugia, 2012), PARST (Nardelli, 1983), Mercury (Macrae et al., 2008) and CrystalExplorer (Spackman & Jayatilaka, 2009).

{µ-6,6'-Dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylylidene)]diphenolato}bis({6,6'-dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylylidene)]diphenolato}cobalt(III)) acetonitrile tetrasolvate (2) top
Crystal data top
[Co2(C18H18N2O4)3]·4C2H3NF(000) = 1316
Mr = 1261.10Dx = 1.441 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.4355 (3) ÅCell parameters from 7574 reflections
b = 21.6501 (4) Åθ = 2.6–27.9°
c = 11.9462 (3) ŵ = 0.64 mm1
β = 115.364 (4)°T = 100 K
V = 2906.25 (15) Å3Block, black
Z = 20.19 × 0.17 × 0.04 mm
Data collection top
Rigaku Xcalibur Sapphire3
diffractometer
6530 independent reflections
Radiation source: fine-focus sealed X-ray tube4887 reflections with I > 2σ(I)
Detector resolution: 16.0655 pixels mm-1Rint = 0.061
ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
h = 1016
Tmin = 0.925, Tmax = 1.000k = 2828
24772 measured reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0415P)2 + 2.4191P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
6530 reflectionsΔρmax = 0.54 e Å3
475 parametersΔρmin = 0.39 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.48831 (3)0.34589 (2)0.52332 (3)0.01690 (10)
C1A0.0959 (6)0.4786 (3)0.5548 (6)0.0465 (17)0.5
H1AA0.0540680.4659020.6042910.070*0.5
H1AB0.0388000.4824390.4677090.070*0.5
H1AC0.1347960.5185320.5847700.070*0.5
C1B0.1753 (7)0.4687 (4)0.4860 (8)0.066 (2)0.5
H1BA0.0931450.4700640.4219290.099*0.5
H1BB0.2279480.4543940.4494580.099*0.5
H1BC0.1996720.5101760.5206260.099*0.5
O10.1815 (2)0.43447 (13)0.5655 (2)0.0625 (8)
C20.2813 (3)0.42680 (13)0.6732 (3)0.0338 (6)
C30.2922 (3)0.45085 (14)0.7843 (3)0.0397 (7)
H30.231 (3)0.4759 (16)0.787 (3)0.058 (10)*
C40.3971 (3)0.44282 (13)0.8922 (3)0.0354 (7)
H40.401 (3)0.4622 (15)0.972 (3)0.046 (9)*
C50.4882 (3)0.40802 (12)0.8898 (3)0.0306 (6)
H50.559 (2)0.4004 (12)0.958 (3)0.026 (7)*
C60.4769 (2)0.38077 (11)0.7776 (2)0.0241 (5)
C70.3751 (2)0.39147 (11)0.6662 (2)0.0225 (5)
O20.35797 (15)0.36873 (8)0.55871 (15)0.0219 (4)
C80.5531 (2)0.33026 (11)0.7801 (2)0.0233 (5)
H80.589 (2)0.3067 (12)0.855 (3)0.027 (7)*
N10.56198 (18)0.31008 (9)0.68266 (18)0.0195 (4)
C90.5917 (2)0.24494 (11)0.6753 (2)0.0232 (5)
H9A0.611 (2)0.2239 (11)0.751 (2)0.013 (6)*
H9B0.658 (2)0.2407 (12)0.650 (2)0.024 (7)*
C100.4759 (2)0.21916 (11)0.5771 (2)0.0226 (5)
H10A0.419 (2)0.2136 (11)0.609 (2)0.017 (6)*
H10B0.490 (2)0.1813 (14)0.547 (3)0.031 (8)*
N20.42731 (17)0.26460 (9)0.47585 (18)0.0183 (4)
C110.3560 (2)0.24757 (11)0.3665 (2)0.0219 (5)
H110.334 (2)0.2048 (12)0.351 (2)0.019 (6)*
C120.3033 (2)0.28726 (11)0.2601 (2)0.0207 (5)
C130.2252 (2)0.26006 (13)0.1463 (2)0.0256 (6)
H130.208 (2)0.2190 (13)0.137 (2)0.023 (7)*
C140.1697 (2)0.29552 (13)0.0424 (3)0.0302 (6)
H140.121 (2)0.2775 (12)0.031 (3)0.023 (7)*
C150.1887 (2)0.35921 (13)0.0484 (2)0.0287 (6)
H150.150 (2)0.3825 (12)0.019 (3)0.023 (7)*
C160.2658 (2)0.38702 (12)0.1567 (2)0.0229 (5)
C170.3286 (2)0.35149 (11)0.2669 (2)0.0193 (5)
O30.40290 (14)0.38068 (7)0.36424 (14)0.0193 (4)
O40.29081 (16)0.44881 (8)0.17092 (15)0.0274 (4)
C180.2169 (3)0.48860 (13)0.0722 (2)0.0341 (7)
H18A0.1334670.4825950.0561560.051*
H18B0.2271270.4787640.0027600.051*
H18C0.2395950.5316940.0955710.051*
C190.8545 (3)0.2040 (2)0.4522 (4)0.0722 (14)
H19A0.9054110.1830470.5296130.108*
H19B0.9036690.2295730.4247540.108*
H19C0.8118290.1731370.3885120.108*
O50.77077 (16)0.24213 (9)0.47211 (17)0.0340 (5)
C200.8141 (2)0.29142 (12)0.5507 (2)0.0256 (6)
C210.9332 (2)0.30292 (14)0.6218 (3)0.0333 (6)
H210.988 (3)0.2788 (13)0.619 (3)0.033 (8)*
C220.9699 (3)0.35454 (14)0.6991 (3)0.0346 (7)
H221.055 (3)0.3626 (14)0.744 (3)0.042 (9)*
C230.8876 (2)0.39446 (13)0.7034 (3)0.0308 (6)
H230.909 (3)0.4306 (14)0.749 (3)0.040 (9)*
C240.7647 (2)0.38375 (11)0.6321 (2)0.0231 (5)
C250.7256 (2)0.33161 (11)0.5540 (2)0.0194 (5)
O60.61326 (14)0.31951 (7)0.48183 (14)0.0194 (4)
C260.6809 (2)0.43104 (11)0.6263 (2)0.0231 (5)
H260.715 (2)0.4695 (12)0.656 (2)0.019 (6)*
N30.56686 (18)0.42527 (9)0.57678 (17)0.0187 (4)
C270.4988 (3)0.48305 (11)0.5554 (2)0.0215 (5)
H27A0.420 (2)0.4742 (11)0.541 (2)0.012 (6)*
H27B0.531 (2)0.5081 (11)0.625 (2)0.014 (6)*
N40.9999 (3)0.45617 (16)0.1839 (4)0.0739 (10)
C281.0626 (4)0.35371 (18)0.3105 (4)0.0734 (12)
H28A1.0786860.3219340.2612690.110*
H28B0.9982370.3397920.3310950.110*
H28C1.1345720.3609970.3870400.110*
C291.0272 (4)0.41118 (19)0.2390 (4)0.0634 (11)
N50.7624 (3)0.37794 (16)0.2062 (4)0.0865 (13)
C300.5962 (3)0.41484 (14)0.2652 (3)0.0425 (8)
H30A0.5259670.4248620.1887930.064*
H30B0.6212040.4514690.3184140.064*
H30C0.5766970.3814810.3088180.064*
C310.6908 (3)0.39542 (15)0.2354 (3)0.0498 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02012 (17)0.01519 (16)0.01537 (16)0.00033 (13)0.00758 (13)0.00032 (13)
C1A0.040 (4)0.061 (4)0.039 (3)0.029 (3)0.018 (3)0.003 (3)
C1B0.047 (5)0.070 (5)0.075 (6)0.015 (4)0.021 (4)0.015 (5)
O10.0545 (16)0.0705 (18)0.0460 (15)0.0338 (14)0.0058 (13)0.0111 (13)
C20.0377 (17)0.0335 (15)0.0337 (15)0.0073 (13)0.0188 (14)0.0001 (12)
C30.053 (2)0.0348 (16)0.0425 (18)0.0100 (15)0.0308 (17)0.0023 (14)
C40.058 (2)0.0265 (14)0.0301 (15)0.0040 (13)0.0265 (15)0.0015 (12)
C50.0466 (18)0.0221 (13)0.0253 (14)0.0029 (12)0.0175 (14)0.0012 (11)
C60.0359 (15)0.0186 (12)0.0233 (13)0.0018 (11)0.0179 (12)0.0015 (10)
C70.0316 (14)0.0163 (11)0.0248 (13)0.0002 (10)0.0171 (12)0.0015 (10)
O20.0241 (9)0.0231 (9)0.0205 (9)0.0018 (7)0.0114 (8)0.0003 (7)
C80.0269 (14)0.0233 (13)0.0187 (12)0.0019 (10)0.0087 (11)0.0029 (10)
N10.0223 (11)0.0160 (10)0.0195 (10)0.0016 (8)0.0084 (9)0.0015 (8)
C90.0298 (14)0.0190 (12)0.0203 (13)0.0059 (10)0.0101 (11)0.0059 (10)
C100.0316 (14)0.0133 (11)0.0267 (13)0.0015 (10)0.0162 (12)0.0026 (10)
N20.0204 (10)0.0165 (10)0.0200 (10)0.0006 (8)0.0105 (9)0.0011 (8)
C110.0239 (13)0.0167 (12)0.0300 (14)0.0032 (10)0.0163 (11)0.0037 (10)
C120.0174 (12)0.0229 (12)0.0223 (12)0.0001 (10)0.0090 (10)0.0033 (10)
C130.0213 (13)0.0258 (14)0.0284 (14)0.0049 (11)0.0093 (11)0.0083 (11)
C140.0223 (14)0.0384 (16)0.0220 (14)0.0031 (12)0.0018 (12)0.0098 (12)
C150.0217 (13)0.0381 (16)0.0207 (13)0.0050 (11)0.0038 (11)0.0010 (12)
C160.0210 (13)0.0264 (13)0.0204 (12)0.0035 (10)0.0081 (11)0.0008 (10)
C170.0169 (12)0.0242 (12)0.0171 (11)0.0016 (10)0.0077 (10)0.0020 (10)
O30.0222 (9)0.0182 (8)0.0153 (8)0.0005 (7)0.0058 (7)0.0007 (6)
O40.0324 (10)0.0246 (9)0.0189 (9)0.0053 (8)0.0050 (8)0.0047 (7)
C180.0423 (17)0.0325 (15)0.0228 (14)0.0113 (13)0.0095 (13)0.0095 (12)
C190.0300 (18)0.088 (3)0.078 (3)0.0179 (18)0.0030 (18)0.055 (2)
O50.0251 (10)0.0362 (11)0.0351 (11)0.0055 (8)0.0076 (9)0.0150 (9)
C200.0242 (13)0.0273 (13)0.0212 (13)0.0014 (11)0.0056 (11)0.0030 (10)
C210.0216 (14)0.0390 (16)0.0342 (16)0.0070 (12)0.0072 (13)0.0022 (13)
C220.0197 (14)0.0407 (17)0.0316 (15)0.0036 (12)0.0003 (12)0.0014 (13)
C230.0290 (15)0.0260 (14)0.0287 (14)0.0060 (12)0.0040 (12)0.0041 (11)
C240.0231 (13)0.0216 (12)0.0205 (12)0.0018 (10)0.0053 (11)0.0003 (10)
C250.0222 (12)0.0211 (12)0.0141 (11)0.0013 (9)0.0070 (10)0.0011 (9)
O60.0181 (9)0.0213 (8)0.0178 (8)0.0005 (7)0.0068 (7)0.0025 (7)
C260.0311 (15)0.0167 (12)0.0184 (12)0.0052 (10)0.0077 (11)0.0021 (10)
N30.0247 (11)0.0169 (10)0.0135 (9)0.0005 (8)0.0072 (9)0.0015 (8)
C270.0300 (15)0.0155 (11)0.0209 (13)0.0024 (10)0.0126 (12)0.0010 (10)
N40.074 (2)0.060 (2)0.087 (3)0.0026 (19)0.034 (2)0.018 (2)
C280.080 (3)0.059 (3)0.097 (3)0.022 (2)0.052 (3)0.021 (2)
C290.063 (3)0.056 (2)0.085 (3)0.011 (2)0.045 (2)0.015 (2)
N50.077 (3)0.054 (2)0.157 (4)0.0058 (18)0.078 (3)0.013 (2)
C300.058 (2)0.0369 (17)0.0483 (19)0.0017 (15)0.0383 (17)0.0011 (14)
C310.055 (2)0.0379 (18)0.067 (2)0.0056 (16)0.036 (2)0.0003 (16)
Geometric parameters (Å, º) top
Co1—N11.8894 (19)C14—H140.91 (3)
Co1—O31.8915 (16)C15—C161.376 (4)
Co1—N21.9041 (19)C15—H150.90 (3)
Co1—O21.9073 (17)C16—O41.367 (3)
Co1—O61.9093 (16)C16—C171.433 (3)
Co1—N31.9445 (19)C17—O31.298 (3)
C1A—O11.395 (6)O4—C181.431 (3)
C1A—H1AA0.9800C18—H18A0.9800
C1A—H1AB0.9800C18—H18B0.9800
C1A—H1AC0.9800C18—H18C0.9800
C1B—O11.182 (8)C19—O51.426 (3)
C1B—H1BA0.9800C19—H19A0.9800
C1B—H1BB0.9800C19—H19B0.9800
C1B—H1BC0.9800C19—H19C0.9800
O1—C21.362 (4)O5—C201.370 (3)
C2—C31.377 (4)C20—C211.378 (4)
C2—C71.426 (4)C20—C251.417 (3)
C3—C41.397 (4)C21—C221.396 (4)
C3—H30.95 (4)C21—H210.87 (3)
C4—C51.371 (4)C22—C231.357 (4)
C4—H41.03 (3)C22—H220.97 (3)
C5—C61.415 (4)C23—C241.414 (4)
C5—H50.92 (3)C23—H230.93 (3)
C6—C71.409 (4)C24—C251.412 (3)
C6—C81.439 (3)C24—C261.441 (3)
C7—O21.305 (3)C25—O61.316 (3)
C8—N11.291 (3)C26—N31.287 (3)
C8—H80.96 (3)C26—H260.93 (3)
N1—C91.470 (3)N3—C271.470 (3)
C9—C101.521 (4)C27—C27i1.525 (5)
C9—H9A0.95 (2)C27—H27A0.94 (2)
C9—H9B0.99 (3)C27—H27B0.93 (3)
C10—N21.473 (3)N4—C291.142 (5)
C10—H10A0.95 (3)C28—C291.466 (5)
C10—H10B0.94 (3)C28—H28A0.9800
N2—C111.279 (3)C28—H28B0.9800
C11—C121.438 (3)C28—H28C0.9800
C11—H110.96 (2)N5—C311.151 (4)
C12—C131.417 (3)C30—C311.431 (5)
C12—C171.420 (3)C30—H30A0.9800
C13—C141.368 (4)C30—H30B0.9800
C13—H130.91 (3)C30—H30C0.9800
C14—C151.396 (4)
N1—Co1—O3175.48 (8)C14—C13—C12120.6 (2)
N1—Co1—N283.12 (8)C14—C13—H13115.8 (17)
O3—Co1—N295.06 (8)C12—C13—H13123.6 (17)
N1—Co1—O288.53 (8)C13—C14—C15119.9 (2)
O3—Co1—O287.40 (7)C13—C14—H14120.0 (17)
N2—Co1—O292.16 (8)C15—C14—H14120.0 (17)
N1—Co1—O692.38 (8)C16—C15—C14121.0 (3)
O3—Co1—O691.57 (7)C16—C15—H15119.3 (17)
N2—Co1—O684.89 (8)C14—C15—H15119.7 (17)
O2—Co1—O6176.78 (7)O4—C16—C15125.1 (2)
N1—Co1—N394.20 (8)O4—C16—C17113.9 (2)
O3—Co1—N387.99 (7)C15—C16—C17121.0 (2)
N2—Co1—N3174.09 (8)O3—C17—C12125.7 (2)
O2—Co1—N393.04 (8)O3—C17—C16117.4 (2)
O6—Co1—N389.97 (8)C12—C17—C16116.9 (2)
O1—C1A—H1AA109.5C17—O3—Co1125.75 (15)
O1—C1A—H1AB109.5C16—O4—C18117.1 (2)
H1AA—C1A—H1AB109.5O4—C18—H18A109.5
O1—C1A—H1AC109.5O4—C18—H18B109.5
H1AA—C1A—H1AC109.5H18A—C18—H18B109.5
H1AB—C1A—H1AC109.5O4—C18—H18C109.5
O1—C1B—H1BA109.5H18A—C18—H18C109.5
O1—C1B—H1BB109.5H18B—C18—H18C109.5
H1BA—C1B—H1BB109.5O5—C19—H19A109.5
O1—C1B—H1BC109.5O5—C19—H19B109.5
H1BA—C1B—H1BC109.5H19A—C19—H19B109.5
H1BB—C1B—H1BC109.5O5—C19—H19C109.5
C1B—O1—C2123.7 (5)H19A—C19—H19C109.5
C2—O1—C1A121.4 (3)H19B—C19—H19C109.5
O1—C2—C3122.5 (3)C20—O5—C19117.7 (2)
O1—C2—C7116.6 (2)O5—C20—C21124.5 (2)
C3—C2—C7120.9 (3)O5—C20—C25114.5 (2)
C2—C3—C4120.6 (3)C21—C20—C25121.0 (2)
C2—C3—H3120 (2)C20—C21—C22120.9 (3)
C4—C3—H3119 (2)C20—C21—H21121 (2)
C5—C4—C3120.1 (3)C22—C21—H21118 (2)
C5—C4—H4122.4 (18)C23—C22—C21119.8 (3)
C3—C4—H4117.4 (17)C23—C22—H22121.4 (18)
C4—C5—C6120.1 (3)C21—C22—H22118.7 (18)
C4—C5—H5124.6 (17)C22—C23—C24120.7 (3)
C6—C5—H5115.3 (17)C22—C23—H23122.3 (19)
C7—C6—C5120.7 (2)C24—C23—H23116.9 (19)
C7—C6—C8117.5 (2)C25—C24—C23120.5 (2)
C5—C6—C8120.0 (2)C25—C24—C26119.9 (2)
O2—C7—C6124.7 (2)C23—C24—C26119.0 (2)
O2—C7—C2117.8 (2)O6—C25—C24124.1 (2)
C6—C7—C2117.3 (2)O6—C25—C20118.6 (2)
C7—O2—Co1121.35 (16)C24—C25—C20117.2 (2)
N1—C8—C6123.3 (2)C25—O6—Co1121.60 (14)
N1—C8—H8118.6 (16)N3—C26—C24125.8 (2)
C6—C8—H8117.4 (16)N3—C26—H26119.4 (15)
C8—N1—C9119.9 (2)C24—C26—H26114.6 (15)
C8—N1—Co1125.26 (17)C26—N3—C27115.8 (2)
C9—N1—Co1111.06 (15)C26—N3—Co1122.42 (17)
N1—C9—C10102.7 (2)C27—N3—Co1121.63 (16)
N1—C9—H9A111.9 (14)N3—C27—C27i109.7 (2)
C10—C9—H9A109.5 (14)N3—C27—H27A109.7 (15)
N1—C9—H9B111.7 (15)C27i—C27—H27A110.1 (15)
C10—C9—H9B111.5 (15)N3—C27—H27B110.4 (15)
H9A—C9—H9B109 (2)C27i—C27—H27B109.6 (15)
N2—C10—C9107.97 (19)H27A—C27—H27B107 (2)
N2—C10—H10A107.6 (15)C29—C28—H28A109.5
C9—C10—H10A111.0 (15)C29—C28—H28B109.5
N2—C10—H10B110.5 (17)H28A—C28—H28B109.5
C9—C10—H10B110.1 (17)C29—C28—H28C109.5
H10A—C10—H10B110 (2)H28A—C28—H28C109.5
C11—N2—C10120.5 (2)H28B—C28—H28C109.5
C11—N2—Co1125.72 (17)N4—C29—C28179.6 (6)
C10—N2—Co1113.68 (15)C31—C30—H30A109.5
N2—C11—C12125.8 (2)C31—C30—H30B109.5
N2—C11—H11119.5 (15)H30A—C30—H30B109.5
C12—C11—H11114.8 (15)C31—C30—H30C109.5
C13—C12—C17120.4 (2)H30A—C30—H30C109.5
C13—C12—C11117.7 (2)H30B—C30—H30C109.5
C17—C12—C11121.9 (2)N5—C31—C30176.3 (4)
C1B—O1—C2—C3105.3 (6)C13—C14—C15—C162.2 (4)
C1A—O1—C2—C315.2 (6)C14—C15—C16—O4179.3 (2)
C1B—O1—C2—C775.6 (6)C14—C15—C16—C170.3 (4)
C1A—O1—C2—C7165.6 (4)C13—C12—C17—O3176.4 (2)
O1—C2—C3—C4178.9 (3)C11—C12—C17—O32.9 (4)
C7—C2—C3—C42.1 (5)C13—C12—C17—C164.1 (3)
C2—C3—C4—C53.4 (5)C11—C12—C17—C16176.6 (2)
C3—C4—C5—C60.8 (4)O4—C16—C17—O32.0 (3)
C4—C5—C6—C73.2 (4)C15—C16—C17—O3177.7 (2)
C4—C5—C6—C8161.2 (3)O4—C16—C17—C12177.6 (2)
C5—C6—C7—O2179.3 (2)C15—C16—C17—C122.7 (4)
C8—C6—C7—O215.9 (4)C12—C17—O3—Co14.1 (3)
C5—C6—C7—C24.5 (4)C16—C17—O3—Co1175.44 (16)
C8—C6—C7—C2160.3 (2)N2—Co1—O3—C171.57 (19)
O1—C2—C7—O20.8 (4)O2—Co1—O3—C1790.37 (18)
C3—C2—C7—O2178.4 (3)O6—Co1—O3—C1786.58 (18)
O1—C2—C7—C6177.3 (3)N3—Co1—O3—C17176.50 (19)
C3—C2—C7—C61.9 (4)C15—C16—O4—C1810.9 (4)
C6—C7—O2—Co125.3 (3)C17—C16—O4—C18169.5 (2)
C2—C7—O2—Co1158.48 (18)C19—O5—C20—C217.2 (4)
C7—C6—C8—N127.2 (4)C19—O5—C20—C25172.4 (3)
C5—C6—C8—N1167.9 (2)O5—C20—C21—C22179.6 (3)
C6—C8—N1—C9151.1 (2)C25—C20—C21—C220.0 (4)
C6—C8—N1—Co15.1 (4)C20—C21—C22—C230.9 (5)
N2—Co1—N1—C8125.7 (2)C21—C22—C23—C241.2 (4)
O2—Co1—N1—C833.4 (2)C22—C23—C24—C250.7 (4)
O6—Co1—N1—C8149.7 (2)C22—C23—C24—C26171.9 (3)
N3—Co1—N1—C859.6 (2)C23—C24—C25—O6177.7 (2)
N2—Co1—N1—C932.29 (16)C26—C24—C25—O66.6 (4)
O2—Co1—N1—C9124.64 (17)C23—C24—C25—C200.1 (4)
O6—Co1—N1—C952.28 (17)C26—C24—C25—C20171.0 (2)
N3—Co1—N1—C9142.42 (17)O5—C20—C25—O61.5 (3)
C8—N1—C9—C10110.2 (3)C21—C20—C25—O6178.2 (2)
Co1—N1—C9—C1049.1 (2)O5—C20—C25—C24179.2 (2)
N1—C9—C10—N242.5 (3)C21—C20—C25—C240.4 (4)
C9—C10—N2—C11156.2 (2)C24—C25—O6—Co129.1 (3)
C9—C10—N2—Co120.2 (2)C20—C25—O6—Co1153.33 (18)
C10—N2—C11—C12179.6 (2)C25—C24—C26—N316.9 (4)
Co1—N2—C11—C123.7 (4)C23—C24—C26—N3171.9 (2)
N2—C11—C12—C13179.3 (2)C24—C26—N3—C27166.0 (2)
N2—C11—C12—C171.3 (4)C24—C26—N3—Co110.1 (3)
C17—C12—C13—C142.4 (4)C26—N3—C27—C27i74.9 (3)
C11—C12—C13—C14178.3 (2)Co1—N3—C27—C27i101.3 (3)
C12—C13—C14—C150.8 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1B—H1BA···N4ii0.982.593.333 (10)133
C1B—H1BB···O20.982.442.985 (8)115
C8—H8···O5iii0.96 (3)2.34 (3)3.119 (3)138 (2)
C9—H9B···O61.00 (3)2.51 (2)2.924 (3)104.6 (17)
C27—H27A···O20.94 (2)2.45 (2)3.042 (3)121.1 (18)
C27—H27B···O3i0.93 (3)2.53 (2)3.180 (3)127.5 (18)
C28—H28C···O1iv0.982.523.266 (5)133
C30—H30C···O30.982.523.188 (3)126
C30—H30C···O60.982.343.245 (3)153
C9—H9A···O5iii0.95 (2)2.64 (2)3.293 (3)126.8 (18)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x, y+1/2, z+1/2; (iv) x+1, y, z.
{µ-6,6'-Dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylylidene)]diphenolato}bis({6,6'-dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylylidene)]diphenolato}cobalt(III)) acetonitrile tetrasolvate (3) top
Crystal data top
[Co2(C18H18N2O4)3]·4C2H3NZ = 1
Mr = 1261.10F(000) = 658
Triclinic, P1Dx = 1.434 Mg m3
a = 10.4971 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.6195 (5) ÅCell parameters from 9604 reflections
c = 13.7158 (6) Åθ = 3.5–29.7°
α = 70.471 (4)°µ = 0.64 mm1
β = 71.667 (4)°T = 100 K
γ = 72.466 (4)°Block, black
V = 1460.26 (13) Å30.21 × 0.14 × 0.05 mm
Data collection top
Rigaku Xcalibur Sapphire3
diffractometer
6041 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source5192 reflections with I > 2σ(I)
Detector resolution: 16.0655 pixels mm-1Rint = 0.039
ω scansθmax = 26.5°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
h = 1313
Tmin = 0.835, Tmax = 1.000k = 1414
20710 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0446P)2 + 0.822P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
6041 reflectionsΔρmax = 0.89 e Å3
421 parametersΔρmin = 0.35 e Å3
3 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.63637 (3)0.21886 (2)0.45402 (2)0.01484 (9)
O10.23568 (15)0.26331 (15)0.67591 (12)0.0293 (4)
O20.47661 (13)0.18304 (12)0.56136 (10)0.0185 (3)
O30.51922 (13)0.33725 (12)0.36826 (10)0.0177 (3)
O40.37763 (14)0.53359 (12)0.25864 (11)0.0219 (3)
N10.74411 (16)0.09203 (14)0.54317 (13)0.0171 (3)
N20.65403 (16)0.08537 (14)0.39518 (13)0.0172 (3)
C10.1079 (2)0.3228 (3)0.7331 (2)0.0426 (6)
H1A0.0414700.3560600.6883960.064*
H1B0.0727340.2617290.7980010.064*
H1C0.1217110.3914310.7523170.064*
C20.3402 (2)0.21155 (19)0.72749 (17)0.0241 (4)
C30.3262 (2)0.1959 (2)0.83433 (17)0.0289 (5)
H30.2383390.2220600.8776060.035*
C40.4406 (3)0.1416 (2)0.88001 (17)0.0309 (5)
H40.4297730.1317280.9535810.037*
C50.5673 (2)0.10318 (19)0.81838 (17)0.0277 (5)
H50.6441580.0657610.8494590.033*
C60.5844 (2)0.11892 (18)0.70842 (16)0.0210 (4)
C70.4708 (2)0.17191 (17)0.66052 (15)0.0193 (4)
C80.7120 (2)0.06237 (18)0.64607 (16)0.0214 (4)
H80.773 (2)0.005 (2)0.6828 (17)0.019 (5)*
C90.8363 (2)0.00101 (18)0.48614 (16)0.0198 (4)
H9A0.8817650.0748720.5347520.024*
H9B0.9072750.0357160.4266340.024*
C100.7366 (2)0.03519 (18)0.44532 (17)0.0210 (4)
H10A0.7874830.0841730.3926540.025*
H10B0.6766870.0852540.5048380.025*
C110.6162 (2)0.09788 (19)0.31161 (16)0.0197 (4)
H110.637 (2)0.030 (2)0.2869 (18)0.024 (6)*
C120.5445 (2)0.21185 (18)0.25094 (16)0.0190 (4)
C130.5236 (2)0.2110 (2)0.15418 (16)0.0230 (4)
H130.5544020.1354580.1327680.028*
C140.4603 (2)0.3164 (2)0.09127 (16)0.0245 (4)
H140.4502620.3151100.0252040.029*
C150.4096 (2)0.42734 (19)0.12433 (16)0.0214 (4)
H150.3637810.5005110.0810510.026*
C160.42598 (19)0.43068 (18)0.21882 (15)0.0178 (4)
C170.50010 (18)0.32394 (18)0.28402 (15)0.0160 (4)
C180.2875 (2)0.6376 (2)0.20569 (18)0.0279 (5)
H18A0.2599580.7049800.2410490.042*
H18B0.3350340.6677280.1312240.042*
H18C0.2056030.6115560.2084840.042*
O51.03652 (14)0.22470 (14)0.21059 (11)0.0244 (3)
O60.79600 (13)0.25601 (12)0.34514 (10)0.0167 (3)
N30.63436 (16)0.35219 (14)0.50880 (12)0.0157 (3)
C191.1576 (2)0.2330 (2)0.12618 (17)0.0271 (5)
H19A1.1521600.2006270.0704930.041*
H19B1.1651630.3206170.0962280.041*
H19C1.2385550.1834060.1538890.041*
C201.0295 (2)0.26700 (17)0.29500 (15)0.0186 (4)
C211.1393 (2)0.29228 (18)0.31310 (16)0.0210 (4)
H211.2270250.2805470.2651200.025*
C221.1227 (2)0.33502 (18)0.40145 (16)0.0221 (4)
H221.1993430.3494690.4147120.027*
C230.9953 (2)0.35583 (18)0.46853 (16)0.0212 (4)
H230.9834560.3872430.5272150.025*
C240.88111 (19)0.33113 (17)0.45152 (15)0.0173 (4)
C250.89633 (19)0.28245 (16)0.36588 (15)0.0162 (4)
C260.7448 (2)0.37803 (18)0.50954 (15)0.0178 (4)
H260.733 (2)0.442 (2)0.5422 (17)0.017 (5)*
C270.50441 (19)0.43761 (16)0.54340 (15)0.0172 (4)
H27A0.5015590.4514440.6115390.021*
H27B0.4255880.4009490.5543460.021*
N40.9291 (3)0.3870 (3)0.0371 (2)0.0653 (8)
C290.8603 (3)0.4235 (3)0.0334 (2)0.0400 (6)
C280.7738 (3)0.4709 (2)0.12272 (19)0.0389 (6)
H28A0.7706180.4022270.1880750.047*
H28B0.6806750.5077360.1115760.047*
H28C0.8113280.5349720.1292140.047*
C300.8972 (3)0.0892 (4)0.1166 (3)0.0754 (11)
H30A0.8278350.0522000.1113820.113*0.43 (2)
H30B0.9431010.1315540.0450090.113*0.43 (2)
H30C0.8524680.1498670.1590400.113*0.43 (2)
H30D0.9081950.1597250.0530590.113*0.57 (2)
H30E0.8671330.1196340.1805070.113*0.57 (2)
H30F0.8280920.0488930.1155090.113*0.57 (2)
C31B1.0279 (10)0.0010 (8)0.1174 (11)0.054 (3)0.57 (2)
N5B1.1381 (15)0.0601 (11)0.1001 (19)0.140 (8)0.57 (2)
C31A0.9957 (14)0.0065 (12)0.1661 (14)0.070 (5)0.43 (2)
N5A1.0772 (12)0.0821 (8)0.2000 (19)0.106 (6)0.43 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01524 (14)0.01267 (13)0.01716 (14)0.00227 (10)0.00561 (10)0.00369 (10)
O10.0200 (8)0.0428 (9)0.0286 (8)0.0042 (7)0.0022 (6)0.0194 (7)
O20.0192 (7)0.0193 (7)0.0187 (7)0.0067 (6)0.0036 (5)0.0057 (6)
O30.0190 (7)0.0165 (6)0.0195 (7)0.0011 (5)0.0086 (5)0.0056 (5)
O40.0237 (7)0.0174 (7)0.0251 (7)0.0010 (6)0.0125 (6)0.0049 (6)
N10.0170 (8)0.0142 (8)0.0217 (8)0.0042 (6)0.0062 (7)0.0044 (7)
N20.0139 (8)0.0148 (8)0.0226 (9)0.0024 (6)0.0043 (6)0.0051 (7)
C10.0263 (13)0.0625 (18)0.0375 (14)0.0020 (12)0.0031 (10)0.0258 (13)
C20.0261 (11)0.0232 (10)0.0252 (11)0.0091 (9)0.0028 (9)0.0089 (9)
C30.0323 (12)0.0278 (11)0.0248 (11)0.0083 (9)0.0012 (9)0.0105 (9)
C40.0479 (14)0.0265 (11)0.0165 (10)0.0083 (10)0.0044 (10)0.0064 (9)
C50.0384 (13)0.0207 (10)0.0236 (11)0.0059 (9)0.0107 (9)0.0028 (9)
C60.0282 (11)0.0145 (9)0.0196 (10)0.0075 (8)0.0052 (8)0.0014 (8)
C70.0239 (10)0.0153 (9)0.0203 (10)0.0093 (8)0.0021 (8)0.0051 (8)
C80.0269 (11)0.0144 (9)0.0239 (11)0.0051 (8)0.0116 (9)0.0007 (8)
C90.0192 (10)0.0145 (9)0.0245 (10)0.0004 (8)0.0077 (8)0.0051 (8)
C100.0228 (10)0.0134 (9)0.0274 (11)0.0014 (8)0.0088 (8)0.0057 (8)
C110.0189 (10)0.0183 (10)0.0242 (10)0.0038 (8)0.0037 (8)0.0103 (8)
C120.0166 (10)0.0212 (10)0.0211 (10)0.0055 (8)0.0040 (8)0.0071 (8)
C130.0215 (10)0.0279 (11)0.0232 (10)0.0059 (9)0.0033 (8)0.0125 (9)
C140.0235 (11)0.0366 (12)0.0174 (10)0.0096 (9)0.0051 (8)0.0092 (9)
C150.0180 (10)0.0256 (10)0.0189 (10)0.0065 (8)0.0064 (8)0.0003 (8)
C160.0134 (9)0.0200 (10)0.0211 (10)0.0057 (7)0.0040 (7)0.0049 (8)
C170.0117 (9)0.0200 (9)0.0171 (9)0.0055 (7)0.0025 (7)0.0048 (8)
C180.0284 (12)0.0217 (11)0.0292 (12)0.0035 (9)0.0134 (9)0.0030 (9)
O50.0197 (7)0.0341 (8)0.0217 (7)0.0087 (6)0.0005 (6)0.0130 (6)
O60.0166 (7)0.0170 (6)0.0188 (7)0.0044 (5)0.0066 (5)0.0049 (5)
N30.0170 (8)0.0131 (7)0.0158 (8)0.0014 (6)0.0051 (6)0.0030 (6)
C190.0210 (11)0.0358 (12)0.0212 (11)0.0050 (9)0.0003 (8)0.0087 (9)
C200.0200 (10)0.0159 (9)0.0193 (10)0.0032 (8)0.0051 (8)0.0040 (8)
C210.0169 (10)0.0179 (9)0.0250 (10)0.0047 (8)0.0033 (8)0.0025 (8)
C220.0203 (10)0.0197 (10)0.0289 (11)0.0068 (8)0.0098 (8)0.0038 (8)
C230.0262 (11)0.0183 (10)0.0223 (10)0.0071 (8)0.0087 (8)0.0047 (8)
C240.0183 (10)0.0133 (9)0.0199 (10)0.0032 (7)0.0061 (8)0.0025 (7)
C250.0177 (9)0.0109 (8)0.0186 (9)0.0024 (7)0.0073 (7)0.0001 (7)
C260.0239 (10)0.0147 (9)0.0155 (9)0.0049 (8)0.0049 (8)0.0041 (8)
C270.0179 (10)0.0139 (9)0.0192 (10)0.0025 (7)0.0040 (8)0.0050 (8)
N40.0631 (18)0.087 (2)0.0395 (14)0.0023 (15)0.0144 (13)0.0200 (14)
C290.0344 (14)0.0509 (16)0.0328 (14)0.0088 (12)0.0163 (11)0.0012 (12)
C280.0349 (14)0.0427 (14)0.0321 (13)0.0115 (11)0.0094 (11)0.0027 (11)
C300.0428 (19)0.098 (3)0.098 (3)0.0213 (19)0.0023 (19)0.054 (2)
C31B0.063 (6)0.037 (4)0.075 (7)0.015 (4)0.041 (5)0.003 (4)
N5B0.123 (9)0.077 (5)0.28 (2)0.030 (6)0.142 (12)0.075 (9)
C31A0.065 (7)0.055 (8)0.095 (10)0.027 (6)0.006 (8)0.038 (8)
N5A0.065 (6)0.030 (4)0.216 (18)0.012 (4)0.055 (9)0.024 (6)
Geometric parameters (Å, º) top
Co1—O31.8966 (13)C15—C161.374 (3)
Co1—N11.8993 (16)C15—H150.9500
Co1—O21.9002 (13)C16—C171.435 (3)
Co1—O61.9118 (13)C18—H18A0.9800
Co1—N21.9133 (16)C18—H18B0.9800
Co1—N31.9271 (16)C18—H18C0.9800
O1—C21.368 (3)O5—C201.376 (2)
O1—C11.426 (3)O5—C191.428 (2)
O2—C71.306 (2)O6—C251.314 (2)
O3—C171.297 (2)N3—C261.286 (3)
O4—C161.372 (2)N3—C271.471 (2)
O4—C181.428 (2)C19—H19A0.9800
N1—C81.292 (3)C19—H19B0.9800
N1—C91.475 (2)C19—H19C0.9800
N2—C111.278 (3)C20—C211.382 (3)
N2—C101.478 (2)C20—C251.429 (3)
C1—H1A0.9800C21—C221.401 (3)
C1—H1B0.9800C21—H210.9500
C1—H1C0.9800C22—C231.368 (3)
C2—C31.380 (3)C22—H220.9500
C2—C71.430 (3)C23—C241.415 (3)
C3—C41.409 (3)C23—H230.9500
C3—H30.9500C24—C251.413 (3)
C4—C51.367 (3)C24—C261.443 (3)
C4—H40.9500C26—H260.95 (2)
C5—C61.416 (3)C27—C27i1.537 (4)
C5—H50.9500C27—H27A0.9900
C6—C71.419 (3)C27—H27B0.9900
C6—C81.443 (3)N4—C291.135 (3)
C8—H80.95 (2)C29—C281.441 (4)
C9—C101.528 (3)C28—H28A0.9800
C9—H9A0.9900C28—H28B0.9800
C9—H9B0.9900C28—H28C0.9800
C10—H10A0.9900C30—C31A1.419 (12)
C10—H10B0.9900C30—C31B1.455 (9)
C11—C121.438 (3)C30—H30A0.9800
C11—H110.90 (2)C30—H30B0.9800
C12—C131.415 (3)C30—H30C0.9800
C12—C171.420 (3)C30—H30D0.9800
C13—C141.361 (3)C30—H30E0.9800
C13—H130.9500C30—H30F0.9800
C14—C151.405 (3)C31B—N5B1.150 (9)
C14—H140.9500C31A—N5A1.115 (11)
O3—Co1—N1175.58 (6)C15—C14—H14120.1
O3—Co1—O288.27 (6)C16—C15—C14120.45 (19)
N1—Co1—O288.36 (6)C16—C15—H15119.8
O3—Co1—O691.18 (6)C14—C15—H15119.8
N1—Co1—O692.19 (6)O4—C16—C15124.60 (18)
O2—Co1—O6179.45 (6)O4—C16—C17113.90 (17)
O3—Co1—N294.41 (6)C15—C16—C17121.48 (18)
N1—Co1—N282.96 (7)O3—C17—C12125.71 (18)
O2—Co1—N293.67 (6)O3—C17—C16117.71 (17)
O6—Co1—N286.35 (6)C12—C17—C16116.58 (18)
O3—Co1—N387.74 (6)O4—C18—H18A109.5
N1—Co1—N395.15 (7)O4—C18—H18B109.5
O2—Co1—N390.49 (6)H18A—C18—H18B109.5
O6—Co1—N389.51 (6)O4—C18—H18C109.5
N2—Co1—N3175.37 (7)H18A—C18—H18C109.5
C2—O1—C1116.89 (17)H18B—C18—H18C109.5
C7—O2—Co1119.80 (12)C20—O5—C19116.09 (16)
C17—O3—Co1125.19 (12)C25—O6—Co1121.37 (12)
C16—O4—C18116.92 (16)C26—N3—C27116.22 (16)
C8—N1—C9120.10 (16)C26—N3—Co1122.79 (13)
C8—N1—Co1125.38 (14)C27—N3—Co1120.76 (12)
C9—N1—Co1110.26 (12)O5—C19—H19A109.5
C11—N2—C10120.50 (17)O5—C19—H19B109.5
C11—N2—Co1125.18 (14)H19A—C19—H19B109.5
C10—N2—Co1113.70 (13)O5—C19—H19C109.5
O1—C1—H1A109.5H19A—C19—H19C109.5
O1—C1—H1B109.5H19B—C19—H19C109.5
H1A—C1—H1B109.5O5—C20—C21124.61 (18)
O1—C1—H1C109.5O5—C20—C25114.11 (17)
H1A—C1—H1C109.5C21—C20—C25121.28 (18)
H1B—C1—H1C109.5C20—C21—C22120.71 (18)
O1—C2—C3125.13 (19)C20—C21—H21119.6
O1—C2—C7113.95 (18)C22—C21—H21119.6
C3—C2—C7120.9 (2)C23—C22—C21119.58 (19)
C2—C3—C4120.8 (2)C23—C22—H22120.2
C2—C3—H3119.6C21—C22—H22120.2
C4—C3—H3119.6C22—C23—C24120.79 (19)
C5—C4—C3120.0 (2)C22—C23—H23119.6
C5—C4—H4120.0C24—C23—H23119.6
C3—C4—H4120.0C25—C24—C23120.78 (18)
C4—C5—C6120.3 (2)C25—C24—C26119.29 (18)
C4—C5—H5119.9C23—C24—C26118.89 (18)
C6—C5—H5119.9O6—C25—C24124.57 (17)
C5—C6—C7121.01 (19)O6—C25—C20118.62 (17)
C5—C6—C8120.71 (19)C24—C25—C20116.74 (17)
C7—C6—C8117.44 (18)N3—C26—C24124.80 (18)
O2—C7—C6124.69 (18)N3—C26—H26116.6 (13)
O2—C7—C2118.25 (18)C24—C26—H26117.9 (13)
C6—C7—C2117.02 (18)N3—C27—C27i108.27 (18)
N1—C8—C6123.55 (18)N3—C27—H27A110.0
N1—C8—H8118.1 (13)C27i—C27—H27A110.0
C6—C8—H8118.1 (13)N3—C27—H27B110.0
N1—C9—C10102.13 (15)C27i—C27—H27B110.0
N1—C9—H9A111.3H27A—C27—H27B108.4
C10—C9—H9A111.3N4—C29—C28179.3 (3)
N1—C9—H9B111.3C29—C28—H28A109.5
C10—C9—H9B111.3C29—C28—H28B109.5
H9A—C9—H9B109.2H28A—C28—H28B109.5
N2—C10—C9105.55 (15)C29—C28—H28C109.5
N2—C10—H10A110.6H28A—C28—H28C109.5
C9—C10—H10A110.6H28B—C28—H28C109.5
N2—C10—H10B110.6C31A—C30—H30A109.5
C9—C10—H10B110.6C31A—C30—H30B109.5
H10A—C10—H10B108.8H30A—C30—H30B109.5
N2—C11—C12126.03 (19)C31A—C30—H30C109.5
N2—C11—H11118.0 (15)H30A—C30—H30C109.5
C12—C11—H11115.9 (15)H30B—C30—H30C109.5
C13—C12—C17120.31 (19)C31B—C30—H30D109.5
C13—C12—C11118.06 (18)C31B—C30—H30E109.5
C17—C12—C11121.58 (19)H30D—C30—H30E109.5
C14—C13—C12121.15 (19)C31B—C30—H30F109.5
C14—C13—H13119.4H30D—C30—H30F109.5
C12—C13—H13119.4H30E—C30—H30F109.5
C13—C14—C15119.8 (2)N5B—C31B—C30168.0 (12)
C13—C14—H14120.1N5A—C31A—C30176.4 (16)
O2—Co1—O3—C17108.49 (15)C17—C12—C13—C140.4 (3)
O6—Co1—O3—C1771.50 (15)C11—C12—C13—C14178.03 (18)
N2—Co1—O3—C1714.94 (15)C12—C13—C14—C152.5 (3)
N3—Co1—O3—C17160.96 (15)C13—C14—C15—C161.2 (3)
O2—Co1—N1—C832.07 (17)C18—O4—C16—C159.5 (3)
O6—Co1—N1—C8147.98 (16)C18—O4—C16—C17171.85 (16)
N2—Co1—N1—C8125.97 (17)C14—C15—C16—O4178.56 (18)
N3—Co1—N1—C858.28 (17)C14—C15—C16—C172.9 (3)
O2—Co1—N1—C9124.52 (12)Co1—O3—C17—C1211.0 (3)
O6—Co1—N1—C955.44 (12)Co1—O3—C17—C16170.00 (12)
N2—Co1—N1—C930.62 (12)C13—C12—C17—O3176.66 (18)
N3—Co1—N1—C9145.14 (12)C11—C12—C17—O30.9 (3)
C1—O1—C2—C310.2 (3)C13—C12—C17—C164.3 (3)
C1—O1—C2—C7170.3 (2)C11—C12—C17—C16178.17 (17)
O1—C2—C3—C4179.9 (2)O4—C16—C17—O33.4 (2)
C7—C2—C3—C40.7 (3)C15—C16—C17—O3175.31 (17)
C2—C3—C4—C50.3 (3)O4—C16—C17—C12175.75 (16)
C3—C4—C5—C60.7 (3)C15—C16—C17—C125.6 (3)
C4—C5—C6—C71.4 (3)C19—O5—C20—C2113.4 (3)
C4—C5—C6—C8170.7 (2)C19—O5—C20—C25167.15 (16)
Co1—O2—C7—C635.5 (2)O5—C20—C21—C22179.93 (18)
Co1—O2—C7—C2146.84 (14)C25—C20—C21—C220.6 (3)
C5—C6—C7—O2175.95 (18)C20—C21—C22—C232.2 (3)
C8—C6—C7—O26.4 (3)C21—C22—C23—C241.9 (3)
C5—C6—C7—C21.7 (3)C22—C23—C24—C251.0 (3)
C8—C6—C7—C2171.31 (17)C22—C23—C24—C26167.23 (18)
O1—C2—C7—O23.0 (3)Co1—O6—C25—C2424.4 (2)
C3—C2—C7—O2176.47 (18)Co1—O6—C25—C20158.64 (13)
O1—C2—C7—C6179.13 (17)C23—C24—C25—O6179.40 (17)
C3—C2—C7—C61.4 (3)C26—C24—C25—O612.4 (3)
C9—N1—C8—C6151.49 (19)C23—C24—C25—C203.6 (3)
Co1—N1—C8—C63.0 (3)C26—C24—C25—C20164.64 (17)
C5—C6—C8—N1166.18 (19)O5—C20—C25—O60.0 (2)
C7—C6—C8—N124.2 (3)C21—C20—C25—O6179.45 (17)
C8—N1—C9—C10106.4 (2)O5—C20—C25—C24177.20 (16)
Co1—N1—C9—C1051.60 (16)C21—C20—C25—C243.4 (3)
C11—N2—C10—C9143.82 (18)C27—N3—C26—C24161.12 (17)
Co1—N2—C10—C927.56 (18)Co1—N3—C26—C2413.5 (3)
N1—C9—C10—N248.50 (19)C25—C24—C26—N318.4 (3)
C10—N2—C11—C12175.28 (18)C23—C24—C26—N3173.14 (18)
Co1—N2—C11—C124.9 (3)C26—N3—C27—C27i71.3 (2)
N2—C11—C12—C13173.47 (19)Co1—N3—C27—C27i103.39 (19)
N2—C11—C12—C174.1 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···N5Bii0.952.573.454 (19)156
C9—H9B···O60.992.502.955 (2)107
C18—H18A···N5Aiii0.982.653.331 (10)127
C27—H27A···O3i0.992.503.148 (2)123
C27—H27A···O4i0.992.563.463 (2)151
C27—H27B···O20.992.402.980 (2)117
C28—H28A···O60.982.293.256 (3)169
C30—H30D···N40.982.563.451 (5)151
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y, z+1; (iii) x1, y+1, z.
Selected bond lengths (Å) for 2 and 3 top
23
Co1—O31.8915 (16)1.8966 (13)
Co1—O21.9073 (17)1.9002 (13)
Co1—O61.9093 (16)1.9118 (13)
Co1—N11.8894 (19)1.8993 (16)
Co1—N21.9041 (19)1.9133 (16)
Co1—N31.9445 (19)1.9271 (16)
 

Acknowledgements

AV thanks the National Scholarship Programme of the Slovak Republic for financing her study stay at the University of Zaragoza. This work benefitted from services provided by the Servicio General de Apoyo a la Investigación, University of Zaragoza.

Funding information

Funding for this research was provided by: Vedecká Grantová Agentúra (grant No. 1/0063/17); Agentúra na Podporu Výskumu a Vývoja (grant No. APVV-14-0078); Univerzita Pavla Jozefa Šafárika v Košiciach (Slovakia) (grant No. VVGS-PF-2018-777); Ministerio de Economía y Competitividad (grant No. MAT2015-68200-C2-1-P); European FEDER funds; Diputación General de Aragón (Project M4, E11_17R).

References

First citationAndruh, M. (2015). Dalton Trans. 44, 16633–16653.  CrossRef CAS Google Scholar
First citationBailey, N. A., Higson, B. M. & McKenzie, E. D. (1972). J. Chem. Soc. Dalton Trans. pp. 503–508.  CrossRef Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurzurí, E., Campo, J., Falvello, L. R., Forcén-Vázquez, E., Luis, F., Mayoral, I., Palacio, F., Sáenz de Pipaón, C. & Tomás, M. (2011). Chem. Eur. J. 17, 2818–2822.  PubMed Google Scholar
First citationCalligaris, M., Manzini, G., Nardin, G. & Randaccio, L. (1972). J. Chem. Soc. Dalton Trans. pp. 543–547.  CrossRef Google Scholar
First citationCalligaris, M., Nardin, G. & Randaccio, L. (1970). J. Chem. Soc. D, 17, 1079–1080.  CrossRef Google Scholar
First citationCorreia, I., Pessoa, J. C., Duarte, M. T., da Piedade, M. F. M., Jackush, T. C. A., Kiss, T., Castro, M. M. C. A., Geraldes, C. F. G. C. & Avecilla, F. (2005). Eur. J. Inorg. Chem. pp. 732–744.  CrossRef Google Scholar
First citationCostes, J.-P., Dahan, F., Dumestre, F. & Tuchagues, J. (2010). Polyhedron, 29, 787–790.  CrossRef CAS Google Scholar
First citationCovaci, O. I., Mitran, R. A., Buhalteanu, L., Dumitrescu, D. G., Shova, S. & Manta, C. (2017). CrystEngComm, 19, 3584–3591.  CrossRef CAS Google Scholar
First citationCruz-Cabeza, A. J., Reutzel-Edens, S. M. & Bernstein, J. (2015). Chem. Soc. Rev. 44, 8619–8635.  Web of Science CAS PubMed Google Scholar
First citationCunningham, D., Gilligan, K., Hannon, M., Kelly, C., McArdle, P. & O'Malley, A. (2004). Organometallics, 23, 984–994.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhose, B. N. (1983). Rev. Port. Quim. 28, 147–150.  Google Scholar
First citationGhose, B. N. (1984). J. Chem. Eng. Data, 29, 237.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHasnip, P. J., Refson, K., Probert, M. I. J., Yates, J. R., Clark, S. J. & Pickard, C. J. (2014). Philos. Trans. Roy. Soc. A, 372, 20130270.  CrossRef Google Scholar
First citationJiang, G.-B., Zhang, S.-H. & Zeng, M.-H. (2007). Acta Cryst. E63, m2383.  CrossRef IUCr Journals Google Scholar
First citationLe Bail, A., Duroy, H. & Fourquet, J. L. (1988). Mater. Res. Bull. 23, 447–452.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMo, Y., Yang, G., Zhao, G. & Li, B. (1990). Jilin Daxue Ziran Kex. Xue. (Chin.) (Acta Sci. Nat. Univ. Jil.), 93-1.  Google Scholar
First citationMunshi, P., Skelton, B. W., McKinnon, J. J. & Spackman, M. A. (2008). CrystEngComm, 10, 197–206.  CrossRef CAS Google Scholar
First citationNardelli, M. (1983). Comput. Chem. 7, 95–98.  CrossRef CAS Web of Science Google Scholar
First citationOdabaşoğlu, M., Arslan, F., Ölmez, H. & Büyükgüngör, O. (2007). Dyes Pigments, 75, 507–515.  Google Scholar
First citationPal, A., Chand, S., Senthilkumar, S., Neogi, S. & Das, M. C. (2016). CrystEngComm, 18, 4323–4335.  CrossRef CAS Google Scholar
First citationPavlov, A. A., Nelyubina, Y. V., Kats, S. V., Penkova, L. V., Efimov, N. N., Dmitrienko, O. A., Vologzhanina, A. V., Belov, A. S., Voloshin, Y. Z. & Novikov, V. V. (2016). J. Phys. Chem. Lett. 7, 4111–4116.  CrossRef CAS Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352.  Google Scholar
First citationPotticary, J., Terry, L. R., Bell, C., Papanikolopoulos, A. N., Christianen, P. C. M., Engelkamp, H., Collins, A. M., Fontanesi, C., Kociok-Koehn, G., Crampin, S., Da Como, E. & Hall, S. R. (2016). Nat. Commun. 7, article No. 11555.  CrossRef Google Scholar
First citationRezaeivala, M. & Keypour, H. (2014). Coord. Chem. Rev. 280, 203–253.  Web of Science CrossRef CAS Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationRodríguez-Spong, B., Price, C. P., Jayasankar, A., Matzger, A. J. & Rodríguez-Hornedo, N. (2004). Adv. Drug Deliv. Rev. 56, 241–274.  Web of Science PubMed Google Scholar
First citationSaha, P. K., Dutta, B., Jana, S., Bera, R., Saha, S., Okamoto, K. & Koner, S. (2007). Polyhedron, 26, 563–571.  Web of Science CrossRef CAS Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmolko, L., Černák, J., Kuchár, J., Miklovič, J. & Boča, R. (2016). J. Mol. Struct. 1119, 437–441.  CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTao, J., Wei, R. J., Huang, R. B. & Zheng, L. S. (2012). Chem. Soc. Rev. 41, 703–737.  Web of Science CrossRef CAS PubMed Google Scholar
First citationVigato, P. A. & Tamburini, S. (2004). Coord. Chem. Rev. 248, 1717–2128.  Web of Science CrossRef CAS Google Scholar
First citationWood, P. A., Olsson, T. S. G., Cole, J. C., Cottrell, S. J., Feeder, N., Galek, P. T. A., Groom, C. R. & Pidcock, E. (2013). CrystEngComm, 15, 65–72.  Web of Science CrossRef CAS Google Scholar
First citationZhou, H., Chen, C., Liu, Y. & Shen, X. (2015). Inorg. Chim. Acta, 437, 188–194.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds